

High-sensitivity hadronic EDM Exp. with the hybrid/symmetric lattice

Center for Axion and Precision Physics Research

Yannis K. Semertzidis, IBS/CAPP & KAIST XXVI Cracow Epiphany on Future of Particle Physics Cracow (virtual), January 7-10, 2021

- Statistics for better than 10⁻²⁹ *e*-cm for pEDM
- Matching systematics greatly reduced by symmetries

Outline

- Motivation
- Status of EDMs
- Storage ring EDM options
- Systematics with hybrid and hybrid symmetric lattices

Motivation of pEDM at 10⁻²⁹ *e*-cm

- Probe New Physics, at $>10^3$ TeV mass scale, Higgs CPV
- Improve sensitivity to $\theta_{\rm QCD}$ by three orders of magnitude
- Together with ARIADNE probe high frequency axion dark matter
- Direct search for low frequency axion dark matter

The particle spin generates a magnetic dipole moment. If it also generates an EDM, then both P and T symmetries are violated

A Permanent EDM Violates both T & P Symmetries:

Electric Dipole Moments: P and T-violating when \vec{a} // to spin

T-violation: assuming CPT cons. \rightarrow CP-violation

Andrei Sakharov 1967:

CP-Violation is one of three conditions to enable a universe containing initially equal amounts of matter and antimatter to evolve into a matter-dominated universe. which we

see today....

Why is there so much matter after the Big Bang:

We see:

$$\frac{n_B}{n_v} \approx (6.08 \pm 0.14) \times 10^{-10}$$

From the SM:

 $\frac{n_B}{n_{\gamma}} \approx 10^{-18}$

Purcell and Ramsey:

"The question of the possible existence of an electric dipole moment of a nucleus or of an elementary particle...becomes a purely <u>experimental</u> matter"

Phys. Rev. 78 (1950)

Bill Marciano Snowmass Workshop, September 15, 2020

Proton edm SR goal: $d_p \sim 10^{-29}$ e-cm Improvement by more than 4 orders! Sensitivity similar to $d_e < 10^{-30}$ e-cm

In a renormalizable quantum field theory, at lowest order $d_p=0$ (No dim. 5 operators)

 $d_p \sim em/\Lambda_{NP}^2 sin\phi^{NP}$ quantum loop induced Λ_{NP} scale of "new physics" ϕ^{NP} = Complex CP violation phase of New Physics *phase misalignment with m_p* $\sim 10^{-22} (1TeV/\Lambda_{NP})^2 sin\phi^{NP}e-cm$

If ϕ^{NP} is of O(1), $\Lambda_{NP} \sim 3000 \text{TeV}$ Probed! (very roughly) If $\Lambda_{NP} \sim O(1 \text{TeV})$, $\phi_{NP} \sim 10^{-6}$ Probed! 5 Bill Marciano Snowmass Workshop, September 15, 2020

a_f vs d_f (very roughly)

Two loop Higgs contribution: a_µ(H)≈fewx10⁻¹¹
 Both <u>Unobservably Small</u> a_e(H)≈5x10⁻¹⁶

EDM Higgs contribution: $d_e(H) \approx 10^{-26} \sin \varphi e - cm$ $|d_n(H)| \approx |d_p(H)| \approx 3 \times 10^{-25} \sin \varphi e - cm$ Already d_e bound implies $\sin \varphi_e \le 0.002$ (smaller?) Altmannshofer, Brod, Schmaltz JHEP (updated)

<u>**CP violation in BR(** $H \rightarrow yy$) $\gamma\gamma$ Collider?</u>

Unlikely to be observable, but edm experiments can Explore down to $tan\phi \approx O(10^{-4})!$ Unique!

The Electric Dipole Moment precesses in an Electric field

Important attributes of an EDM Experiment

- 1. <u>Polarization</u>: state preparation, intensity of beams (statistics)
- 2. Interaction with an E-field: the higher the better (statistics)
- 3. <u>Analyzer:</u> high efficiency analyzer (statistics)
- 4. <u>Symmetry tools:</u> combat systematic errors
- 5. <u>Scientific Interpretation of Result!</u> Easier for the simpler systems

Spin precession at rest

Measuring an EDM of Neutral Particles $H = -(d E + \mu B) \bullet I/I$

d = 10⁻²⁸ e cm E = 200 kV/cm

 $\Rightarrow \quad \delta \omega = 10^{-7} \text{ rad/s} \rightarrow \\ \sim 1 \text{ turn/year}$

³He Co-magnetometer

If nEDM = 10^{-26} e·cm,

 $10~kV/cm \rightarrow 0.1~\mu\text{Hz}$ shift

 \cong B field of 2 × 10 ⁻¹⁵ T.

