

Higgs measurements at future e+e- colliders

XXVII Cracow EPIPHANY
Conference on the Future of Particle Physics
Markus Klute (MIT)
January 8th, 2021

Introduction: European Strategy

Preamble: The particle physics community is ready to take the next step towards even higher energies and smaller scales. The vision is to prepare a Higgs factory, followed by a future hadron collider with sensitivity to energy scales an order of magnitude higher than those of the LHC, while addressing the associated technical and environmental challenges.

High-priority future initiatives

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

the particle physics community should ramp up its R&D effort focused · on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

The timely realisation of the electron-positron international Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

Collider Options

	-					.10				.15			. 22				.26
	T ₀	+5				+10				+15			+20			•••	+26
ILC	0.5/ab 250 GeV				1.5/al 50 Ge					1.0/ab 500 GeV	0.2/ab 2m _{top}	!	3/ab 500 Ge				
CEPC		5.6/ab 16/ab 2.6 /ab 2M _Z												SppC	=>		
CLIC		.0/ab 0 GeV					2.5/ab 1.5 TeV							5.0/a	b => u 3.0 <u>T</u> e		-28
FCC	150/ab ee, M _z	10/ab ee, 2M _w		5/ab 240 Ge	eV		1.7/ab ee, 2m _{top}								hh.eh =>		
LHeC	0.06/ab			0.	.2/ak	o			0.72	/ab							
HE- LHC																	
FCC eh/ <u>hh</u>																	

arXiv:1905.03764

HL-LHC Higgs Legacy

$$(\sigma \cdot BR) \, (gg \to H \to \gamma \gamma) \ = \ \sigma_{\text{SM}}(gg \to H) \cdot BR_{\text{SM}}(H \to \gamma \gamma) \, \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

	Statistica	al-only	Statistical + Systemati		
	ATLAS	CMS	ATLAS	CMS	
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95	
$HH \to b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4	
$HH \to b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8	
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Comb	ined	Combined		
	4.5	5	4.0		

Case for precision Higgs physics

- **→** How large are potential deviations from BSM physics?
- **→** How well do we need to measure Higgs couplings?
 - To be sensitive to a deviation δ , the measurement needs a precision of at least $\delta/3$, better $\delta/5$
 - Implications of new physics scale on couplings from heavy states or through mixing

$$g = g_{\rm SM} [1 + \Delta]$$
 : $\Delta = \mathcal{O}(v^2/\Lambda^2)$

- **→** Fingerprints of BSM Physics on Higgs
- **→** Percent-level precision test TeV scale
 - **→** Requires 10⁶ Higgs events

$\frac{\Gamma_{2\text{HDM}}[h^0 \to X]}{\Gamma_{\text{SM}}[h \to X]}$	type I	type II	lepton-spec.	flipped
VV^*	$\sin^2(\beta - \alpha)$	$\sin^2(\beta - \alpha)$	$\sin^2(\beta - \alpha)$	$\sin^2(\beta - \alpha)$
$\bar{u}u$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$
$ar{d}d$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$
$\ell^+\ell^-$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$

arXiv:1310.8361

→ There is no strict limit to the precision needed!

Experimental Setup

→ Collisions dominated by electroweak processes

- Low event rates
- Trigger-less readout possible
- Low occupancy and no pileup
- Limited radiation damage

Higgs Related Physics at Lepton Colliders

√s [GeV]	√s	Measurements (incomplete list)			
90	mz	m_Z , Γ_Z , α_s , α_{QED} , flavor, QCD			
125	m _H	s-channel Higgs production			
160	2m _W	mw, as			
240-250	m _H +m _Z +	mн, Гн, J ^{CP} , g _{нхх} , BSM decays, indirect g _{ннн}			
340-355	2*m _{top}	ghww, Γ_H , indirect g_{Htt} , m_{top}			
500	2*m _{top} +m _H +	Эннн, Энtt			
> 500	M _{NP}	gнtt, gннн, BSM Higgs			

