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HL-LHC IP and Ring BPMs:

Read-out Technology and expected Performance

Manfred Wendt (BE-BI-BP) for the LHC BPM team:

Manoel Barros Marin, Douglas Bett, Andrea Boccardi, Irene Degl’Innocenti, Michal Krupa,

and many other colleagues

176th WP2 meeting, 6/2/2020



logo

area

Outline

Overview on LHC BPM activities

The LHC BPM status quo

The LHC ring BPM consolidation project

The HL-LHC IR BPM system

Summary
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Overview of LHC BPM Activities

 Interlock BPM consolidation
 8 stripline BPMs left & right of point 6

 New read-out electronics consolidation 
• initially triggered by operational problems with doublet-bunches

 Prototype tested with beam during run 2
• on BPMS.4L5v

• Time-multiplexed BPM electrode signals

• Band-pass comb filter allows doublet bunch signal processing

 However, with reduced performance 

• VFC-based commercial 14-bit FMC ADC operating at 2.6 GB/s

 Final prototype to be installed end of LS2
• Details have been worked out in close collaboration with MPP

 Deployment of the entire system during an upcoming YETS… 

M. Wendt, HL-LHC BPMs, WP2 presentation 3
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Overview of LHC BPM Activities (cont.)

M. Wendt, HL-LHC BPMs, WP2 presentation 4

Embedded

button

 Integrated Collimator BPMs
 Buttons embedded in collimator jaws 

to speed up set up since 2013

 Uses high-precision 
DOROS BPM acquisition system

 Collimator jaw position now interlocked 
on BPM readings

 Challenging integration and component 
procurement: coaxial SiO2 RF cables

 All HL-LHC collimators 
will be equipped with BPMs

 HEL Stripline BPM
 Needs to monitor the hollow-electron beam 

and the LHC proton / ion beams
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Overview of LHC BPM Activities (cont.)

 HL-BPMs (IR BPMs)

 32 new BPMs
• “cold” BPMs inside the cryostat

• 24 stripline BPMs to monitor of both beams in the same beam pipe

• 8 button BPMs in separate beam pipes (D2)

 Requires a new read-out system
• Final prototyping with beam before LS3!

• Deployment of the entire system by end of LS3!  

 Ring BPM consolidation

 New read-out electronics for ~1100 LHC BPMs
• Based on the given infrastructure

• Radiation tolerant tunnel electronics

• Prototyping during run 3

• Deployment LS3/LS4?

M. Wendt, HL-LHC BPMs, WP2 presentation 5
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LHC BPM Read-out Systems: Status Quo in LS2

 WBTN BPM System
 Time encoded bunch-by-bunch signal processing

 2 optical fibers per BPM

 DOROS BPMs
 Narrowband electronics

 Collimator & IR BPMs

M. Wendt, HL-LHC BPMs, WP2 presentation 6

WBTN board

(single plane)

DAB board

(dual plane)

1310 nm

single-mode

fiber tunnel installation
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LHC BPM Wide-Band Time-Normalizer (WBTN) Functional Principle

M. Wendt, HL-LHC BPMs, WP2 presentation 7
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WBTN BPM Performance and Limitations

 Still fulfills most requirements, BUT:
 Residual temperature sensitivity

• Despite temperature controlled racks for the VME-based analog integrators

 Aging effects, e.g. “electronic” offset drifts
• Analog electronics components

 Sensitive to signal reflections between BPM pickup and read-out electronics

 Dynamic range limitations
• Defined by the dual analog comparator circuit

 Long-term maintainability, spares, calibration, etc.
• Complex analog signal conditioning circuit

• Will be 20 years in operation after LS3

M. Wendt, HL-LHC BPMs, WP2 presentation 8

 70 MHz LPF & AD96687 analog comparator 
define the core performance of the LHC BPMs
 <=46 dB dynamic range (single bunch intensity)

 Vref set to
• 2mV: HI sensitivity

• 67mV: LO sensitivity

 50…100 μm single-bunch resolution
• Adaptive orbit-mode IIR filter BW: 20…40 Hz,

typically few μm resolution in orbit-mode  
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LHC Ring BPM Consolidation

 Requirements

 Should meet ALL requirements 
of the present LHC BPM read-out system

 PLUS some improvements, e.g.
• Resolution, reproducibility over long time periods, 

additional flexibility through gateware-based signal processing

 Two main “customers”:
• LHC OP: pilot, but mostly full machine with nominals, beam orbit mode, OFB, 

stability, reproducibility

• ABP: (fat) pilot, TbT mode, SB resolution

 Boundaries

 Keep the existing infrastructure
• BPM pickups, optical fibers

 Requires radiation tolerant components! 

