Extended scalar sectors at future colliders

Tania Robens

based on work with

A. Ilnicka, M. Krawczyk, (D. Sokolowska); (A. Ilnicka,) T. Stefaniak; J. Kalinowski, (W. Kotlarski,) D.

Sokolowska, A. F. Zarnecki; D. Dercks; T. Stefaniak, J. Wittbrodt; A. Papaefstathiou, G.

Tetlalmatzi-Xolocotzi

Ruder Boskovic Institute

XXVII Cracow Epiphany Conference on Future of particle physics

> IFJ PAN Cracow, 8.1.21

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

< 3 > >

(日)

After Higgs discovery: Open questions

Higgs discovery in 2012 \Rightarrow last building block discovered

? Any remaining questions ?

- Why is the SM the way it is ??
 - \Rightarrow search for underlying principles/ symmetries
- find explanations for observations not described by the SM
 - \Rightarrow e.g. dark matter, flavour structure, ...
- ad hoc approach: Test which other models still comply with experimental and theoretical precision

for all: Search for Physics beyond the SM (BSM)

 \Longrightarrow main test ground for this: particle colliders \Longleftarrow

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Extending the scalar sector

- A priori: no limit to extend SM scalar sector
- make sure you
 - have a suitable ew breaking mechanism, including a Higgs candidate at $\sim~125\,{\rm GeV}$
 - can explain current measurements
 - are not excluded by current searches and precision observables
- nice add ons:
 - can push vacuum breakdown to higher scales
 - can explain additional features, e.g. dark matter, or hierarchies in quark mass sector
 - ...

Models with extended scalar sectors

Extend SM with additional scalars: gauge singlet(s), doublet(s), triplet(s), ...

Constraints

• Theory

minimization of vacuum (tadpole equations), vacuum stability, positivity, perturbative unitarity, perturbativity of couplings

Experiment

provide viable candidate @ 125 GeV (coupling strength/ width/ ...); agree with null-results from additional searches and ew gauge boson measurements (widths); agree with electroweak precision tests (typically via S,T,U); agree with astrophysical observations (if feasible)

tools used:

HiggsBounds, HiggsSignals, 2HDMC, micrOMEGAs, ScannerS, ...

Tania Robens

Extended scalar sectors

< □ > < □ > < □ > < ≡ > < ≡ >
 Epiphany, 8.1.21

In this talk...

⇒ Models: Inert Doublet Model, 2 real singlet extension

\implies Colliders: CLIC, HL-LHC, FCC, $\mu\mu$ collider

References:

Phys.Rev. D93 (2016) no.5, 055026; Mod.Phys.Lett. A33 (2018) no.10n11, 1830007; JHEP 1812 (2018) 081; JHEP 1907 (2019) 053; Eur.Phys.J. C80 (2020) no.2, 151; arXiv:2012.14818; ...

Tania Robens

Extended scalar sectors

Inert doublet model: The model

• idea: take two Higgs doublet model, add additional Z₂ symmetry

$$\phi_D \rightarrow -\phi_D, \phi_S \rightarrow \phi_S, SM \rightarrow SM$$

 $(\Rightarrow \text{ implies CP conservation})$

- ⇒ obtain a 2HDM with (a) dark matter candidate(s)
 - potential

$$V = -\frac{1}{2} \left[m_{11}^2 (\phi_5^{\dagger} \phi_S) + m_{22}^2 (\phi_D^{\dagger} \phi_D) \right] + \frac{\lambda_1}{2} (\phi_5^{\dagger} \phi_S)^2 + \frac{\lambda_2}{2} (\phi_D^{\dagger} \phi_D)^2 + \lambda_3 (\phi_5^{\dagger} \phi_S) (\phi_D^{\dagger} \phi_D) + \lambda_4 (\phi_5^{\dagger} \phi_D) (\phi_D^{\dagger} \phi_S) + \frac{\lambda_5}{2} \left[(\phi_5^{\dagger} \phi_D)^2 + (\phi_D^{\dagger} \phi_S)^2 \right],$$

 only one doublet acquires VeV v, as in SM (⇒ implies analogous EWSB)

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

< 注 →

Model has 7 free parameters

choose e.g.

 $\mathbf{v}, \, \mathbf{M_h}, \, \mathbf{M_H}, \, \mathbf{M_A}, \, \mathbf{M_{H^{\pm}}}, \lambda_2, \, \lambda_{345} \left[= \, \lambda_3 + \lambda_4 + \lambda_5 \right]$

- v, M_h fixed \Rightarrow left with **5** free parameters
- choosing M_H as dark matter: $M_H \leq M_A, M_{H^{\pm}}$

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ヨシー

Results of generic scan [arXiv:1508.01671,arXiv:1809.07712]

Cases where $M_H \leq M_h/2$

- discussion so far: decay $h \rightarrow HH$ kinematically not accessible
- for these cases, discussion along different lines
- ⇒ extremely strong constraints from signal strength, and dark matter requirements

• additional constraints from combination of *W*, *Z* decays and recasted analysis at LEP

lower limit $M_H \sim 50 \,\mathrm{GeV}$

Tania Robens

Extended scalar sectors

IDM Benchmarks [slide from A.F.Zarnecki, CLICdp meeting, 08/18]