Higgs Production

→ e+e-→ZH production maximal at 240-260 GeV

Higgs Production

Higgs Factories

Collider	Type	\sqrt{s}	Ø [%]	N(Det.)	$\mathcal{L}_{\text{inst}}$	\mathscr{L}	Time
			$[e^-/e^+]$		$[10^{34}] \text{ cm}^{-2} \text{s}^{-1}$	[ab ⁻¹]	[years]
HL-LHC	pp	14 TeV	-	2	5	6.0	12
HE-LHC	pp	27 TeV	-	2	16	15.0	20
FCC-hh(*)	pp	100 TeV	-	2	30	30.0	25
FCC-ee	ee	M_Z	0/0	2	100/200	150	4
		$2M_W$	0/0	2	25	10	1-2
		240 GeV	0/0	2	7	5	3
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5
		•					(+1)
ILC	ee	250 GeV	±80/±30	1	1.35/2.7	2.0	11.5
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5
							(+1)
		1000 GeV	$\pm 80/\pm 20$	1	3.6/7.2	8.0	8.5
							(+1-2)
CEPC	ee	M_Z	0/0	2	17/32	16	2
		$2M_W$	0/0	2	10	2.6	1
		240 GeV	0/0	2	3	5.6	7
CLIC	ee	380 GeV	±80/0	1	1.5	1.0	8
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8
							(+4)
LHeC	еp	1.3 TeV	-	1	0.8	1.0	15
HE-LHeC	ep	1.8 TeV	-	1	1.5	2.0	20
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0	25

Higgs Precision Measurements

- → Recoil method unique to lepton collider
- → Tag Higgs event independent of decay mode
- Provides precision and model independent measurements of
 - \bullet $\sigma(ee \rightarrow ZH) \sim g_{HZZ}^2$
 - m_H
- → Key input to Γ_H
- Sensitive channel for Higgs to invisible search (sub-percent BRs)

$$m_{\text{recoil}}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |\vec{p}_{\ell\ell}|^2$$

$$(\sigma \cdot \text{BR}) \left(\text{gg} \to \text{H} \to \gamma \gamma \right) \ = \ \sigma_{\text{SM}}(\text{gg} \to \text{H}) \cdot \text{BR}_{\text{SM}}(\text{H} \to \gamma \gamma) \cdot \frac{\kappa_{\text{g}}^2 \cdot \kappa_{\gamma}^2}{\kappa_{\text{H}}^2}$$

Higgs self-coupling through loop corrections

$$\sigma_{Zh} = \begin{vmatrix} e \\ b \end{vmatrix}^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} \begin{vmatrix} e^{+} \\ b \end{vmatrix}^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} \begin{vmatrix} e^{+} \\ b \end{vmatrix}^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} \begin{vmatrix} e^{+} \\ b \end{vmatrix}^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} \begin{vmatrix} e^{+} \\ b \end{vmatrix}^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} \begin{vmatrix} e^{+} \\ b \end{vmatrix}^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} \cdot (b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} \cdot (b)^{2} + 2 \operatorname{Re} \begin{bmatrix} z \\ b \end{vmatrix}^{2} \cdot (b + b)^{2} \cdot (b)^{2} \cdot ($$

- Very large datasets at high energy allow extreme precision gzH measurements
- Indirect and model-dependent probe of Higgs self-coupling

1-parameter	full SMEFT
18%	-
21%	-
21%	44%
15%	27%
36%	-
32%	58%
29%	52%
117%	-
72%	-
49%	-
	18% 21% 21% 15% 36% 32% 29% 117% 72%

arxiv:1312.3322

arxiv:1910.00012

Higgs self-coupling through loop corrections

arxiv:1312.3322 arxiv:1910.00012

Precision Higgs Couplings

- ightharpoonup Measure σ (ee → ZH) * BR (H → X) by identifying X
- ⇒ Example: $\sigma(ee \rightarrow ZH)$ * BR (H $\rightarrow ZZ$) $\propto g_{HZZ}^4/\Gamma_H$
- → Total width from combination of measurements or fit
- Branching fraction to invisible tested directly

