Measurement of Very Short Electron Storage Ring Bunches using a Streak Camera at the Resolution Limit

What is a streak camera?

Resolution: some definition and aspects

Calibration of the streak camera

Streak camera resolution (1)

Time resolved spectra

Streak camera resolution (2)

Measurement performed at diamond

12/07/2010

What is a streak camera?

Streak camera at diamond

Slow sweep unit

Triggered ramp voltage

Synchroscan sweep unit

Resonant oscillator synchronous with storage ring RF cavity

Photocathode

PCO camera

12/07/2010

Synchroscan at f_{RF} /2

> odd and even buckets separated by half synchroscan phase

Relative phase RF-synchroscan ϕ_1 Relative phase RF-synchroscan ϕ_2 Relative phase RF-synchroscan ϕ_3

Single shot with 7 bunches filled with different charges

12/07/2010

Hybrid fill: 600 bunches consecutive and one bunch with a higher charge in the gap

Resolution: some definition and aspects

Some definition of the resolution

- Rayleigh Criterion: separation power of two point sources
- r.m.s width of the PSF
- ➢ FWHM of the PSF
- Spatial frequency spectrum
 Fourier transform of the PSF
 ...
 - For a PSF Gaussian:
 - r.m.s width = σ
 - FWHM = 2.35 σ
 - Rayleigh Criterion = 3.33 σ

← Rayleigh criterion resolution

12/07/2010

Convolution of Gaussian distribution:

$$G_0(\sigma) \otimes PSF(\sigma_{PSF}) = G_i(\sigma_i)$$

Deconvolution is essential for resolution limit measurement.

 $\sigma_i = \sqrt{\sigma^2 + \sigma_{PSF}^2}$

12/07/2010

PSF of the streak camera (1)

PSF of the streak camera (1)

 \succ image of a focussed beam on the photocathode with no sweep

Calibration of the fast synchroscan sweep

Delay between pulses 10mm (33.33ps)

shift i = 20 ; $\Sigma(p_{12}-p_{1+2}(i))^2 = 120.4363$ delay j =180 Intensity (arb. units) 0 2.0--1 100 200 300 0 400 pixels 150 $\Sigma(p_{12}p_{1+2}(i))^2$ 100 50 0 · 0 50 100 shift i (pixel)

150

P₁₂ $p_{1+2}(i)$ p₁₂-p₁₊₂(i)

600

700

200

500

12/07/2010

Moving the delay and measuring it in pixels gives the calibration of the synchroscan sweep

Advantage of the small bunch length: more accurate calibration

Previous calibration: 0.186 ps/pixel (performed with 20ps laser pulse)

12/07/2010

Calibration with 20ps laser pulse

Scale 15ps/mm: 0.186 ps/pixel Scale 25ps/mm: 0.313 ps/pixel Scale 50ps/mm: 0.637 ps/pixel

Calibration with low alpha pulse Scale 15ps/mm: 0.177 ps/pixel

Scale 25ps/mm: 0.308 ps/pixel

Scale 50ps/mm: 0.626 ps/pixel

12/07/2010

PSF of the streak camera (1)

 \succ image of a focussed beam on the photocathode with no sweep

	Reflect. Optics	Refract. Optics
σ_{PSF} (pixel)	9.2	9.8
σ_{PSF} (ps) 15ps/mm	1.6	1.7
σ_{PSF} (ps) 25ps/mm	2.85	3.0
σ_{PSF} (ps) 50ps/mm	5.75	6.2

> White beam!

Chirp of a pulse

Light pulse

Δτ Δω

Medium of length L

Light pulse

 $\begin{array}{l} \Delta \tau' > \Delta \tau \\ \Delta \omega \end{array}$

True representation of the bunch profile

biased representation of the bunch profile

Attention: measurement with broad spectrum of SR can suffer from this!

12/07/2010

Time resolved spectra

Coupling front optics of the streak camera with grating

 \succ Use only synchroscan sweep

Gr: grating - L: lens - M: mirror - sl: slit - SC: streak camera

М

Μ

12/07/2010

Time resolved spectrum – Low alpha mode – 0.04 mA / bunch

- New reflective front optics
- Colour glass filter 315nm 750nm

ond

Centroid of the pulse spectrum: chirp

Chirp: comparison between integrated spectrum pulse profile and profile at λ

Pulse width vs. wavelength

nond

Streak camera resolution (2)

Static PSF

measured with focussed beam and no sweep: 1.5ps (white beam) ~1ps red photons

Dynamic PSF

function of the bandwidth and chirp of the measured pulse

Refractive Front Optics

Sapphire window 6.4mm -+ Nikkor 50mm + BK7 50mm Bandwidth 400-700nm

Pulse broadening 6 ps

Reflective Front Optics

Sapphire window 6.4mm Bandwidth 300-800nm

Pulse broadening 1.7 ps

12/07/2010

Measurement performed at diamond

- Measurement with bandpass filter 560+-10nm (no chirp)
- Refractive Front Optics (didn't have the new design in 2009)
- α = 5 10⁻⁶ (crosses)
- α = 10⁻⁶ (squares)
- lines: expected 'zero' current bunch length

'zero' current bunch length:

$$\sigma = \frac{\alpha}{\omega_s} \sigma_{\varepsilon} = C(V_{RF}) \sqrt{\alpha} \sigma_{\varepsilon}$$

Nominal α = 1.7 10⁻⁴

12/07/2010

Conclusion

- •Short pulses from short electron bunches down to $\sigma = 1$ ps (r.m.s.) can be measured with a streak camera.
 - best condition for that measurement: repetitive stable pulses. Single shot measurement in single sweep might be very challenging, due possible space charge effect.
- Knowledge of the Static and Dynamic Point Spread Function of the camera is absolutely required so that deconvolution can be performed.
- Calibration of the streak camera in situ is also strongly recommended.
- Measurement of the dynamic PSF with very short pulses shows some intrinsic features of the streak camera:
 - Field linearity of the electrodes and the accelerating voltage.
 - Ballistic behaviour of the electrons initial energy, perhaps revealed by the slope of the pulse width vs. wavelength.