Benchmark points: JHEP 1812 (2018) 081; Analysis: JHEP 1907 (2019)

053 [J. Kalinowski, W. Kotlarski, TR, D. Sokolowska, A.F. Zarnecki]

IDM benchmark points

Out of about 15'000 points consistent with all considered constraints, we chose 43 benchmark points (23 accessible at 380 GeV) for detailed studies:

≡@:

The selection was arbitrary, but we tried to

- · cover wide range of scalar masses and the mass splittings
- get significant contribution to the relic density

For list of benchmark point parameters, see backup slides

Production and decay

• *Z*₂ symmetry:

only pair-production of dark scalars H, A, H^{\pm}

o production modes:

$$pp \rightarrow HA, HH^{\pm}, AH^{\pm}, H^{+}H^{-}, AA (+dijet)$$

 $\ell^{+} \ell^{-} \rightarrow HA, H^{+}H^{-}, AA (+\nu_{\ell} \bar{\nu}_{\ell})$

• decays:

$$\textbf{A}$$
 \rightarrow \textbf{Z} \textbf{H} : 100%, \textbf{H}^{\pm} \rightarrow $\textbf{W}^{\pm}\textbf{H}$: dominant

signature: electroweak gauge boson(s) + MET

Tania Robens

Extended scalar sectors

< □ > < □ > < □ > < ⊇ > < ⊇ >
 Epiphany, 8.1.21

Parameters tested at colliders: mainly masses

- side remark: all couplings involving gauge bosons determined by electroweak SM parameters
- relevant couplings follow from ew parameters (+ derivative couplings)
- hXX couplings: determined by λ_{345} (constrained from direct detection), and mass differences $M_X^2 - M_H^2$ ($x \in [A, H^{\pm}]$)

important interplay between astroparticle physics and collider searches

in the end kinematic test

(holds for $M_H \geq \frac{M_h}{2}$)

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

IDM at CLIC [slide from A.F.Zarnecki, CLICdp meeting, 08/18]

Analysis strategy

Tania

Production of IDM scalars at CLIC dominated by two processes:

 $e^+e^- \rightarrow A H$

 $e^+e^-
ightarrow H^+H^-$

Leading-order cross sections for inert scalar production processes at 380 GeV:

Beam luminosity spectra not taken into account

A.F.Żarnecki (University of Warsaw)	Inert Scalars @ CLIC	August 28, 2018 6 / 21
		(日) (周) (国) (日) (日)
Robens	Extended scalar sectors	Epiphany, 8.1.21

$$e^{+} e^{-} \rightarrow HA^{(*)} \rightarrow HZ^{(*)}H \rightarrow HH\mu^{+}\mu^{-},$$

$$e^{+} e^{-} \rightarrow H^{+(*)}H^{-(*)} \rightarrow W^{+(*)}W^{-(*)}HH$$

$$\rightarrow HH\mu^{+}e^{-}\nu_{\mu}\bar{\nu}_{e}, \qquad (+e \leftrightarrow \mu)$$

Tania Robens

Extended scalar sectors

Results for CLIC studies [JHEP 1812 (2018) 081; JHEP 1907 (2019) 053]

For selected benchmark points...

Semi-leptonic channel at CLIC

[slide from A.F.Zarnecki, Snowmass meeting, 07/20]

IDM scalars: semi-leptonic analysis

Results

Summary of results obtained for the semi-leptonic channel compared with leptonic channel results for high mass benchmarks @ CLIC

Huge increase of signal significance! Discovery reach extended up to $m_{H^\pm} \sim 1$ TeV for CLIC @ 3 TeV

	A.F.Żarnecki (University of Warsaw)	New scalars @ e ⁺ e ⁻ colliders	July 7, 2020 9 / 15	e) k – ≣	¢	000
Tania	Robens	Extended scalar sectors	Epiphany, 8.1.21			

"Sensitivity" comparison, based on simple criterium

production cross sections for BPs at 13, 27, 100 TeV for pp collisions, 10, 30 TeV for $\mu\mu$

- simple counting criterium: 1000 events with design luminosity, comparison of mass reach
- **! processes differ:** pair-production for all but *AA* final states from electroweak processes (Drell-Yan)
- AA: mediated via coupling λ
 ₃₄₅ = λ₃₄₅ − 2 M_H^{-−M_A}/_{v²} ⇒ strong constraints from direct detection and electroweak precision observables
- \Rightarrow include VBF-type topologies: VBF starts playing role, especially at $\mu\mu$ colliders

Tania Robens

Extended scalar sectors

< □ > < □ > < □ > < ≥ > < ≥ > ≥
 Epiphany, 8.1.21

Collider parameters

collider	cm energy [TeV]	$\int \mathcal{L}$	1000 events [fb]
HL-LHC	13/ 14	$3 \mathrm{ab}^{-1}$	0.33
HE-LHC	27	$15\mathrm{ab}^{-1}$	0.07
FCC-hh	100	$20 \mathrm{ab}^{-1}$	0.05
ee	3	$5 \mathrm{ab}^{-1}$	0.2
$\mu\mu$	10	$10\mathrm{ab}^{-1}$	0.1
$\mu\mu$	30	$90 \mathrm{ab}^{-1}$	0.01

