

BPM electronics

Douglas BETT, BE-BI-BP

HL-LHC WP13 BI Meeting 2020 #6

Study items from last session

- Bunch length variations to be considered
 - Variable bunch length implemented in the simulation. Range clearly stated in specification: 0.7 – 1.2 ns (FWHM)
- Can VNA style corrections be used?
 - Unlikely. A method of recovering the individual beam signals from the set of waveforms was implemented but performed less well than the other methods.
- Use on-board DAC to generate similar signals
 - Pending.
- RF full detuning effects to be considered
 - Pending.
- Can an algorithm be found that does not need beam calibration
 - The VNA method, but it has already been ruled out.

Comparison of compensation methods I

- Waveform compensation
 - Sample-by-sample adjustment of the amplitude of the waveform samples
 - Requires template waveforms (and hence making assumptions about the bunch and signal processing)
- Power compensation
 - Adjustment of the calculated power of the waveforms
 - Requires power compensation parameters (calculated from template waveforms)
- VNA-style compensation
 - Beam-independent, but requires knowledge of the stripline S-parameters

$$V(t) = \rho_0 v_c(t) + \rho_9 v_i(t)$$

$$\sum V(t)^2 = \rho_0^2 \sum v_c(t)^2 + 2\rho_0 \rho_9 \sum v_c(t) \cdot v_i(t) + \rho_9^2 \sum v_i(t)^2$$

Can be solved for ρ_0 if ρ_9 is known

$$\rho_{R0}I_{0}(\omega) = \frac{I_{1}(\omega) \cdot S_{59}(\omega) - I_{5}(\omega) \cdot S_{19}(\omega)}{S_{10}(\omega) \cdot S_{59}(\omega) - S_{19}(\omega) \cdot S_{50}(\omega)}$$

Current cancels out when taking Δ/Σ

Compensation of comparison methods II

- Consider two beams with equal intensity (=3e11) and bunch lengths of 75 mm*
 - Using the specified injection orbits for each BPM (IR 1), calculate the position of the first beam using several different methods to account for the presence of the other beam
 - X_0 is the calculated position of the beam taking into account only the geometry
 - x_0 is the position of the beam calculated from the digitized (and compensated) ensemble of waveforms
- The VNA method performs very poorly and was eliminated from consideration
- Waveform and power compensation perform similarly well, but waveform compensation is much more computationally intensive

*shorter than the minimum quoted in the specification

Simulation properties

Consider a single beam travelling through the Q1 BPM

0.1

- 25 mm off axis in both horizontal and vertical directions (max operational range)
- variation in waveforms solely due to asynchronous phase of sampling clock and random noise applied during digitization

Simulation properties		
Beam 0 intensity (i_0)	2.3×10^{11} (max)	
Beam 0 bunch length (σ_0)	0.95 ns (mid-range)	
Cable	LCF12-50JFN [100 m]	
Filter	Absorptive [273 MHz]	
Sampling frequency	3994.9 MHz (1 in 255)	
ADC	12-bit, ±0.5 V, use 2/3	
Attenuator step size	2 dB	
Random noise	1.5611 counts	

Specification

- Target: averaged Closed Orbit (CO) measurement stable to within 2 µm on a 10 hour timeframe
- Frequency of CO measurements = 25 Hz i.e. once every 40 ms
 - Train makes 450 revolutions of the LHC in this time
 - Train consists of 2,760 bunches
 - So each CO orbit measurement gives the average of ~1.25 million individual bunch position measurements

- Histogram plot of the mean position for 450 bunch trains (of 2760 bunches)
- Error on mean = 5.3 nm
- NB: a linear calibration constant equal to half the BPM radius has been used for these results. In reality a 2D polynomial will be required to correct the non-linearity. The true errors will therefore be higher.

Factors that could affect position

Bunch length [ns]	Closed orbit position	
0.70	15.232944 mm ± 5.4 nm	(
0.95	15.232977 mm ± 5.3 nm	С
1.20	15.232938 mm ± 4.8 nm	b

Closed orbit measurement differs by up to 0.04 µm as bunch length varied

Bunch charge	Closed orbit position
5e9	15.232896 mm ± 6.8 nm
5e10	15.232960 mm ± 5.5 nm
2.3e11	15.232977 mm ± 5.3 nm

Closed orbit measurement differs by up to 0.08 µm as bunch charge varied

Add second beam

- Positioned opposite end of BPM to the first beam (max anticipated offset?)
 - Equal intensity (max)
 - Same bunch length (mid-range)

Simulation properties		
Beam 0 intensity (i_0)	2.3×10^{11} (max)	
Beam 9 intensity (i_9)	2.3×10^{11} (max)	
Beam 0 bunch length (σ_0)	0.95 ns (mid-range)	
Beam 9 bunch length (σ_9)	0.95 ns (mid-range)	
Bunch crossing timing	3.92 ns (Q1)	
Cable	LCF12-50JFN [100 m]	
Filter	Absorptive [273 MHz]	
Sampling frequency	3994.9 MHz (1 in 255)	
ADC	12-bit, ±0.5 V, use 2/3	
Attenuator step size	2 dB	
Random noise	1.5611 counts	

Two beam results

	Beam 0	Beam 9
Target	15.232942 mm	-15.232942 mm
Uncompensated	15.416821 mm	-15.414105 mm
Compensated	15.231842 mm	-15.233208 mm

Adding the second beam in the specified location shifts the apparent position by: **184 μm** (beam 0) **-181 μm** (beam 9) (without compensation)

Using the method of power compensation (assuming 0.95 ns width bunches), the shift is: -1.1 μ m (beam 0) -0.3 μ m (beam 9)

When non-linearity taken into account, beam 0 shift likely to already be close to 2 µm level

Changed bunch length

	Beam 0	Beam 9	50 40 -	Beam 0: 0.70 ns Beam 9: 1.20 ns
Target	15.232942 mm	-15.232942 mm	[] 30 - tu	
Uncompensated	15.406058 mm	-15.426068 mm	5 ₂₀ -	
Compensated	15.232942 mm	-15.233361 mm		
			0	Time [ns]

Changing the bunch lengths of both beams shifts the apparent position by: 173 μm (beam 0)

-193 µm (beam 9)

(without compensation)

Using the method of power compensation (assuming 0.95 ns width bunches), the shift is: 0.1 μ m (beam 0) -0.4 μ m (beam 9)

Changed bunch charge

Changing the bunch lengths of both beams shifts the apparent position by: **20.6 µm** (beam 0) **2.73 mm** (beam 9) (without compensation)

Using the method of power compensation (assuming 0.95 ns width bunches), the shift is: -0.07 μ m (beam 0) 94.9 μ m (beam 9)

11

Conclusion

- Power compensation now the baseline method for compensating for the other beam
- 2 µm tolerance over the entire operational range likely to be extremely challenging once real-world effects taken into account