Co-magnetometer :

Uniformly samples the B Field faster than the relaxation time.

Data: ILL nEDM experiment with ¹⁹⁹Hg co-magnetometer

EDM of ¹⁹⁹Hg < 10⁻²⁸ e-cm (measured); atomic EDM ~ $Z^2 \rightarrow {}^{3}He EDM << 10^{-30} e-cm$

Under gravity, the center of mass of He-3 is higher than UCN by $\Delta h \approx 0.13$ cm, sets $\Delta B = 30$ pGauss (1 nA of leakage current). $\Delta B/B=10^{-3}$.

Strong CP-problem and neutron EDM

$$L_{QCD,\bar{\theta}} = \bar{\theta} \ \frac{g^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

The QCD Lagrangrian contains a theta-term violating both Pparity and T-time reversal symmetries.

Strong CP-problem and neutron EDM

$$L_{QCD,\bar{\theta}} = \bar{\theta} \frac{g^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Dimensional analysis (naïve) estimation of the neutron EDM:

$$d_{n}(\overline{\theta}) \sim \overline{\theta} \frac{e}{m_{n}} \frac{m_{*}}{\Lambda_{QCD}} \sim \overline{\theta} \cdot (6 \times 10^{-17}) e \cdot cm, \quad m_{*} = \frac{m_{u}m_{d}}{m_{u} + m_{d}}$$
$$d_{n}(\overline{\theta}) \approx -d_{p}(\overline{\theta}) \approx 3.6 \times 10^{-16} \overline{\theta} e \cdot cm \qquad \stackrel{\text{M. Pospelov,}}{\underset{318 \text{ (2005) 119.}}{\text{M. Pospelov,}}}$$
$$Exp.: \quad d_{n} < 3 \times 10^{-26} e \cdot cm \rightarrow \overline{\theta} < 10^{-10}$$

In simple terms: the theory of strong interactions demands a large neutron EDM. Experiments show it is at least ~9-10 orders of magnitude less! WHY?

Strong CP-problem

$$L_{QCD,\bar{\theta}} = \left(\bar{\theta} - \frac{a(x)}{f_a}\right) \frac{g^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

• Peccei-Quinn: θ_{QCD} is a dynamical variable (1977), $a(x)/f_a$. It goes to zero naturally

Input to hadronic EDM

- Theta-QCD (part of the SM)
- CP-violation sources beyond the SM

A number of alternative simple systems could provide invaluable complementary information (e.g. neutron, proton, deuteron,...).

 At 10⁻²⁹e·cm pEDM is at least an order of magnitude more sensitive than the current nEDM plans

EDMs of different systems

Theta_QCD:
$$d_n \simeq -d_p \simeq 3 \times 10^{-16} \overline{\theta} \, \mathrm{e} \cdot \mathrm{cm}$$

 $d_D \left(\overline{\theta}\right) / d_N \left(\overline{\theta}\right) \approx 1/3$

Super-Symmetry (SUSY) model predictions:

$$\begin{aligned} d_n &\simeq 1.4 \big(d_d - 0.25 d_u \big) + 0.83 e \big(d_u^c + d_d^c \big) - 0.27 e \big(d_u^c - d_d^c \big) \\ d_p &\simeq 1.4 \big(d_d - 0.25 d_u \big) + 0.83 e \big(d_u^c + d_d^c \big) + 0.27 e \big(d_u^c - d_d^c \big) \\ d_D &\simeq \big(d_u + d_d \big) - 0.2 e \big(d_u^c + d_d^c \big) - 6 e \big(d_u^c - d_d^c \big) \end{aligned}$$

$$d_N^{I-1} \simeq 0.87 (d_u - d_d) + 0.27e (d_u^c - d_d^c) \qquad d_N^{I-1} = (d_p - d_n)/2$$

$$d_N^{I-0} \simeq 0.5 (d_u + d_d) + 0.83e (d_u^c + d_d^c) \qquad d_N^{I-0} = (d_p + d_n)/2$$