M. Wendt, HL-LHC BPMs, WP2 presentation 9
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Concept: Time-multiplexed BPM signal processing

M. Wendt, HL-LHC BPMs, WP2 presentation 10

bunched beam current

Electrode A

Electrode B

Aelec signal,

delayed

signal delay,

e.g. coaxial cable

Belec signal,

direct

combined A & B signal 

+

B BA A

signal 

conditioning

A

D

C

DAQ

Single channel 
read-out improves 
symmetry and 
long-term stability 
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LHC Ring BPM Consolidation: Proposed Layout

M. Wendt, HL-LHC BPMs, WP2 presentation 11
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LHC Ring BPM Consolidation (cont.)

 Challenges
 Radiation tolerant components 

for the in-tunnel hardware
• Space-grade, radiation-tolerant

12 or 14-bit multi GB/s ADCs
 Teledyne e2v EV12AQ600

12-bit, 6.4 GS/s, 4-cores, ~8.7 ENOB

 TI ADC12DJ3200QML-SP
12-bit, 6.4 GB/s, 2-cores, ~8.7 ENOB

• Low-jitter clock generator &  PLL

• VTRx transceiver
 Currently under development

 Maximum raw data throughput 
limited by existing fiber installation
• With 4x coarse wavelength 

division multiplexer ≤40.96 GB/s

 Expected Performance
 Single bunch resolution 10…15 μm

• Depending on ADC ENOB and CLK rate,
and 2-in-1 or 4-in-1 time multiplexing schema

• “fat” pilot bunch, ~2e10 cpb

M. Wendt, HL-LHC BPMs, WP2 presentation 12
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Beam 1

Beam 2

M. Wendt, HL-LHC BPMs, WP2 presentation 13

BPMs for Interaction Regions

Will be removed

ECR in preparation
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HL-LHC BPM overview

Code Location
Distance

to IP [m]

Aperture

[mm]
Type

Tungsten

shielding

Electrode

position

Beam time

separation [ns]

BPMQSTZA Q1 (IP side) 21.853
Octagonal

101.7 / 99.7
Stripline No 0° / 90° 3.92

BPMQSTZB Q2A (IP side) 33.073
Octagonal

112.7 / 119.7
Stripline Yes 45° / 135° 3.92

BPMQSTZB Q2B (IP side) 43.858
Octagonal

112.7 / 119.7
Stripline Yes 45° / 135° 6.82

BPMQSTZB Q3 (IP side) 54.643
Octagonal

112.7 / 119.7
Stripline Yes 45° / 135° 9.72

BPMQSTZB CP (IP side) 65.743
Octagonal

112.7 / 119.7
Stripline Yes 45° / 135° 10.52

BPMQSTZB D1 (IP side) 73.697
Octagonal

112.7 / 119.7
Stripline Yes 45° / 135° 7.36

BPMQBCZA

BPMQBCZB
D2 (arc side) 151.930

Round

Ø 90
Button No 0° / 90° N/A
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“Cold” Directional-Coupler BPMs
 Technology

 125 mm long stripline electrodes, 
“450 rotated” installation (type B BPMs)

 ~26 dB directivity to improve the disentanglement 
of the B1/B2 signals

 Tungsten shielding:
lower TID on Q2B magnet by ~15 %

 Amorphous carbon coating:
Electron cloud effects decreased by 40x

 Active cooling with liquid He:
To evacuate up to 6 W of head load

 Status / Milestones
 BPM prototype production launched

 Started procurement of tungsten absorbers (with WP12) 
and cryogenic RF feedthroughs
• Qualification of RF feedthroughs in 2020 (?!)

