FCC-ee Injector Design and Test Stand at PSI Coordination meeting 01

AGENDA

- Organizational aspects
- Update on WPs and Tasks
- Next meetings and open points

	Na
0	J Z IL
(0, 0)	1241

Where are we now?

Organizational Aspects 1/2

WPO. Coordination Task 0.1 Coordination Task 0.2 Overall parameter optimization

WP1. e+/e- 6 GeV Injector Linacs

Task 1.1 Single or two guns schemes: DC-Gun/RF Gun design and comparative studies Task 1.2 RF-structure optimization for the linac 1, 2 and 3 based on beam dynamics analysis (Task 1.3) Task 1.3 Electron optics and transport optimization including collective effects in Linac 1, 2 & 3 Task 1.4 RF modules design and costs (gun, Linac 1, 2 and 3); cost estimates based on SwissFEL prices

WP2. Electron and positron Linac extension study (Linac 4) Task 2.1 RF-structure optimization based on longitudinal beam dynamics analysis Task 2.2 Optics and transport optimization including collective effects in linac 4 Task 2.3 RF module design and costs (Linac 4)

WP3. Positron source: target and capture system Task 3.1 Physics design of the positron target and capture system (optimization of the positron source: fixed/movable, conventional/hybrid, bypass line, beam energy) Task 3.2 Capture system: Concepts of a SC solenoid and/or of flux concentrator and comparative Task 3.3 Capture system: Design of the RF structures and NC solenoids Task 3.4 Capture system beam dynamics Task 3.5 Target area shielding Task 3.6 Target thermo-mechanical studies

WP4. Damping ring and transfer lines Task 4.1 Design damping ring Task 4.2 Transfer lines to/from DR Task 4.3 Compression scheme before reinjection

Organizational Aspects 1/2

WP5 CDR+, all partners

5.1 Editing CDR

WP6. Proof of Principle positron source and capture in SwissFEL

Task 6.1 Design test beamline Task 6.2 Engineering of the RF structures and NC solenoids of the capture system Task 6.3 Manufacturing of the RF structures and NC solenoids of the capture system Task 6.4 Engineering & procurement target Task 6.5 Engineering and procurement SC solenoids Task 6.6 Shielding of target area Task 6.7 Component procurement and implementation Task 6.8 Positron production experiment

Meetings until now

Task 0.2 - Overall parameter optimisation

August	2020			
	20 Aug	Meeting #04: Positron production: layout and key parameters		
	06 Aug	Meeting #03: Vertical acceptance of the PBR		
July 202	20			
	09 Jul	Meeting #02: Baseline and alternative bunch parameters		
June 2020				
	18 Jun	Meeting #01: Bunch spacing		

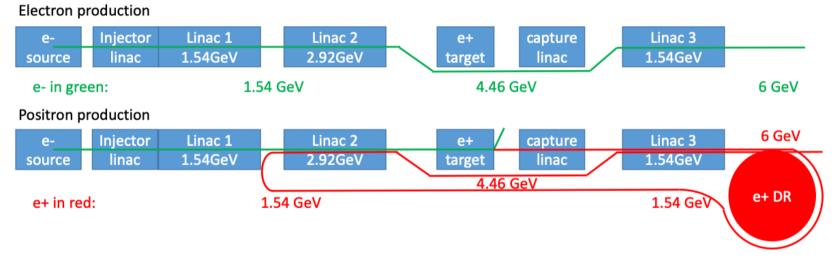
Task 3.1 - Physics design of the positron target and capture system

July 2020

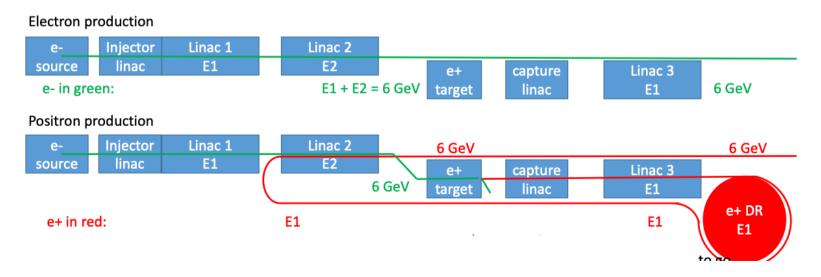
16 Jul Physics design of the positron target and capture system - meeting # 01

Physics design of the positron target and capture system - meeting # 01

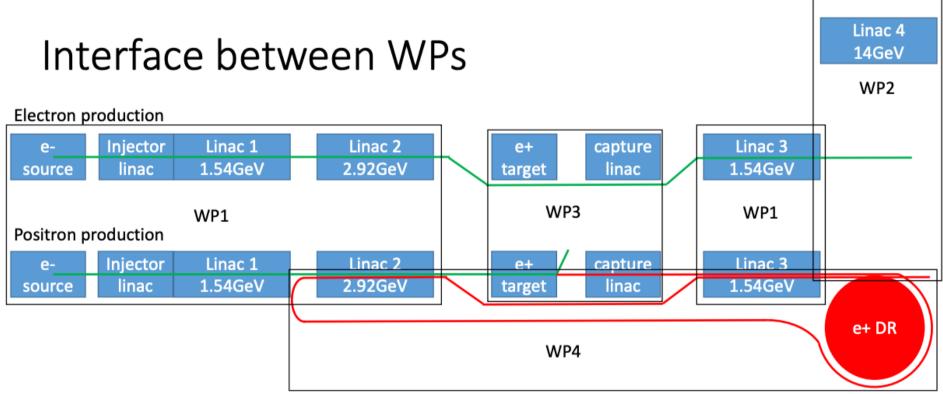
10:30 → 10:40	WP3 structure and main parameters
	Speaker: Dr Iryna Chaikovska (CNRS/IJCLab)
	B WP3positron_sourc
10:40 → 10:55	FCC-ee positron source: Simulation studies.
	Speaker: Y. Han (IJCLab)
	FCC_positron_sourc
10:55 → 11:10	R&D on the Flux Concentrator and NC solenoid.
	Speaker: Pavel Martyshkin (Budker Institute of Nuclear Physics (RU))
	R&D-FC-NC-sol.pdf R&D-FC-NC-sol.pptx
11:10 → 11:20	Injector optimization for FCC-ee positron production.
	Speaker: B. Bai (IJCLab)
	Dijector optimizatio
11:20 → 11:25	Reoptmization of the crystal for Hybrid scheme @FCC-ee.
	Speaker: Laura Bandiera (Universita e INFN, Ferrara (IT))
	FCC-ee-positronsou
11:25 → 11:40	Status and challenges of the SuperKEKB positron source.
	Speaker: yoshinori enomoto (KEK)
	200716-FCCee-WP3
11:40 → 11:50	CLIC positron source (available expertise for FCC-ee).
	Speaker: Steffen Doebert (CERN)
	CERNpositronActivi
11:50 → 12:00	R&D on the Flux Concentrator for CLIC.
	Speakers: Hugo Bajas (CERN), Steffen Doebert (CERN)
	FCCee_workshop_1
12:00 → 12:10	Discussion and next meetings onen discussion