Recent EDM experimental limits

	Neutron	Electron	¹⁹⁹ Hg	¹²⁹ Xe	²²⁵ Ra	Ref.
	95% C.L.	90% C.L.	95% C.L.	95% C.L.	95% C.L.	
Exp. upper limit (ecm) SM pred. (ecm)	$\begin{array}{c} 3.6\times10^{-26} \\ \sim 10^{-31}-10^{-32} \end{array}$	$\begin{array}{c} 1.1 \times 10^{-29} \\ \sim 10^{-38} \end{array}$	$7.4 \times 10^{-30} \\ \sim 10^{-34}$	${\begin{array}{c} 6.6\times10^{-27}\\\sim\!\!10^{-34} \end{array}}$	$1.4 imes 10^{-24}$ -	[7,10–13] [14–17]

Physics of EDMs

Current EDM limits

	Result	95% u.l.	Ref.	
	Paramagnetic systems			
Xe ^m	$d_A = (0.7 \pm 1.4) \times 10^{-22}$	$3.1 \times 10^{-22} e \mathrm{cm}$	(a)	
Cs	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	$1.4 \times 10^{-23} e \mathrm{cm}$	(b)	
	$d_e = (-1.5 \pm 5.7) \times 10^{-26}$	$1.2 \times 10^{-25} e \mathrm{cm}$		
	$C_S = (2.5 \pm 9.8) \times 10^{-6}$	2×10^{-5}		
	$Q_m = (3 \pm 13) \times 10^{-8}$	$2.6 \times 10^{-7} \mu_N R_{\rm Cs}$		
Tl	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	$1.1 \times 10^{-24} e \mathrm{cm}$	(c)	
	$d_e = (6.9 \pm 7.4) \times 10^{-28}$	$1.9 \times 10^{-27} e \mathrm{cm}$		
YbF	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	$1.2 \times 10^{-27} e \mathrm{cm}$	(d)	
ThO	$d_e = (-2.1 \pm 4.5) \times 10^{-29}$	$9.7 \times 10^{-29} e \mathrm{cm}$	(e)	
	$C_S = (-1.3 \pm 3.0) \times 10^{-9}$	6.4×10^{-9}		
HfF^+	$d_e = (0.9 \pm 7.9) \times 10^{-29}$	$1.6 \times 10^{-28} \ e \mathrm{cm}$	(f)	
	Diamagnetic syste	ems		
¹⁹⁹ Hg	$d_A = (2.2 \pm 3.1) \times 10^{-30}$	$7.4 \times 10^{-30} e \mathrm{cm}$	(g)	
¹²⁹ Xe	$d_A = (0.7 \pm 3.3) \times 10^{-27}$	$6.6 \times 10^{-27} e \mathrm{cm}$	(h)	
225 Ra	$d_A = (4 \pm 6) \times 10^{-24}$	$1.4 \times 10^{-23} e \mathrm{cm}$	(i)	
TlF	$d = (-1.7 \pm 2.9) \times 10^{-23}$	$6.5 \times 10^{-23} e \mathrm{cm}$	(j)	
n	$d_n = (-0.21 \pm 1.82) \times 10^{-26}$	$3.6 \times 10^{-26} \ e \mathrm{cm}$	(k)	
Particle systems				
μ	$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19}$	$1.8 \times 10^{-19} e \mathrm{cm}$	(1)	
τ	$\operatorname{Re}^{\mu}(d_{\tau}) = (1.15 \pm 1.70) \times 10^{-17}$	$3.9 \times 10^{-17} e \mathrm{cm}$	(m)	
Λ	$d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17}$	$1.6 \times 10^{-16} \ e \ {\rm cm}$	(n)	

Rev.Mod.Phys.91.015001

Sensitivity to Rule on Several New Models

Physics strength comparison (Marciano)

