BPM electronics

Douglas BETT, BE-BI-BP

HL-LHC WP13 BI Meeting 2020 \#6

Study items from last session

- Bunch length variations to be considered
- Variable bunch length implemented in the simulation. Range clearly stated in specification: $0.7-1.2$ ns (FWHM)
- Can VNA style corrections be used?
- Unlikely. A method of recovering the individual beam signals from the set of waveforms was implemented but performed less well than the other methods.
- Use on-board DAC to generate similar signals
- Pending.
- RF full detuning effects to be considered
- Pending.
- Can an algorithm be found that does not need beam calibration
- The VNA method, but it has already been ruled out.

Comparison of compensation methods I

- Waveform compensation
- Sample-by-sample adjustment of the amplitude of the waveform samples
- Requires template waveforms (and hence making assumptions about the bunch and signal processing)

- Power compensation
- Adjustment of the calculated power of the waveforms
- Requires power compensation parameters (calculated from template waveforms)
- VNA-style compensation
- Beam-independent, but requires knowledge of the stripline S-parameters

$$
\begin{aligned}
& V(t)=\rho_{0} v_{c}(t)+\rho_{9} v_{i}(t) \\
& \sum V(t)^{2}=\rho_{0}^{2} \sum v_{c}(t)^{2}+2 \rho_{0} \rho_{9} \sum v_{c}(t) \cdot v_{i}(t)+\rho_{9}^{2} \sum v_{i}(t)^{2}
\end{aligned}
$$

Can be solved for ρ_{0} if ρ_{9} is known

$$
\rho_{R 0} I_{0}(\omega)=\frac{I_{1}(\omega) \cdot S_{59}(\omega)-I_{5}(\omega) \cdot S_{19}(\omega)}{S_{10}(\omega) \cdot S_{59}(\omega)-S_{19}(\omega) \cdot S_{50}(\omega)}
$$

Current cancels out when taking Δ / Σ

Compensation of comparison methods II

Orbit: IR 1 - injection

- Consider two beams with equal intensity (=3e11) and bunch lengths of 75 mm *
- Using the specified injection orbits for each BPM (IR 1), calculate the position of the first beam using several different methods to account for the presence of the other beam
- $\quad X_{0}$ is the calculated position of the beam taking into account only the geometry
- $\quad x_{0}$ is the position of the beam calculated from the digitized (and compensated) ensemble of waveforms
- The VNA method performs very poorly and was eliminated from consideration
- Waveform and power compensation perform similarly well, but waveform compensation is much more computationally intensive

Simulation properties

- Consider a single beam travelling through the Q1 BPM
- 25 mm off axis in both horizontal and vertical directions (max operational range)
- variation in waveforms solely due to asynchronous phase of sampling clock and random noise applied during digitization

Simulation properties

Beam 0 intensity $\left(i_{0}\right)$	2.3×10^{11} (max)
Beam 0 bunch length $\left(\sigma_{0}\right)$	0.95 ns (mid-range)
Cable	LCF12-50JFN [100 m]
Filter	Absorptive [273 MHz]
Sampling frequency	$3994.9 \mathrm{MHz}(1 \mathrm{in} 255)$
ADC	12 -bit, $\pm 0.5 \mathrm{~V}$, use $2 / 3$
Attenuator step size	2 dB
Random noise	1.5611 counts

Specification

- Target: averaged Closed Orbit (CO) measurement stable to within $2 \mu \mathrm{~m}$ on a 10 hour timeframe
- Frequency of CO measurements $=25 \mathrm{~Hz}$ i.e. once every 40 ms
- Train makes 450 revolutions of the LHC in this time
- Train consists of 2,760 bunches
- So each CO orbit measurement gives the average of ~ 1.25 million individual bunch position measurements

- Histogram plot of the mean position for 450 bunch trains (of 2760 bunches)
- Error on mean $=5.3 \mathrm{~nm}$
- NB: a linear calibration constant equal to half the BPM radius has been used for these results. In reality a 2D polynomial will be required to correct the non-linearity. The true errors will therefore be higher.

