

Electro-optic diagnostics concepts & capabilities

Steven Jamison

Accelerator Science and Technology Centre (ASTeC) STFC Daresbury Laboratory, UK

Electro-optic effect

Refractive index modified by quasi-DC electric field

Time varying field....replace with time varying refractive index

quasi-DC description OK if $\tau_{laser} \ll$ time scale of E_{DC} variations Basis for Pockels cells, sampling electro-optic THz detection, ...

Phase retardation into intensity change Polariser & wave plate arrangement effects scaling

Phase retardation Γ proportional to (Coulomb) field

crossed polariser detection

 $\Delta I_{out}^{probe} \sim \Gamma \sim E^{THz}$

- linear scaling
- small signal on large background
- polarity measureable good for CSR, CTR etc

$$I_{out}^{probe} \sim \Gamma^2 \sim [E^{THz}]^2$$

- quadratic scaling
- background free
- polarity hidden Coulomb field OK

Measure electric fields of bunch : Coulomb field, CSR, CTR, wakefields, ...

Spectrum of field important for capability & technique choice

Refractive index formalism comes out as subset of solutions (restriction on laser parameters)

This is "Small signal" solution. High field effects c.f. Jamison Appl Phys B 91 241 (2008)

$$\widetilde{A}(\omega, z) = \widetilde{A}_0(\omega) \mathrm{e}^{-z\beta_{\mathrm{opt}}} + \frac{\mathrm{i}}{2c\eta} \mathrm{e}^{-z\beta_{\mathrm{opt}}} \omega \int \mathrm{d}\omega' \widetilde{A}_{\mathrm{cff}}^{\mathrm{THz}}(\omega - \omega') \widetilde{A}(\omega') \,,$$

DC "THz" field....

$$\begin{array}{l} \tilde{A}(\omega,z) \to \tilde{A}_0(\omega) \left[1 + i\alpha A_{DC}z\right] & \text{phase shift} \\ \to \tilde{A}_0(\omega) e^{i\alpha A_{DC}z} & \text{(pockels cell)} \end{array}$$

Delta-Fnc
ultrafast pulse...

$$\tilde{A}_0(\omega) \rightarrow A_0 e^{i\omega\tau}$$

$$\int A_0 \tilde{A}_{eff}^{THz}(\omega - \omega') e^{i\omega\tau} \longrightarrow A_0 A_{eff}^{THz}(t - \tau)$$
temporal
sampling
of THz field

Monochromatic
THz & optical
$$\tilde{A}_0(\omega_0) + i\alpha \tilde{A}_0(\omega_0 - \Omega)$$

 $+ i\alpha \tilde{A}_0(\omega_0 + \Omega)$ optical
sidebands

Chirped optical

Parameter dependent results

Electro-optic coulomb field Encoding shifting Coulomb spectrum to optical region creating an optical "replica" of Coulomb field

OR

Material Response, $R(\omega)$

Crystal & mirror in ALICE expts

(one) crystal from FLASH expts

Effect of Material response...

Decoding methods...

Spectral decoding

Simplest of single shot techniques

- Impose time-wavelength correlation on probe pulse
- Interact probe with THz (Coulomb, CSR etc...) pulse
- convert EO effect into Intensity variation
- Read out probe intensity spectrum

Limitations on measurement of ultrafast signals can be derived from frequency mixing description....

Spectral decoding...

EO interaction....

$$\tilde{E}_{out}^{probe}(\omega) \sim \tilde{E}_{in}^{probe}(\omega) + i\chi^{(2)} \int_{-\infty}^{\infty} \tilde{E}_{eff}^{THz}(\Omega) \tilde{E}_{in}^{probe}(\omega - \Omega) \mathrm{d}\Omega^{-2} \mathrm{d}\Omega$$

assume a linear chirped probe pulse...

$$\tilde{E}_{in}^{probe}(\omega) = \tilde{E}_0^{probe} \exp(i\beta(\omega-\omega_0)^2)$$

notational definition...

$$\tau \equiv 2\beta(\omega - \omega 0)$$

$$\int_{-\infty}^{\infty} \tilde{E}^{THz}(\Omega) \tilde{E}_{in}^{probe}(\omega - \Omega) \mathrm{d}\Omega \longrightarrow \tilde{E}_{in}^{probe}(\omega) \int_{-\infty}^{\infty} \mathrm{d}\Omega \mathrm{e}^{i\Omega\tau} \mathrm{e}^{-i\beta\Omega^2} [\tilde{E}^{THz}(\Omega)]$$

functionally same as Fourier transform..