 In-kind contribution of BPM body manufacturing
• Collaboration agreement with Russia finalized

 Coaxial SiO2 RF cables
• Market survey and procurement start for mid 2020

• In combination with cables required for the collimator BPMs

M. Wendt, HL-LHC BPMs, WP2 presentation 15
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Impact of large aperture, rotated BPMs

 Reduced coupling, 7.5 % for a centered beam

 Reduced BPM sensitivity, 0.4 dB/mm at the BPM center

 Increased position non-linearities
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Directional couplers have a finite “directivity”

Unwanted parasitic signal
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Directivity

 Directivity – the ratio of the 

upstream (wanted) signal to the 

downstream (unwanted) signal

 Ways of improving the directivity:

 Careful RF design of the BPM  

(constant 50 Ω impedance) 

 Operating at lower frequencies

 Installing the BPM in a location 

where the two beams are separated 

in time

 HL-LHC BPM directivity: ~ 26 dB

M. Wendt, HL-LHC BPMs, WP2 presentation 18

Time / ns
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IR BPM Signal Processing

 Study or B1-B2 compensation schemas
 Bunch-by-bunch signal processing

• 25 ns time window

 Up to 10x intensity variation
• Between counterrotating bunches 

 up to 17 mm beam offsets
• Injection orbit at IR1

 Uncompensated bunch lengthening

 Accuracy errors, resolution 

M. Wendt, HL-LHC BPMs, WP2 presentation 19

Stripline BPM

pickup
long cable
(60-140 m)

Low-pass 
filter

variable 
attenuator

Processor is not rad-hard, 
electronics must be located in

the service gallery

Anti-aliasing filter 
also stretches signal 

to make efficient 
use of the digitizer

Match signal level 
to ADC range

Digital 
processor

Typical digitized signal
 UR electrode

 Same bunch intensities

 0 mm beam offset (both beams)

 10.5 ns bunch time difference

 12-bit, 4.096 GB/s async clock

B2 error signal
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Candidate Digital Signal Processor

M. Wendt, HL-LHC BPMs, WP2 presentation 20

Processing System

Quad Arm Cortex-A53

Dual Arm Cortex-R5

Programmable Logic

RF-DAC

RF OutDUC

RF-ADC

RF inDDC
RF-ADC

RF-DAC

GTY 

Transceiver

Zynq RFSoC

 Xilinx Zynq RFSoC (= radio frequency system on a chip)

 Model ZU28DR (Zynq UltraScale architecture)

ZCU111 Evaluation Board

Processing System Features

Application 

Processing Unit

Quad-core Arm Cortex-A53

up to 1.33 GHz

Real-Time 

Processing Unit

Dual-core Arm Cortex R5 

up to 533 MHz

Programmable Logic

System Logic Cells (K) 930

DSP Slices 4,272

Memory (Mb) 60.5

33G Transceivers 16

Maximum I/O Pins 347

Direct-RF Signal Chain Features

Max. RF input Frequency (GHz) 4

Decimation / Interpolation 1x, 2x, 4x, 8x

12-bit RF-ADC
# of ADCs 8

Max Rate (GSPS) 4.096

14-bit RF DAC
# of DACs 8

Max Rate (GSPS) 6.554
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Digital Signal Processing Simulation Framework

 Studied different compensation algorithms
 No compensation

• Really bad!

 VNA-style 
• Based on FD pickup S-parameters

• Not very promising

 Waveform compensation
• TD signal sample-by-sample

• Computing intensive

 Bunch signal power compensation
• TD signal integration 

• Studied two different different methods

• Most promising!

M. Wendt, HL-LHC BPMs, WP2 presentation 21

Digitize 
waveforms

Compensate
for other beam

Integrate
channels

Calculate 
position

Correct 
non-linearity

Calibrate,
acount for BPM 

roll & offset

Δ/Σ
algorithm

Polynomial
adjustment 

(2D)

e.g. root of 
sum of squares 

(RSS)

Order of compensation and 

integration could swap

Standard BPM processing operations
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Simulation Methodology

 Calculate the signals expected on the 

stripline ports for a given pair of beam 

bunches, characterized by their:

 Positions in the BPM plane

 Bunch crossing timing

 Intensities

 (Gaussian) bunch lengths

 Also include the effects of:

 long coaxial cables

 filter stage

 variable attenuator (given step size)