Extended scalar sectors

< □ > < □ > < □ > < ⊇ > < ⊇ >
 Epiphany, 8.1.21

Э

lines: 1000 events for design luminosity

after HL-LHC: in general mass scales ($\sum M_i$ for pair-production) up to 1 TeV, in AA channel 200-600 GeV (500-600 including VBF)

collider	all others	AA	AA +VBF
HE-LHC	2 TeV	400-1400 GeV	800-1400 GeV
FCC-hh	2 TeV	600-2000 GeV	1600-2000 GeV
CLIC, 3 TeV	2 TeV ^{1),2)}	_ 3)	300-600 GeV
$\mu\mu$, 10 TeV	2 TeV ¹⁾	-	400-1400 GeV
$\mu\mu$, 30 TeV	2 TeV ¹⁾	-	1800-2000 GeV

1) only HA, H^+H^- ;

2) detailed investigation including background, beam strahlung, etc [arXiv:1811.06952, arXiv:1812.02093]

3) also including Zh mediation

Tania Robens

Extended scalar sectors

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 Epiphany, 8.1.21

IDM: Summary

- Inert Doublet model: Intriguing new physics model
- ⇒ can provide **dark matter candidate**
- ⇒ mediated via electroweak processes (leads to ew gauge boson(s) + ∉ final state)
 - $\bullet~$ at $e^+e^-\colon$ detailed studies available, mass reach $\sim~1\,{\rm TeV}$
 - specific channel: AA, pair-production mediated via suppressed coupling $\bar{\lambda}_{345}$
 - accessibility increased including VBF-type topologies "simple" criterium:

10 (30) TeV $\mu\mu$ similar reach to 27 (100) TeV pp

• in reality: probably higher reach due to cleaner environment...

stay tuned...

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

(3)

LHC: Multi scalar production modes

[Eur.Phys.J. C80 (2020) no.2, 151; arXiv:2101.00037]

ADDING TWO REAL SCALAR SINGLETS

Scalar potential (4: SU(2) doublet, S, X: SU(2) singlet

$$\begin{split} \mathcal{V} = & \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \mu_S^2 S^2 + \mu_X^2 X^2 + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \lambda_S S^4 + + \lambda_X X^4 + \\ & \lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi X} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2. \end{split}$$

Imposed $\mathbb{Z}_2 \times \mathbb{Z}'_2$ symmetry, which is spontaneously broken by singlet vevs.

 \Rightarrow three CP-even neutral Higgs bosons: h_1, h_2, h_3

Two interesting cases:

Case (a): $\langle S \rangle \neq 0, \langle X \rangle = 0 \Rightarrow X$ is DM candidate;

Case (b): $(S) \neq 0, (X) \neq 0 \Rightarrow$ all scalar fields mix.

Again, Higgs couplings to SM fermions and bosons are *universally* reduced by mixing.

Tim Stefaniak (DESY) | BSM Higgs physics | ALPS 2019 | 27 April 2019

1

[some material stolen from T. Stefaniak, Talk at ALPS 2019, April '19]

singlet = singlet under SM gauge group =

Tania Robens

Extended scalar sectors

Possible production and decay patterns

 $M_1 \leq M_2 \leq M_3$

Production modes at pp and decays

$$pp \rightarrow h_3 \rightarrow h_1 h_1;$$
 $pp \rightarrow h_3 \rightarrow h_2 h_2;$
 $pp \rightarrow h_2 \rightarrow h_1 h_1;$ $pp \rightarrow h_3 \rightarrow h_1 h_2$

 $h_2 \rightarrow SM; h_2 \rightarrow h_1 h_1; h_1 \rightarrow SM$

 \Rightarrow two scalars with same or different mass decaying directly to SM, or $h_1 h_1 h_1$, or $h_1 h_1 h_1$

[h1 decays further into SM particles]

 $\begin{bmatrix} BRs \text{ of } h_i \text{ into } X_{SM} = \frac{\kappa_i \Gamma_{h_i}^{SM} \times (M_i)}{\kappa_i \Gamma_{tot}^{SM}(M_i) + \sum_{j,k} \Gamma_{h_j} \to h_j h_k}; \kappa_i: \text{ rescaling for } h_i \end{bmatrix}$ Tania Robens Extended scalar sectors Eioinhany, 8.1.21

Benchmark points/ planes [ASymmetric/ Symmetric]

AS BP1: $h_3 \rightarrow h_1 h_2$ ($h_3 = h_{125}$)

SM-like decays for both scalars: $\sim~3\,{\rm pb};\,h_1^3$ final states: $\sim~3{\rm pb}$

AS BP2: $h_3 \rightarrow h_1 h_2$ ($h_2 = h_{125}$)

SM-like decays for both scalars: $\sim~0.6\,\mathrm{pb}$

AS BP3: $h_3 \rightarrow h_1 h_2$ ($h_1 = h_{125}$)