System	Current limit [e·cm]	Future goal	Neutron equivalent
Neutron	<1.6 × 10 ⁻²⁶	~10 ⁻²⁸	10-28
¹⁹⁹ Hg atom	<7 × 10 ⁻³⁰	<10 ⁻³⁰	10-26
¹²⁹ Xe atom	<6 × 10 ⁻²⁷	~10 ⁻²⁹ -10 ⁻³¹	10 ⁻²⁵ -10 ⁻²⁷
Deuteron nucleus		~10 ⁻²⁹	3 × 10 ⁻²⁹ - 5 × 10 ⁻³¹
Proton nucleus	<2 × 10 ⁻²⁵	~10 ⁻²⁹	10-29

The sensitivity to EDM is optimum when the spin vector is kept aligned to the momentum vector

The spin precession relative to momentum in the plane is kept near zero. A vert. spin precession vs. time is an indication of an EDM (*d*) signal.

The spin precession relative to momentum in the plane is kept near zero. A vert. spin precession vs. time is an indication of an EDM (*d*) signal.

Freezing the horizontal spin precession

$$\vec{\omega}_a = \frac{e}{m} \left(a - \left(\frac{m}{p}\right)^2 \right) \vec{\beta} \times \vec{E}$$

• The spin precession is zero at "magic" momentum (0.7 GeV/c for protons, 3.1GeV/c for muons,...)

$$p = \frac{m}{\sqrt{a}}$$
, with $a = \frac{g-2}{2}$

• The "magic" momentum concept was first used in the last muon g-2 experiment at CERN, at BNL & FNAL.

31

Storage Ring Electric Dipole Moments exp. options

Fields	Example	EDM signal term	Comments
Dipole magnetic field (B) (Parasitic)	Muon g-2	Tilt of the spin precession plane. (Limited statistical sensitivity due to spin precession)	Eventually limited by geometrical alignment. Requires consecutive CW and CCW injection to eliminate systematic errors
Combination of electric & and magnetic fields (E, B) (Combined lattice)	Deuteron, ³ He, proton, etc.	Mainly: $\frac{d\vec{s}}{dt} = \vec{d} \times \left(\vec{v} \times \vec{B}\right)$	High statistical sensitivity. Requires consecutive CW and CCW injection to eliminate systematic errors
Radial Electric field (E) & Electric focusing (E) (All electric lattice)	Proton, etc.	$\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}$	Large ring, CW & CCW storage. Requires demonstration of adequate sensitivity to radial B-field syst. error
Radial Electric field (E) & Magnetic focusing (B) (Hybrid, symmetric lattice)	Proton, etc.	$\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}$	Large ring, CW & CCW storage. Only lattice to achieve direct cancellation of main systematic error source

Hybrid lattice storage ring

•It eliminates the main syst. error sources: ext. B-fields

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 034001 (2019)

Hybrid ring design in the storage-ring proton electric dipole moment experiment

S. Haciömeroğlu¹ and Y. K. Semertzidis^{1,2,*} ¹Center for Axion and Precision Physics Research, Institute for Basic Science (IBS/CAPP), Daejeon 34051, Republic of Korea ²Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

(Received 25 October 2018; published 5 March 2019)

A new, hybrid design is proposed to eliminate the main systematic errors in the frozen spin, storage ring measurement of the proton electric dipole moment. In this design, electric bending plates steer the particles, and magnetic focusing replaces electric. The magnetic focusing should permit simultaneous clockwise and counterclockwise storage to cancel systematic errors related to the out-of-plane dipole electric field. Errors related to the quadrupole electric fields can be eliminated by successive runs of magnetic focusing with different strengths.

DOI: 10.1103/PhysRevAccelBeams.22.034001

Hybrid, symmetric lattice storage ring

•It eliminates the main syst. error sources: ext. B-fields

•Reduces major systematic error sources by several orders of magnitude

arXiv:2007.10332v2 [physics.acc-ph] 29 Dec 2020

Comprehensive Symmetric-Hybrid ring design for pEDM experiment at below $10^{-29} e \cdot \mathrm{cm}$

Zhanibek Omarov,^{1,2} Selcuk Hacıömeroğlu,^{2,*} Valeri Lebedev,³ William Morse,⁴ Yannis K. Semertzidis,^{1,2,*} A.J. Silenko,⁵ E.J. Stephenson,⁶ and more... ¹Department of Physics KAIST Daejeon 34141 Republic of Korea