Hadronic Higgs Decays

Precision Higgs Couplings

1 2 :					HL-LH	IC+				
kappa-3 scenario	ILC ₂₅₀	ILC_{500}	$ILC_{1000} \\$	CLIC ₃₈₀	$CLIC_{1500} \\$	$CLIC_{3000} \\$	CEPC	FCC-ee ₂₄₀	$FCC\text{-}ee_{365}$	FCC-ee/eh/hh
κ _W [%]	1.0	0.29	0.24	0.73	0.40	0.38	0.88	0.88	0.41	0.19
$\kappa_{\!Z}[\%]$	0.29	0.22	0.23	0.44	0.40	0.39	0.18	0.20	0.17	0.16
$\kappa_{\!\scriptscriptstyle g}[\%]$	1.4	0.85	0.63	1.5	1.1	0.86	1.	1.2	0.9	0.5
κ_{γ} [%]	1.4	1.2	1.1	1.4*	1.3	1.2	1.3	1.3	1.3	0.31
$\kappa_{Z\gamma}$ [%]	10.*	10.*	10.*	10.*	8.2	5.7	6.3	10.*	10.*	0.7
κ_c [%]	2.	1.2	0.9	4.1	1.9	1.4	2.	1.5	1.3	0.96
κ_t [%]	3.1	2.8	1.4	3.2	2.1	2.1	3.1	3.1	3.1	0.96
κ_b [%]	1.1	0.56	0.47	1.2	0.61	0.53	0.92	1.	0.64	0.48
$\kappa_{\mu}~[\%]$	4.2	3.9	3.6	4.4*	4.1	3.5	3.9	4.	3.9	0.43
κ_{τ} [%]	1.1	0.64	0.54	1.4	1.0	0.82	0.91	0.94	0.66	0.46
BR _{inv} (<%, 95% CL)	0.26	0.23	0.22	0.63	0.62	0.62	0.27	0.22	0.19	0.024
BR _{unt} (<%, 95% CL)	1.8	1.4	1.4	2.7	2.4	2.4	1.1	1.2	1.	1.

arXiv:1905.03764

CP Measurements

- CP violation can be studied by searching for CP-odd contributions; CP-even already established
- → Higgs to Tau decays of interest

 $\mathcal{L}_{hff} \propto h\bar{f}(\cos\Delta + \mathrm{i}\gamma_5\sin\Delta)f$

Colliders	LHC	HL-LHC	$FCCee (1 ab^{-1})$	FCCee (5 ab^{-1})	$FCCee (10 ab^{-1})$
$Accuracy(1\sigma)$	25°	8.0°	5.5°	2.5°	1.7°

http://arxiv.org/abs/1308.1094 http://arxiv.org/abs/1804.01241

Additional light scalars

https://arxiv.org/abs/1801.08164 https://arxiv.org/abs/1812.08289 Decay-mode independent searches for new scalar bosons with the OPAL detector at LEP

The OPAL Collaboration

Abstract

This paper describes topological searches for neutral scalar bosons S^0 produced in association with a Z^0 boson via the Bjorken process $e^+e^- \to S^0Z^0$ at centre-of-mass energies of 91 GeV and 183–299 GeV. These searches are based on studies of the recoil mass spectrum of $Z^0 \to e^+e^-$ and $\mu^+\mu^-$ events and on a search for S^0Z^0 with $Z^0 \to \nu\rho$ and $S^0 \to e^+e^-$ or photons. They cover the decays of the S^0 into an arbitrary combination of hadrons, leptons, photons and invisible particles as well as the possibility that it might be stable.

No indication for a signal is found in the data and upper limits on the cross section of the Bjorken process are calculated. Cross-section limits are given in terms of a scale factor k with respect to the Standard Model cross section for the Higgs-strahlung process $e^+e^- \rightarrow H^0_{SM}Z^0$.

These results can be interpreted in general scenarios independently of the decay modes of the S^0 . The examples considered here are the production of a single new scalar particle with a decay width smaller than the detector mass resolution, and for the first time, two scenarios with continuous mass distributions, due to a single very broad state or several states close in mass.

Phase	Run duration	Center-of-mass	Integrated	Event
	(years)	Energies (GeV)	Luminosity (ab ⁻¹)	Statistics
FCC-ee-Z	4	88-95	150	3×10^{12} visible Z decays
FCC-ee-W	2	158-162	12	10 ⁸ WW events
FCC-ee-H	3	240	5	10 ⁶ ZH events
FCC-ee-tt	5	345-365	1.5	$10^6 \mathrm{t\overline{t}} \mathrm{events}$

Exclusive Higgs boson decays

- → First and second generation couplings accessible
 - Sensitivity to u/d quark Yukawa coupling
 - Sensitivity due to interference

$$\frac{{\rm BR}_{h\to \rho\gamma}}{{\rm BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.24 \bar{\kappa}_{u} - 0.12 \bar{\kappa}_{d} \right]}{0.57 \bar{\kappa}_{b}^{2}} \times 10^{-5}$$