(a) SM-like decays for both scalars $\sim 0.3\,{
m pb}$; (b) h_1^3 final states: $\sim 0.14\,{
m pb}$

S BP4: $h_2 \rightarrow h_1 h_1$ ($h_3 = h_{125}$)

up to 60 pb

S BP5: $h_3 \rightarrow h_1 h_1$ ($h_2 = h_{125}$)

up to $2.5\,\mathrm{pb}$

S BP6: $h_3 \rightarrow h_2 h_2$ ($h_1 = h_{125}$)

SM-like decays: up to 0.5 pb; h_1^4 final states: around 14 fb

Tania Robens

< □ ▶ < □ ▶ < □ ▶ < ⊇ ▶
 Epiphany, 8.1.21

suggested benchmark points for symmetric $h_X \rightarrow h_Y h_Y$ and assymetric $h_3 \rightarrow h_1 h_2$ scenarios h_{125} can be either h_1, h_2, h_3

• SM couplings inherited through mixing, $\propto \kappa_i$, such that

$$g_{h_i\to XY} = \kappa_i g_{h_i\to XY}^{\mathsf{SM}}.$$

additional onshell decays

$$h_3 \rightarrow h_1 h_2, \, h_3 \rightarrow h_1 h_1, \, h_3 \rightarrow h_2 h_2, \, h_2 \rightarrow h_1 h_1$$

(whenever kinematically feasible)

\Rightarrow relative ratio for SM final states as in SM at mass M_i

$$\mathsf{BR}_{h_i \to \mathsf{SM}}(M_i) = \frac{\kappa_i^2 \Gamma_{h_i \to \mathsf{SM}}^{\mathsf{SM}}(M_i)}{\kappa_i^2 \Gamma_{h_i \to \mathsf{SM}}^{\mathsf{SM}}(M_i) + \sum_{j,k} \Gamma_{h_i \to h_j} h_k}$$

Tania Robens

Extended scalar sectors

BP3

 $\sigma(pp \rightarrow h_3) \simeq 0.06 \cdot \sigma(pp \rightarrow h_{SM})|_{m=M_3}$ BR(h_3 \rightarrow h₁₂₅h₂) mostly \sim 50%. if $M_2 < 250 \text{ GeV}$: $\Rightarrow h_2 \rightarrow \text{SM}$ particles. if $M_2 > 250 \text{ GeV}$: \Rightarrow BR(h₂ \rightarrow h₁₂₅h₁₂₅) \sim 70%,

\Rightarrow spectacular triple-Higgs signature

 $[\kappa_3 = 0.24] [\Gamma_3/M_3 \le 0.05]$

[relevant searches: $36 \, {\rm fb}^{-1}$ searches for $h_3 \rightarrow V V$]

Tania Robens

Extended scalar sectors

BP3: $h_3 o h_1 h_2 \; (h_1 = h_{125})$ [up to 0.3 pb]

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

Э

Exploration of $h_1h_1h_1$ final state at HL-LHC

[A. Papaefstathiou, TR, G. Tetlalmatzi-Xolocotzi, arXiv:2101.00037]

concentrate on $p p \rightarrow h_1 h_1 h_1 \rightarrow b \bar{b} b \bar{b} b \bar{b}$

- \Rightarrow select points on BP3 which might be accessible at HL-LHC
- ⇒ perform detailed analysis including SM background, hadronization, ...
 - tools: implementation using full t, b mass dependence, leading order [UFO/ Madgraph/ Herwig] [analysis: use K-factors]

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

(3)

Benchmark points and results

||

$\begin{array}{c}(M_2,M_3)\\[\mathrm{GeV}]\end{array}$	$\sigma(pp ightarrow h_1 h_1 h_1) \ [fb]$	$\sigma(pp ightarrow 3bar{b}) \ [{ m fb}]$	$ sig _{300 { m fb}^{-1}}$	$sig _{\mathrm{3000 fb}^{-1}}$
(255, 504)	32.40	6.40	2.92	9.23
(263, 455)	50.36	9.95	4.78	15.11
(287, 502)	39.61	7.82	4.01	12.68
(290, 454)	49.00	9.68	5.02	15.86
(320, 503)	35.88	7.09	3.76	11.88
(264, 504)	37.67	7.44	3.56	11.27
(280, 455)	51.00	10.07	5.18	16.39
(300, 475)	43.92	8.68	4.64	14.68
(310, 500)	37.90	7.49	4.09	12.94
(280, 500)	40.26	7.95	4.00	12.65

discovery, exclusion \Rightarrow at HL-LHC, all points within reach \Leftarrow

Tania Robens

Extended scalar sectors

< □ > < □ > < □ > < ⊇ > < ⊇ >
 Epiphany, 8.1.21

3

What about other channels ?