 ²Center for Axion and Precision Physics Research IBS Daejeon 34051 Republic of Korea ³Fermi National Accelerator Laboratory Batavia IL 60510 USA ⁴Brookhaven National Laboratory Upton New York 11973 USA ⁵Research Institute for Nuclear Problems Belarusian State University Minsk 220030 Belarus ⁶IUCF Indiana University Bloomington Indiana 47408 USA (Dated: September 2020)

Hybrid, symmetric lattice storage ring. Great for systematic error reduction.

arXiv:2007.10332v2 [physics.acc-ph] 29 Dec 2020

Hybrid, symmetric lattice storage ring

arXiv:2007.10332v2 [physics.acc-ph] 29 Dec 2020

TABLE I. Ring and beam parameters for Symmetric Hybrid ring design

Quantity	Value
Bending Radius R_0	$95.49\mathrm{m}$
Electrode spacing	$4\mathrm{cm}$
Electrode height	$20\mathrm{cm}$
Deflector shape	cylindrical
Radial bending E -field	$4.4\mathrm{MV/m}$
Number of FODO sections	24
Straight section length	$4.16\mathrm{m}$
Quadrupole length	$0.4\mathrm{m}$
Quadrupole strength	$\pm 0.21\mathrm{T/m}$
Bending section length	$12.5\mathrm{m}$
Bending section circumference	$600\mathrm{m}$
Straight section circumference	$200\mathrm{m}$
Total circumference	$800\mathrm{m}$
Cyclotron frequency	$224\mathrm{kHz}$
Revolution time	$4.46\mathrm{\mu s}$
Particles per bunch	$2.5 \times 10^8 \text{ (TBD)}$
Momentum spread, $(dp/p)_{\text{max}}$	2×10^{-4}
Horizontal beta function, β_x^{\max}	$64\mathrm{m}$
Horizontal beta function, β_x^{\min}	$35\mathrm{m}$
Vertical beta function, β_{y}^{\max}	$76\mathrm{m}$
Vertical beta function, β_y^{\min}	$41\mathrm{m}$
Dispersion function D_x^{\max}	$33\mathrm{m}$
Dispersion function D_x^{\min}	$24\mathrm{m}$
Horizontal tune, Q_x	2.75
Vertical tune, Q_y	2.3
Slip factor, $\eta = \frac{dp}{p} / \frac{dt}{t}$	-0.28

E-field plate modules: The (26) FNAL Tevatron ES-separators ran for years with harder specs

Proton Statistical Error (230MeV): 10-29 e-cm

$$\sigma_d = \frac{2\hbar}{E_R P A \sqrt{N_c f \tau_p T_{tot}}}$$

- τ_p : 10³s Polarization Lifetime (Spin Coherence Time)
- A : 0.6 Left/right asymmetry observed by the polarimeter
- *P*: 0.8 Beam polarization
- N_c : 4×10¹⁰p/cycle Total number of stored particles per cycle (10³s)
- T_{Tot} : 10⁷s Total running time per year
- *f* : 1% Useful event rate fraction (efficiency for EDM)
- E_R : 4.5 MV/m Radial electric field strength

How the srEDM exp. at 10⁻²⁹ *e*-cm works ✓ Required radial E-field <5 MV/m, for 40mm plate separation

✓ Beam and spin dynamics stable for required beam intensity

✓ Spin coherence time estimated >10³s

✓ Alternate magnetic focusing all but eliminating external B-field sensitivity

✓ Symmetric lattice significantly reducing systematic error sources

✓ Required ring planarity <0.1mm; CW & CCW beam separation <0.01mm

Ring planarity critical to control geometrical phase errors

• The beam planarity requirement: <0.1mm, within existing technology

• Clock-wise (CW) and counter-clock-wise (CCW) beam storage split to <0.01mm. SQUID-based BPMs (S-BPM) resolution: 10nm/sqrt(Hz)!

Ring planarity critical to control geometrical phase errors

• Numerous studies on slow ground motion in accelerators, Hydrostatic Level System for slow ground motion studies at Fermilab.

• Thorough review by Vladimir Shiltsev (FNAL): https://arxiv.org/pdf/0905.4194.pdf

Tevatron Sensors on Quad

In the circle is a water level pot on a Tevatron quadrupole

James T Volk May 2009

HLS measurements at Fermilab

Fig.35. HLS probe on Tevatron accelerator focusing magnet.