- Positron charge: 3.5 nC
 - Electron charge: 7 nC (without margin)

Open points:


- Beam Energy, charge and time structure at the target to be defined
- Conventional target vs Hybrid target
- FC vs superconducting solenoids
- Positron source at KEK

Positron studies for CLIC


Injector layout: baseline and alternatives Layout of the 6 GeV injector: Baseline

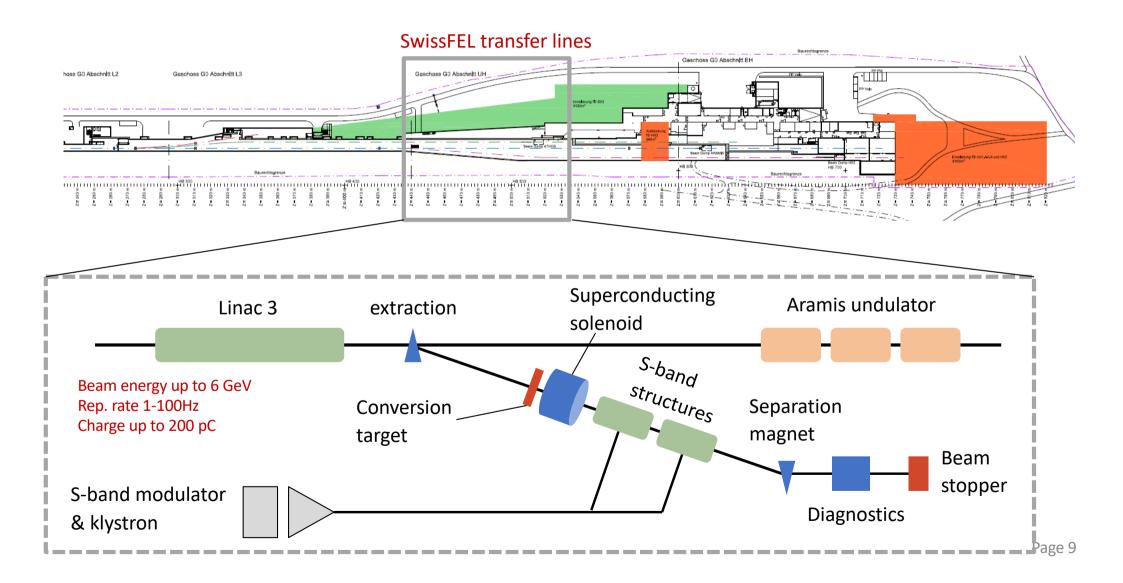
Layout of the 6 GeV injector: Alternative 1

Injector layout: Interfaces

Questions:

1. Beam lines before, after and around positron source/capture? WP?

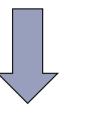
2. Do we need BC for electrons between Injector Linac, Linac1 and/or Linac2? WP1?


3. ...

Electron/positron beam parameters at Linac end

		Inj. to SPS	Inj. to BR	Inj. to collider Ring
Parameters	Unit	Baseline	Alternative 1	Alternative 2
Energy	GeV	6	20 20	45.6
Charge	nC	3.5	13.310	3.5
Bunches/pulse		100?	Alexes	
Bunch spacing	ns	15 (17.5, 20).	^{the} 15 (17.5, 20)	
Repetition rate	Hz	200 table	200	100
Pulse length	mm	x8.5he	0.5?	0.5?
Norm. Emittance X/Y	μm	efe. 9/4.7	391/3.91(8)	?
Acceptance X/Y	nm	<66000	<2800	
Energy spread	%	Baseline 6 3.5 $100?$ $15 (17.5, 20)$ $200 table$ $200 table$ $tothe table$ $5trete$ $5trete$ 0.1	0.06?	?
Energy acceptance	%	1		

Electron bunch for positron production: 7 nC? Electron cloud issue: bunch spacing 20 ns # bunches in order to fill the damping ring in one shot


Positron source in SwissFEL

Synergy with other activity in GFA

SwissFEL Injector consolidation & S-band test facility

Future beamline SwissFEL Porthos:

Experiment at SwissFEL requires a full S-band RF system

- New modulator for the SF Injector
- Old modulator for the experiment/S-band test facility

Overlap/common design for the switchyard Support from beam dynamics

Next meetings

- Coordination meetings: every two months, already scheduled for 2020
- Overall parameters optimization: every two weeks
- Positron source: next meeting in September