[extrapolation of $36 \, {\rm fb}^{-1}$ and HL projections]

\Rightarrow model can be tested from various angles \Leftarrow

[Phys. Rev. Lett. 122 (2019) 121803; Phys. Lett. B800 (2020) 135103; JHEP 06 (2018) 127; CERN Yellow Rep. Monogr. 7 (2019) 221; Eur. Phys. J. C78 (2018) 24; ATL-PHYS-PUB-2018-022]

Tania Robens

Extended scalar sectors

2 real singlets: Summary

• 3 scalars with different masses:

rich phenomenology

- either asymmetric $(h_1 h_2)$ or symmetric $(h_x h_x)$ final states
- \Rightarrow production cross sections up to 3 pb (AS)/ 60 pb (S)
 - interesting multi-scalar final states $(h_1h_1h_1, h_1h_1h_1)$
 - decays typically involve $b\bar{b}, W^+ W^-, \tau^+ \tau^-$ pairs that reconstruct to scalars
 - detailed investigation:

$h_1 h_1 h_1$ already accessible at $300 \, {\rm fb}^{-1}$

Stay tuned...

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

• = •

Image: A match a ma

Appendix

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Number of free parameters and theory constraints

Model has 7 free parameters

choose e.g.

 $\mathbf{v},\,\mathbf{M}_{\mathbf{h}},\,\mathbf{M}_{\mathbf{H}},\,\mathbf{M}_{\mathbf{A}},\,\mathbf{M}_{\mathbf{H}^{\pm}},\lambda_{\mathbf{2}},\,\lambda_{\mathbf{345}}\left[=\,\lambda_{\mathbf{3}}+\lambda_{\mathbf{4}}+\lambda_{\mathbf{5}}\right]$

• v, M_h fixed \Rightarrow left with **5** free parameters

Constraints: Theory

- vacuum stability, positivity, constraints to be in inert vacuum
- perturbative unitarity, perturbativity of couplings
- choosing M_H as dark matter: $M_H \leq M_A, M_{H^{\pm}}$

Tania Robens

Extended scalar sectors

 $M_h = 125.1 \,\mathrm{GeV}, \, v = 246 \,\mathrm{GeV}$

- total width of $M_h \, (\Gamma_h < 9 \, {
 m MeV})$ (CMS, 80 ${
 m fb}^{-1}$) [Phys. Rev. D 99, 112003 (2019)]
- total width of W, Z
- collider constraints from signal strength/ direct searches;
- electroweak precision through S, T, U
- unstable H^{\pm}
- reinterpreted/ recastet LEP/ LHC SUSY searches

(Lundstrom ea 2009; Belanger ea, 2015)

- dark matter relic density (upper bound)
- dark matter direct search limits (XENON1T)
- ⇒ tools used: 2HDMC, HiggsBounds, HiggsSignals, MicrOmegas

Tania Robens

Extended scalar sectors

Updated constraints [XENON1T] [Phys.Rev.Lett. 121 (2018) no.11, 111302]

LUX

XENON

Benchmark planes for LHC [XENON/ Signal rates improved] [YREP 4]

Total widths in IDM scenario [old]

Figure : Total widths of unstable dark particles: A and H^\pm in plane of their and dark matter masses.

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

Image: 0

Dark matter relic density

all but DM constraints

all but DM constraints

Extended scalar sectors

Epiphany, 8.1.21

• • • • • • • • • • •

Dominant annihilation channels for the IDM

- dominant = largest contribution can be 51 % vs 49 %...
- as obtained from MicroMegas 4.3.5
- interesting/ promising: $A H \rightarrow d \bar{d}$; needs further investigation

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

∃ ⊳

(日)

Backup slide

Low mass IDM benchmark points

	No.	M _H	M _A	M _{H±}	λ_2	λ_{345}	$\Omega_c h^2$	
	BP1	72.77	107.8	114.6	1.445	-0.004407	0.1201	
	BP2	65	71.53	112.8	0.7791	0.0004	0.07081	
	BP3	67.07	73.22	96.73	0	0.00738	0.06162	
	BP4	73.68	100.1	145.7	2.086	-0.004407	0.08925	
	BP5	55.34	115.4	146.6	0.01257	0.0052	0.1196	
	BP6	72.14	109.5	154.8	0.01257	-0.00234	0.1171	
	BP7	76.55	134.6	174.4	1.948	0.0044	0.0314	
	BP8	70.91	148.7	175.9	0.4398	0.0051	0.124	
	BP9	56.78	166.2	178.2	0.5027	0.00338	0.08127	
	BP10	76.69	154.6	163	3.921	0.0096	0.02814	
	BP11	98.88	155	155.4	1.181	-0.0628	0.002737	
	BP12	58.31	171.1	173	0.5404	0.00762	0.00641	
	BP13	99.65	138.5	181.3	2.463	0.0532	0.001255	
	BP14	71.03	165.6	176	0.3393	0.00596	0.1184	
	BP15	71.03	217.7	218.7	0.7665	0.00214	0.1222	
	BP16	71.33	203.8	229.1	1.03	-0.00122	0.1221	
	BP17	55.46	241.1	244.9	0.289	-0.00484	0.1202	
	BP18	147	194.6	197.4	0.387	-0.018	0.001772	
	BP19	165.8	190.1	196	2.768	-0.004	0.002841	
	BP20	191.8	198.4	199.7	1.508	0.008	0.008494	
	BP21	57.48	288	299.5	0.9299	0.00192	0.1195	
	BP22	71.42	247.2	258.4	1.043	-0.00406	0.1243	
	BP23	62.69	162.4	190.8	2.639	0.0056	0.06404	
A F.Żarnecki (University of	f Warsaw)		Inert Sca	ars @ CLIC		August 28, 201	8

Tania Robens

Extended scalar sectors

< □ > < □ > < □ > < ⊇ > < ⊇ >
 Epiphany, 8.1.21

21 / 21

Э

And what about LHC ?