Bill Marciano Snowmass Workshop, September 15, 2020

Future Expectations

- $d_n \rightarrow 10^{-27}-10^{-28}e$ -cm Spallation Neutron Sources
- d_p & d_D→10⁻²⁸-10⁻²⁹e-cm Storage Ring (BNL/COSY) Probes New Physics(NP) at (1TeV/Λ_{NP})²tanφ_{NP}≤10⁻⁶! for φ_{NP}~O(1) → Λ_{NP}><u>3000TeV</u>! (well beyond LHC) Paves the way for a new generation of storage ring experiments d_p, d_D, d(³He), d(radioactive nuclei), d_µ

d_e→10⁻³⁰e-cm or better! d_p→10⁻²⁹e-cm Storage Ring Proposal <u>Complementary</u> Bill Marciano Snowmass Workshop, September 15, 2020

<u>Outlook</u>

EDMs will eventually be discovered: $d_e, d_n, d_p...d_D$ Magnitudes of $\approx 10^{-28}$ expected for Baryogenesis

CP violation phase in: *Hee, Hγγ, Htt, 2HD Model...* <u>Uniquely</u> explored by 2 loop edms! Barr-Zee effect May be our only window to Hee, Huu and Hdd couplings

Atomic, Molecular, Neutron, *Storage Ring* (All important)

The Higgs Mechanism critical for our existence! Early Universe and Beyond Must Be Fully Explored

20

Storage ring EDM Collaboration

Snowmass LOI, 2020

¹⁾Aristotle University of Thessaloniki, Thessaloniki, Greece

²⁾Argonne National Laboratory, Lemont, Illinois, USA

³⁾Boston University, Boston, Massachusetts, USA

⁴⁾Brookhaven National Laboratory, Upton, New York, USA

⁵⁾Budker Institute of Nuclear Physics, Novosibirsk, Russia

⁶⁾Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon, Korea

7)Cornell University, Ithaca, New York, USA

8)Fermi National Accelerator Laboratory, Batavia, Illinois, USA

9)Helmholtz-Institute Mainz, Johannes Gutenberg University, Mainz, Germany

¹⁰⁾Indiana University, Bloomington, Illinois, USA

¹¹⁾Istanbul Technical University, Istanbul, Turkey

¹²⁾JLAB, Newport News, Virginia, USA

¹³⁾Johns Hopkins University, Baltimore, Maryland, USA

¹⁴⁾Joint Institute for Nuclear Research, Dubna, Russia

¹⁵⁾KAIST, Daejeon, Korea

¹⁶⁾Korea University, Seoul, Korea

¹⁷⁾Michigan State University, East Lansing, Michigan, USA

¹⁸⁾National Institute for Nuclear Physics (INFN-Frascati), Rome, Italy

¹⁹⁾National Institute for Nuclear Physics (INFN-Pisa), Pisa, Italy

²⁰⁾NCSR Demokritos Institute of Nuclear and Particle Physics, Athens, Greece

²¹⁾Northern Illinois University, DeKalb, Illinois, USA

²²⁾Regis University, Denver, Colorado, USA

²³Royal Institute of Technology, Division of Nuclear Physics, Stockholm, Sweden

Storage Ring EDM Collaboration members (*) and LOI endorsers:

Jim Alexander,⁷ Vassilis Anastassopoulos,^{34*} Rick Baartman,^{26*} Stefan Baessler,^{37*} Franco Bedeschi,¹⁹ Martin Berz,^{17*} Michael Blaskiewicz,^{4*} Themis Bowcock,^{31*} Kevin Brown,^{4*} Dmitry Budker, 9,29* Sergey Burdin, 31 Gianluigi Casse, 31* Giovanni Cantatore, 36* Timothy Chupp, 32* Hooman Davoudiasl,^{4*} Milind V. Diwan,^{4*} George Fanourakis,^{20*} Antonios Gardikiotis,^{28,34*} Claudio Gatti,^{18*} James Gooding,^{31*} Renee Fatemi,³⁰ Wolfram Fischer,^{4*} Peter Graham,^{25*} Frederick Gray,^{22*} