

Forward Search Experiment at the LHC

Enrique Kajomovitz Ken (Technion)
on behalf of
The FASER collaboration

- A small experiment at the LHC searching for light and weakly interacting particles in Run-3 (2022)
- First concept in 2017 (Feng, Galon, Kling, Trojanowski 1708.09389), approved by CERN in 2019, currently being installed (~2M\$ largely funded by Heising-Simons and Simons Foundations)
 - Detector constructed quickly and cheaply (reuse parts when possible)

• 65 collaborators, 19 institutions, 8 countries

Heavy and Strongly interacting

- High pT signature
- Isotropic
- ATLAS / CMS

Light and Weakly interacting

- Light: Can be produced in light hadron decays
- Weakly interacting:
 - Need large event rate to see them
 - Can travel macroscopic distance before decaying

Detecting Light and Weakly interacting Long Lived Particles

* for backgrounds ~0, sensitivity is driven by yield

Factors driving sensitivity

- Production: Luminosity and Cross section
- **Detection**: $A(L,p,\Theta)$
 - Propagation within detector geometric acceptance
 - Decay within detector: d~p/m c. τ, P(decay)~exp[(Δ-L)/d] exp[-L/d]

^{*} For d >> L, P(decay) ~ exp[-L/d]

Weakly interacting Long Lived Particles with FASER

 FASER is located along the beam collision axis line of sight 480m from the ATLAS interaction point (IP1)

LLP produced in π , K, D, B decays

At FASER, expect during Run-3 (150 fb⁻¹)

$$\sim 2.3 \times 10^{17} \,\pi^0$$
, $\sim 2.5 \times 10^{16} \,\eta$, $\sim 1.1 \times 10^{15} \,D$, $\sim 7.1 \times 10^{13} \,B$

Physics Potential

Example: Dark Photon

Even at 1/fb probes new ground

FASER Location

TI12: Old SPS-Lep Tunnel Shielded by ~ 100m rock

Backgrounds

- Simulation and in-situ measurements
 - IP1 collisions (shielded by 100m of rock)
 - Off-orbit protons
 - Beam gass interactions
 - Low particle flux due to LHC optics
 - Low radiation

Muons (@L= $2x10^{-34}$ cm ⁻² s ⁻¹)		
Energy threshold [GeV]	Charged Particle Flux [cm-2 s-1]	
10	0.40	
100	0.20	
1000	0.06	

Detector Layout

Signal Signature

- No signal in the veto scintillator, and signal in the two trigger scintillators
- Two opposite charge tracks consistent with a common vertex and pointing to IP1 (magnets separate the tracks)
- EM shower (too close to be resolved for A' case)

Magnets

- B=0.55 T, 1.5m (decay volume) 2x1m (spectrometer)
- Permanent dipole magnets with Halbach design
 - Minimize services
 - Thin enough to allow line of sight to the IP without too much digging
- Designed and Constructed by the CERN magnet group

Tracking detector

- Separate efficiently two very close tracks
 - Tracking system: 3 tracking stations with 3 tracking layers each
 - 8 ATLAS SCT spare modules per layer (Thanks ATLAS SCT!)
 - 80um pitch, 40mrad stereo angle, 1536 channels per module 17um/580um resolution (precision in the bending plane)

Tracking detector

- Low radiation Can be operated at room temperature but need water cooling to remove 360W from the detector ASICS
- Not using ATLAS readout (too complex), custom flex cable, patch panel and FPGA based readout module (a few meters from the detector)

Tracking cosmic test-bench

- Cosmic data taking with one station at the time
 - Operational experience, tracking efficiency and local resolution and alignment, offline studies
- Top/bottom scintillator for trigger
- FASER TDAQ

EM calorimeter

- Measure the EM energy
- Electron/photon identification
- Trigger

- 4 spare EM calo modules from LHCb (Thanks LHCb!)
- 66 layers (2mm Pb+4mm plastic scintillator) 25 x₀
- Dimensions: 12cm x 12cm x 75cm including PMT
- 1% resolution for 1 TeV electrons

EM calorimeter - cosmic test bench

- Cosmics to test calorimeter response and to calibrate PMT
 - Top/down scintillator to trigger on cosmic muon
 - Close to final readout
- Good agreement with expected response

Scintillators

- **Veto** incoming charged particles: Requires very high efficiency O(10⁸ muons in 150/fb)
 - Efficiency > 99.9% measured with cosmic
- Trigger
- Timing measurement ~ 1ns resolution

Trigger, Data Acquisition and Offline SW

- Trigger: OR from Scintillators and calorimeter
 - Plan is to trigger on all particles
 - Max trigger rate ~500Hz from muons
- Trigger Logic Board: FPGA board (same as tracker readout board with different firmware/adapter card)
- DAQ: Event size ~25KB dominated by PMT waveforms, Bandwidth 15MB/s
- Trigger and Readout Electronics at TI12, Event builder and DAQ sw runs at PC on surface
- DAQ software: Based on DAQling (small experiment DAQ software by CERN)
- Offline: Based on Calypso (open source Athena)

TDAQ/Control architecture

Detector support

- Keep tracking stations aligned within 100um
- Align magnets to Beam Collision Line of Sight
- Allow detector to follow changes in Beam Collision Line of Sight due changes in crossing angle
- Tracker is connected through backbone mounted on magnets
- Baseplate securing magnets

Dry run on surface

- Detector assembled and run on surface
 - 1 / 3 tracking stations, without decay volume magnet

Detector installation @ TI12

- Cooling
- Magnets
- Electronics and Power supply
- Detector baseplate

FASER ν

- Huge number of highly energetic neutrinos are produced at the LHC (hadron decays)
- A neutrino detector placed at the FASER cavern can probe a new energy regime for neutrinos —> Cross section measurement at high energy
- FASER ν is an emulsion detector placed in front of the main detector

150/fb @ 14 TeV	$ u_e$	$ u_{\mu}$	$v_{ au}$
Main production	K decay	Pi decay	D decay
Reach FASER v	O(10 ¹¹)	O(10 ¹²)	1O(10 ⁹)
Interact	~1.3 K	~20K	~20

FASER γ

- 1.3m x 25cm x 25cm detector
- 1000 x 1mm tungsten plates (1.2 tn) interleaved with emulsion film
- Track position resolution 50nm, angular resolution 0.35mrad
 - needs to be replaced ~30-50/fb

Summary

- FASER is a small experiment looking for LLPs produced at the LHC, will collect data from 2022+ (Run-3)
 - Targets NP weakly interacting long-lived particles
 - Collider Neutrinos at high energy regime
 - Fast: Proposal (2018), Approval (2019), Installation (2020)
 - Affordable: Reuse parts from other experiments where possible
- Construction of FASER on time will be ready for data taking 2022!

- More info:
 - FASER LOI: 1811.10243
 - FASER TP: 1811.10243
 - FASER Physics: 1811.12522
 - FASER nu LOI: 1908.02310
 - FASER nu TP: 2001.03073