[TR, IDM benchmarks for the LHC at 13 and 27 TeV, Talk at Higgs Cross Section Working group WG3 submeeting, 24.10.18]

No.	M _H	M _A	M _{H±}	HA	HH^+	AH^+	H^+H^-	AA	onshell
BP1	72.77	107.803	114.639	322	304	169	132	0.4	
BP2	65	71.525	112.85	1022	363	322	140	0.1	
BP3	67.07	73.222	96.73	909	504	444	242	0.1	
BP4	73.68	100.112	145.728	377	165	115	55.1	0.3	
BP6	72.14	109.548	154.761	314	144	88.9	45.1	0.4	W
BP7	76.55	134.563	174.367	173	99.0	50.8	29.2	0.4	W
BP8	70.91	148.664	175.89	144	103	42.7	28.3	0.5	W
BP9	56.78	166.22	178.24	125	116	34.4	27.1	0.6	W, Z
BP10	76.69	154.579	163.045	120	119	46.4	37.3	0.5	W
BP11	98.88	155.037	155.438	87.7	101	50.4	43.8	0.2	
BP12	58.31	171.148	172.96	113	125	34.5	30.3	0.6	W, Z
BP13	99.65	138.484	181.321	113	68.8	44.7	25.2	0.3	W
BP14	71.03	165.604	175.971	106	103	35.5	28.3	0.5	W, Z
BP15	71.03	217.656	218.738	46.9	54.6	14.2	12.8	0.4	W, Z
BP16	71.33	203.796	229.092	57.3	47.3	14.6	10.8	0.4	W, Z
BP18	147	194.647	197.403	29.6	34.0	21.3	17.9	0.1	
BP19	165.8	190.082	195.999	25.5	28.6	22.5	18.3	0.03	
BP20	191.8	198.376	199.721	17.9	21.4	20.1	16.9	0.03	
BP21	57.475	288.031	299.536	20.6	21.8	4.02	4.04	0.3	W, Z
BP22	71.42	247.224	258.382	31.3	32.5	8.05	6.90	0.4	W, Z
BP23	62.69	162.397	190.822	125	88.9	31.3	21.1	0.5	W, Z

Production cross sections in fb, at 13 TeV [UF0+Madgraph] \rightarrow_{a} DOD events in Run IL for each process: all but Bhs, 21 and 22

Backup slide

High mass IDM benchmark points

	No.	M _H	M _A	M _{H±}	λ_2	λ_{345}	$\Omega_c h^2$
	HP1	176	291.4	312	1.49	-0.1035	0.0007216
	HP2	557	562.3	565.4	4.045	-0.1385	0.07209
	HP3	560	616.3	633.5	3.38	-0.0895	0.001129
	HP4	571	676.5	682.5	1.98	-0.471	0.0005635
	HP5	671	688.1	688.4	1.377	-0.1455	0.02447
	HP6	713	716.4	723	2.88	0.2885	0.03515
	HP7	807	813.4	818	3.667	0.299	0.03239
	HP8	933	940	943.8	2.974	-0.2435	0.09639
	HP9	935	986.2	988	2.484	-0.5795	0.002796
	HP10	990	992.4	998.1	3.334	-0.051	0.1248
	HP11	250.5	265.5	287.2	3.908	-0.1501	0.00535
	HP12	286.1	294.6	332.5	3.292	0.1121	0.00277
	HP13	336	353.3	360.6	2.488	-0.1064	0.00937
	HP14	326.6	331.9	381.8	0.02513	-0.06267	0.00356
	HP15	357.6	400	402.6	2.061	-0.2375	0.00346
	HP16	387.8	406.1	413.5	0.8168	-0.2083	0.0116
	HP17	430.9	433.2	440.6	3.003	0.08299	0.0327
	HP18	428.2	454	459.7	3.87	-0.2812	0.00858
	HP19	467.9	488.6	492.3	4.122	-0.252	0.0139
	HP20	505.2	516.6	543.8	2.538	-0.354	0.00887
A.F.Żarnecki (University of	f Warsaw)		Inert Sca	ars @ CLIC		August 28.