- Also interesting to hadron collider program
- Alternative $H \rightarrow MV$ decays should be studied $(V = \gamma, W, \text{ and } Z)$

$$H \rightarrow J/\Psi \gamma$$
 y_c
 $H \rightarrow \varphi \gamma$ y_s
 $H \rightarrow \rho \gamma$ y_{u, y_d}

Rare and Exotics Higgs Bosons

- → Largely unexplored!
- →ZH events allow for detailed studies of rare and exotic decays
 - improved with hadronic and invisible Z decays
 - set requirements for lepton collider detector
- Coupling measurements have sensitivity to BSM decays
- → Dedicated studies using specific final states improve sensitivity
- ⇒ Example: Higgs to invisible, flavor violating Higgs, and many more
- Modes with of limited LHC sensitivity are of particular importance to lepton collider program
- → Detailed discussion of exotic Higgs decays at Phys. Rev. D 90, 075004 (2014)

```
h \rightarrow \mathcal{K}_T
h \rightarrow 4b
h \rightarrow 2b2\tau
h\to 2b2\mu
h \rightarrow 4\tau, 2\tau 2\mu
h \rightarrow 4i
h \rightarrow 2\gamma 2j
h \rightarrow 4\gamma
h \to ZZ_D, Za \to 4\ell'
h \rightarrow Z_D Z_D \rightarrow 4\ell
h \rightarrow \gamma + \mathcal{L}_T
h \rightarrow 2\gamma + K_T
h \rightarrow 4 ISOLATED LEPTONS + \cancel{K}_T
h \rightarrow 2\ell + K_T
h \rightarrow ONE LEPTON-JET + X
h \rightarrow TWO LEPTON-JETS + X
h \rightarrow b\bar{b} + \mathcal{K}_{T}
h \rightarrow \tau^+\tau^- + \mathcal{L}_T
```

S-channel Higgs Production

⇒ s-channel production

- very small cross section
- reduced by ISR and beam spread
- $\sigma^{born}(\mu^+\mu^- \rightarrow H) \approx 40.000 \ \sigma^{born}(e^+e^- \rightarrow H)$

→ Beam-spread improvements

- FCC-ee via monochromators
- Feasibility and impact on luminosity need study

⇒ Expected significance > 1σ / 10ab-1

- Set an electron Yukawa coupling upper limit:
 k_e < 2.5 @95% CL
- Unique to FCC-ee (see David d'Enterria's talk)

Upper Limits / Precision on κ_e

Conclusion

Future lepton colliders offers a broad physics program

Will precisely map the Higgs sector building on HL-LHC foundation

Adding unique measurements of Higgs properties

 Ambitious programs aiming for significant progress (order(s) of magnitude) in understanding of nature and the Higgs boson

FCC-ee: The Higgs Factory

(4y) Z peak	E _{cm} = 91 GeV	$5 \ 10^{12} \ \text{e+e-} \rightarrow \text{Z}$
(2y) WW threshold	E _{cm} = 161 GeV	10 ⁸ e+e- → WW
(3y) ZH threshold	E _{cm} = 240 GeV	10 ⁶ e+e- → ZH
(4y) tt threshold	E _{cm} = 350 GeV	10 ⁶ e+e- \rightarrow \overline{tt}
(ny) H(optional)	E _{cm} = 125 GeV	10⁴ e+e- > H

FCC documentation

Outcome of design studies recommended by the 2013 European Strategy

4 CDR volumes published in EPJ

FCC Physics Opportunities

FCC-hh: The Hadron Collider

FCC-ee: The Lepton Collider

HE-LHC: The High Energy Large Hadron Collider

Recent FCC publications

1) Future Circular Collider - European Strategy Update Documents

(FCC-ee), (FCC-hh), (FCC-int)

- 2) FCC-ee: Your Questions Answered <u>arXiv:</u> 1906.02693
- 3) Circular and Linear e+e- Colliders: Another Story of Complementarity

arXiv:1912.11871

- 4) Theory Requirements and Possibilities for the FCC-ee and other Future High Energy and Precision Frontier Lepton Colliders <u>arXiv:</u> 1901.02648
- 5) Polarization and Centre-of-mass Energy Calibration at FCC-ee, <u>arXiv:1909.12245</u>