$$\longrightarrow \tilde{E}_{in}^{probe}(\omega) \left[\exp\left(i\frac{\tau^2}{4\beta} - i\frac{\pi}{4}\right) * E^{THz}(\tau) \right]$$

$$\lim_{\text{convolution}} wanted$$

$$quantity$$

Polarisation configuration determines final form of this convolution

$$S^{BD}(\omega) = \sqrt{\frac{2\pi}{\beta}} |\tilde{E}_{opt}^x(\omega)|^2 A_2 \omega \left\{ E_{THz}(\tau + t_0) * \cos(\frac{\tau^2}{4\beta} - \frac{\pi}{4}) \right\}$$

Crossed polarisers

$$S(\omega)^{CP} = A_2^2 \omega^2 \frac{\pi}{2\beta} |\tilde{E}_{opt}^x(\omega)|^2 \left\{ \left[E_{THz}(\tau + t_0) * \cos\left(\frac{\tau^2}{4\beta} - \frac{\pi}{4}\right) \right]^2 + \left[E_{THz}(\tau + t_0) * \sin\left(\frac{\tau^2}{4\beta} - \frac{\pi}{4}\right) \right]^2 \right\}$$

Spectral decoding – crossed polariser configuration

Spectral decoding – balanced detection configuration

Comparison of Temporal & Spectral decoding

Laser lab tests...

Unipolar pulses generated by near-field photo-conductive antenna (mimic for electron bunch)

Jamison et al. Opt. Lett. 18 1710 (2003)

Direct Temporal techniques...

- Encoding of signal exactly as before..
- measure temporal profile of probe pulse directly using spatial-temporal cross-correlation

Cross-correlation – temporal decoding

Rely on EO crystal producing a optical temporal replica of Coulomb field

$$= B_2^2 \left[(2\alpha t - \omega_0)^2 E_{\mathrm{THz}}^2(t) I_{\mathrm{opt}}(t) \right] * I_{\mathrm{gate}}(t)$$

limited by

- gate pulse duration (although FROG etc could improve)
- EO encoding efficiency, phase matching

FELIX Electro-optic experiments

(at that time)

Highest resolution bunch profile obtained by EO techniques

measurement showing actual bunch profile

Real time monitoring and bunch profile modification...

Berden, Jamison, et al Phys Rev Lett (2004)

Measurements at FLASH...

Electro-optic bunch profile

Transverse Deflecting Cavity bynch profile

Phys Rev Lett 2007 Phys Rev ST 2009

Can we achieve even better resolution ...?

Encoding

Detector Material:

- GaP
- Move to new material? (phase matching, $\chi^{(2)}$ considerations)
- Could use GaSe, DAST, MBANP or poled organic polymers?
- use multiple crystals, and reconstruction process

Decoding

Gate pulse width ~ 50 fs

- Introduce shorter pulse
- Use (linear) spectral interferometry
- Use FROG Measurement (initially attempted at FELIX, 2004)

or Alternative techniques: spectral upconversion

If drop requirement for explicit time information at high frequencies, other options also become available

Spectral upconversion diagnostic

Aim to measure the bunch Fourier spectrum...

 $(\Omega \text{ can be } < 0)$

- ... accepting loss of phase information & explicit temporal information
- ... gaining potential for determining information on even shorter structure
- ... gaining measurement simplicity

use long pulse, narrow band, probe laser

$$\tilde{E}_{\text{out}}^{\text{opt}}(\omega) = \tilde{E}_{\text{in}}^{\text{opt}}(\omega) + i\omega a \tilde{E}_{\text{in}}^{\text{opt}}(\omega) * \left[\tilde{E}^{\text{Coul}}(\omega)\tilde{R}(\omega)\right]$$

$$\swarrow \delta \text{-function}$$

same physics as "standard" EO

different observational $\tilde{E}(\omega_0 + \Omega) = \tilde{E}(\omega_0) + i\omega a \tilde{E}(\omega_0) \left[\tilde{E}^{\text{Coul}}(\Omega) \tilde{R}(\Omega) \right]$ outcome

- laser complexity reduced, reliability increased
- laser transport becomes trivial (fibre)

NOTE: the long probe is still converted to optical replica

Spectral upconversion diagnostic

Spectral upconversion diagnostic for FEL radiation...

optical side bands from λ =150 μ m FEL radiation

Summary

- Material effects (phonon resonances) significant issue at <100fs FWHM structure
- Spectral decoding good for >1ps pulse. Can have artifacts
- Temporal techniques reaching resolution limit from materials
- Spectral upconversion promising for higher time resolution & feedback applications