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

(日)

/ 21

Э

- ◆ 臣 →

Backup slide

Signal processes for $\mu^+\mu^-$ final state

$$\begin{array}{rcl} e^+e^- & \rightarrow & \mu^+\mu^- \ HH, \\ & \rightarrow & \mu^+\mu^-\nu_\mu\bar\nu_\mu \ HH, \\ & \rightarrow & \tau^+\mu^-\nu_\tau\bar\nu_\mu \ HH, \ \mu^+\tau^-\nu_\mu\bar\nu_\tau \ HH, \\ & \rightarrow & \tau^+\tau^- \ HH, \ \tau^+\tau^-\nu_\tau\bar\nu_\tau \ HH. \\ & & \text{with} \tau^\pm \rightarrow \mu^\pm\nu\nu \end{array}$$

Signal processes for $e^\pm\mu^\mp$ final state

$$\begin{array}{rcl} e^+e^- & \rightarrow & \mu^+\nu_\mu \; e^-\bar{\nu}_e \; HH, \; \; e^+\nu_e \; \mu^-\bar{\nu}_\mu \; HH, \\ & \rightarrow & \mu^+\nu_\mu \; \tau^-\bar{\nu}_\tau \; HH, \; \; \tau^+\nu_\tau \; \mu^-\bar{\nu}_\mu \; HH, \\ & \rightarrow & e^+\nu_e \; \tau^-\bar{\nu}_\tau \; HH, \; \; \tau^+\nu_\tau \; e^-\bar{\nu}_e \; HH, \\ & \rightarrow & \tau^+ \; \tau^- \; HH, \; \; \tau^+\nu_\tau \; \tau^-\bar{\nu}_\tau \; HH, \end{array}$$

A.F.Żarnecki (University of Warsaw)	Inert Scalars @ CLIC	August 28, 2018	21 / 21
			★国际

Extended scalar sectors

Epiphany, 8.1.21

Э

Analysis strategy

We consider two possible final state signatures:

- moun pair production, $\mu^+\mu^-$, for *AH* production
- electron-muon pair production, μ^+e^- or $e^+\mu^-$, for H^+H^- production

Both channels include contributions from AH and H^+H^- production! In particular due to leptonic tau decays.

Signal and background samples were generator with WHizard 2.2.8 based on the dedicated IDM model implementation in SARAH, parameter files for benchmark scenarios were prepared using SPheno 4.0.3

CLIC luminosity spectra taken into account (1.4 TeV scaled to 1.5 TeV)

Generator level cuts reflecting detector acceptance:

- require lepton energy $E_l > 5 \,\text{GeV}$ and lepton angle $\Theta_l > 100 \,\text{mrad}$
- no ISR photon with $E_{\gamma} > 10 \, {
 m GeV}$ and $\Theta_{\gamma} > 100 \, {
 m mrad}$

A.F.Żarnecki (University of V	Varsaw) Inert Scalars @ CLIC	August 28, 2018 8 / 21
		《曰》《卽》《言》《言》
Tania Robens	Extended scalar sectors	Epiphany, 8,1,21

Results for ILC-type energies

[slides from A.F.Zarnecki, Snowmass meeting, 07/20]

lesson: sum of masses determine reach ! roughly:

 $230 \,{
m GeV}$ @250GeV, ~ $300 \,{
m GeV}$ @380GeV, ~ $380 \,{
m GeV}$ @500GeV

Extended scalar sectors

Production cross sections at 100 TeV [pb]

[naive estimate: AH⁺ best channel]

No.	M _H	M _A	M _{H±}	HA	HH^+	HH^{-}	AH^+	AH ⁻	H^+H^-	AA
BP1	72.77	107.803	114.639	4.00	3.47	2.65	2.06	1.55	1.85	0.0337
BP2	65	71.525	112.85	11.2	4.07	3.12	3.67	2.80	1.94	0.0380
BP3	67.07	73.222	96.73	10.1	5.47	4.22	4.88	3.75	3.09	0.0249
BP4	73.68	100.112	145.728	4.61	2.02	1.52	1.47	1.10	0.901	0.0260
BP6	72.14	109.548	154.761	3.91	1.79	1.34	1.17	0.871	0.763	0.0336
BP7	76.55	134.563	174.367	2.31	1.29	0.957	0.722	0.529	0.530	0.0215
BP8	70.91	148.664	175.89	1.97	1.33	0.992	0.622	0.453	0.533	0.0238
BP9	56.78	166.22	178.24	1.74	1.47	1.10	0.517	0.375	0.517	0.0359
BP10	76.69	154.579	163.045	1.67	1.51	1.13	0.668	0.488	0.641	0.0241
BP11	98.88	155.037	155.438	1.28	1.31	0.975	0.718	0.525	0.715	0.0137
BP12	58.31	171.148	172.96	1.58	1.57	1.18	0.519	0.376	0.550	0.0299
BP13	99.65	138.484	181.321	1.60	0.937	0.691	0.647	0.472	0.459	0.00938
BP14	71.03	165.604	175.971	1.51	1.33	0.989	0.531	0.385	0.532	0.0341
BP15	71.03	217.656	218.738	0.742	0.763	0.560	0.244	0.173	0.301	0.0341
BP16	71.33	203.796	229.092	0.882	0.674	0.493	0.250	0.177	0.268	0.0341
BP18	147	194.647	197.403	0.499	0.511	0.370	0.343	0.246	0.337	0.00685
BP19	165.8	190.082	195.999	0.441	0.441	0.318	0.361	0.259	0.336	0.00216
BP20	191.8	198.376	199.721	0.329	0.345	0.247	0.327	0.234	0.311	0.000189
BP21	57.475	288.031	299.536	0.367	0.346	0.249	0.0941	0.0646	0.153	0.0319
BP22	71.42	247.224	258.382	0.524	0.487	0.353	0.152	0.106	0.204	0.0296
BP23	62.69	162.397	190.822	1.74	1.17	0.867	0.476	0.344	0.425	0.0327