 The resulting signals are used as the 

basis for an ensemble of waveforms 

generated from a digitizer with an 

asynchronous clock with given:

 sample frequency

 random noise amplitude

M. Wendt, HL-LHC BPMs, WP2 presentation 22

Transformed by cable 

and filter, attenuated

Down-sampled  and 

quantized, random 

noise added

BPM pickup signals

Port 1 (R upstream)

Port 5 (R downstream)

v
o
lt
a
g
e
 [

V
]

time [ns]

A
D

C
 c

o
u
n
ts

ADC sample

digitized waveforms

Signals at the digitizer input
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Typical Results – Relative Accuracy Errors

M. Wendt, HL-LHC BPMs, WP2 presentation 23
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 IR1 – injection orbit

 𝒊𝟎 = 𝒊𝟗 = 𝟑 ∙ 𝟏𝟎𝟏𝟏𝒄𝒑𝒃

 𝝈𝟎 = 𝝈𝟗 = 𝟕𝟓𝒎𝒎
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Typical Results – Relative Accuracy Errors

M. Wendt, HL-LHC BPMs, WP2 presentation 24
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 IR1 – injection orbit

 𝒊𝟎 = 𝟑 ∙ 𝟏𝟎𝟏𝟏𝒄𝒑𝒃

 𝒊𝟗 = 𝟑 ∙ 𝟏𝟎𝟏𝟎𝒄𝒑𝒃

 𝝈𝟎 = 𝝈𝟗 = 𝟏𝟎𝟎𝒎𝒎
• However, bunch 

lengthening effect 

not considered
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Typical Results – Absolute Position Errors

M. Wendt, HL-LHC BPMs, WP2 presentation 25

ℎ0 𝑣0 ℎ9 𝑣9

 Position error for maximum beam displacement

 𝒊𝟎 = 𝒊𝟗 = 𝟑 ∙ 𝟏𝟎𝟏𝟏𝒄𝒑𝒃

 𝝈𝟎 = 𝝈𝟗 = 𝟕𝟓𝒎𝒎

 True beam position = (𝑯𝟎, 𝑽𝟎)
 “Measured” (mean) beam position = (𝒉𝟎, 𝒗𝟎)
 Position error 𝜹𝟎 = 𝒉𝟎 −𝑯𝟎

 Compensation
 none

 waveform

 power

 power (alt)

𝛿
[𝑚

]

𝛿
[𝑚
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Typical Results – Absolute Position Errors
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ℎ0 𝑣0 ℎ9 𝑣9

 Position error for maximum beam displacement

 𝒊𝟎 = 𝟑 ∙ 𝟏𝟎𝟏𝟏𝒄𝒑𝒃

 𝒊𝟗 = 𝟑 ∙ 𝟏𝟎𝟏𝟎𝒄𝒑𝒃

 𝝈𝟎 = 𝝈𝟗 = 𝟕𝟓𝒎𝒎

 True beam position = (𝑯𝟎, 𝑽𝟎)
 “Measured” (mean) beam position = (𝒉𝟎, 𝒗𝟎)
 Position error 𝜹𝟎 = 𝒉𝟎 −𝑯𝟎

 Compensation
 none

 waveform

 power

 power (alt)

𝛿
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]

𝛿
[𝑚
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Summary

 Various LHC BPM activities are underway
 Collimator BPMs, interlock BPM CONS, HL-LHC IR BPMs, LHC ring BPM CONS

 An (incomplete) snapshot of the ongoing R&D efforts was presented 

 Digital signal processing is a key element for any future LHC BPM read-out system
 Reproducibility and performance improvements

 Signal processing schema assumes 25 ns bunch spacing
• Except interlock BPM consolidation can also handle doublet bunches

 Expected performance
 Single bunch resolution 10…15 μm, orbit resolution <1 μm

• Sampling in the 1st Nyquist passband, >8.7 ENOB, slow AGC

 IR BPM accuracy: 
~7 μm for compensation of same intensity counterrotating bunch
~70 μm for compensation of 10x lower intensity counterrotating bunch
(assuming 2D 5th order polynomial for correcting non-linearities)

 During run 3…
 Parasitic and dedicated beam studies with prototype hardware

• Xilinx Zynq RFSoC evaluation-board with modified input stage

 Dedicated MD on stripline BPMS.4L5 
• Single bunch in B1 and B2 with cogging between them 

M. Wendt, HL-LHC BPMs, WP2 presentation 27