Factors that could affect position

Bunch length [ns] Closed orbit position

0.70	$15.232944 \mathrm{~mm} \pm 5.4 \mathrm{~nm}$
0.95	$15.232977 \mathrm{~mm} \pm 5.3 \mathrm{~nm}$
1.20	$15.232938 \mathrm{~mm} \pm 4.8 \mathrm{~nm}$

Closed orbit measurement differs by up to $0.04 \mu \mathrm{~m}$ as bunch length varied

Bunch charge	Closed orbit position
5 e 9	$15.232896 \mathrm{~mm} \pm 6.8 \mathrm{~nm}$
5 e 10	$15.232960 \mathrm{~mm} \pm 5.5 \mathrm{~nm}$
2.3 e 11	$15.232977 \mathrm{~mm} \pm 5.3 \mathrm{~nm}$

Closed orbit measurement differs by up to $0.08 \mu \mathrm{~m}$ as bunch charge varied

Add second beam

- Positioned opposite end of BPM to the first beam (max anticipated offset?)
- Equal intensity (max)
- Same bunch length (mid-range)

Simulation properties	2.3×10^{11} (max)
Beam 0 intensity $\left(i_{0}\right)$	2.3×10^{11} (max)
Beam 9 intensity $\left(i_{9}\right)$	0.95 ns (mid-range)
Beam 0 bunch length $\left(\sigma_{0}\right)$	0.95 ns (mid-range)
Beam 9 bunch length $\left(\sigma_{9}\right)$	3.92 ns (Q1)
Bunch crossing timing	LCF12-50JFN [100 m]
Cable	Absorptive [273 MHz]
Filter	3994.9 MHz (1 in 255)
Sampling frequency	$12-$ bit, $\pm 0.5 \mathrm{~V}$, use $2 / 3$
ADC	2 dB
Attenuator step size	1.5611 counts
Random noise	

Two beam results

	Beam 0	Beam 9
Target	15.232942 mm	-15.232942 mm
Uncompensated	15.416821 mm	-15.414105 mm
Compensated	15.231842 mm	-15.233208 mm

Adding the second beam in the specified location shifts the apparent position by: $184 \mu \mathrm{~m}$ (beam 0)
-181 $\mu \mathrm{m}$ (beam 9) (without compensation)
Using the method of power compensation (assuming 0.95 ns width bunches), the shift is:
$-1.1 \mu \mathrm{~m}$ (beam 0)
-0.3 $\mu \mathrm{m}$ (beam 9)
When non-linearity taken into account, beam 0 shift likely to already be close to $2 \mu \mathrm{~m}$ level

Changed bunch length

	Beam 0	Beam 9
Target	15.232942 mm	-15.232942 mm
Uncompensated	15.406058 mm	-15.426068 mm
Compensated	15.232942 mm	-15.233361 mm

Changing the bunch lengths of both beams shifts the apparent position by: $173 \mu \mathrm{~m}$ (beam 0)
-193 $\mu \mathrm{m}$ (beam 9) (without compensation)
Using the method of power compensation (assuming 0.95 ns width bunches), the shift is:
$0.1 \mu \mathrm{~m}$ (beam 0)
$-0.4 \mu \mathrm{~m}$ (beam 9)

Changed bunch charge

	Beam 0	Beam 9
Target	15.232942 mm	-15.232942 mm
Uncompensated	15.253587 mm	-12.503724 mm
Compensated	15.232876 mm	-15.138006 mm

Changing the bunch lengths of both beams shifts the apparent position by: $20.6 \mu \mathrm{~m}$ (beam 0)
2.73 mm (beam 9) (without compensation)

Using the method of power compensation (assuming 0.95 ns width bunches), the shift is:
$-0.07 \mu \mathrm{~m}$ (beam 0)
$94.9 \mu \mathrm{~m}$ (beam 9)

Conclusion

- Power compensation now the baseline method for compensating for the other beam
- $2 \mu \mathrm{~m}$ tolerance over the entire operational range likely to be extremely challenging once real-world effects taken into account