Tania Robens

Extended scalar sectors

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ⊇
 Epiphany, 8.1.21

Production cross sections at 100 TeV [fb]

No.	M _H	M _A	M _{H±}	HA	HH^+	HH^{-}	AH^+	AH^{-}	H^+H^-	AA
HP1	176	291.36	311.96	176	163	114	86.4	59.2	103	12.3
HP2	557	562.316	565.417	9.89	11.1	7.00	10.9	6.88	10.1	-
HP3	560	616.32	633.48	8.32	9.01	5.62	7.72	4.77	9.27	0.781
HP4	571	676.534	682.54	6.76	7.60	4.70	5.79	3.53	9.13	1.76
HP5	671	688.108	688.437	5.02	5.78	3.52	5.54	3.37	5.19	0.0421
HP6	713	716.444	723.045	4.21	4.79	2.89	4.75	2.86	4.39	0.0185
HP7	807	813.369	818.001	2.69	3.11	1.84	3.07	1.81	2.85	0.0210
HP8	933	939.968	943.787	1.59	1.87	1.07	1.85	1.06	1.66	-
HP9	935	986.22	987.975	1.45	1.71	0.978	1.56	0.886	1.72	0.150
HP10	990	992.36	998.12	1.29	1.52	0.863	1.52	0.859	1.36	-
HP11	250.5	265.49	287.226	132	125	86.6	115	79.2	99.1	0.0714
HP12	286.05	294.617	332.457	89.9	79.5	54.3	76.1	51.9	65.6	0.320
HP13	336	353.264	360.568	51.0	54.2	36.4	50.1	33.6	46.7	0.160
HP14	326.55	331.938	381.773	59.4	51.2	34.3	49.9	33.5	42.2	0.00751
HP15	357.6	399.998	402.568	37.2	40.7	27.0	34.1	22.5	33.7	0.781
HP16	387.75	406.118	413.464	31.8	34.3	22.6	31.8	20.9	29.6	0.0805
HP17	430.95	433.226	440.624	23.9	26.0	17.0	25.7	16.8	23.7	0.0180
HP18	428.25	453.979	459.696	22.3	24.4	15.9	22.2	14.4	20.9	0.147
HP19	467.85	488.604	492.329	16.9	18.8	12.1	17.5	11.2	16.5	0.0795
HP20	505.2	516.58	543.794	13.5	14.0	8.87	13.5	8.54	12.1	-

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

< 口 > < 🗗

≣≯

うくで

크

Dominant enhancements e.g. from H^+A production (offshell) / WW fusion diagrams

Tania Robens

Extended scalar sectors

Main contributions, AA VBF, $\mu\mu$

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

<20 € € 20 €

Diagrams via W^+W^- fusion, $\mu\mu$ (GI I)

Dagrams made by MadGraph5_aMD6NLO

Tania Robens

Extended scalar sectors

Diagrams via $W\mu$ fusion, $\mu\mu$ (GI II)

Dagrams made by MadGraph5_aMD6NLO

Tania Robens

Extended scalar sectors

Reminder: decays of a SM-like Higgs of mass $M \neq 125 \, { m GeV}$

(using HDecay, courtesy J.Wittbrodt)

(https://twiki.cern.ch/twiki/bin/view/LHCPhysics

/LHCHXSWGCrossSectionsFigures)

Extended scalar sectors

Cut selection

Label	(M_2, M_3)	$< P_{T,b}$	$\chi^{2,(4)} <$	$\chi^{2,(6)} <$	$m_{4b}^{\rm inv} <$	$m_{6b}^{inv} <$
	[GeV]	[GeV]	$[GeV^2]$	$[GeV^2]$	[GeV]	[GeV]
Α	(255, 504)	34.0	10	20	-	525
в	(263, 455)	34.0	10	20	450	470
с	(287, 502)	34.0	10	50	454	525
D	(290, 454)	27.25	25	20	369	475
E	(320, 503)	27.25	10	20	403	525
F	(264, 504)	34.0	10	40	454	525
G	(280, 455)	26.5	25	20	335	475
н	(300, 475)	26.5	15	20	352	500
1	(310, 500)	26.5	15	20	386	525
J	(280, 500)	34.0	10	40	454	525

 $\begin{array}{l} \mbox{Table:} & |\eta|_b < 2.35, \, \Delta m_{\min, \ max}, \, max < [15, 14, 20] \ \mbox{GeV}, \, p_T(h_1^i) > [50, 50, 0] \ \mbox{GeV}, \\ \Delta R(h_1^i, h_1^i) < 3.5 \ \mbox{and} \ \Delta R_{bb}(h_1) < 3.5. \end{array}$

χ^2 s: variables used in h_1 reconstruction

Tania Robens

Extended scalar sectors

Epiphany, 8.1.21

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○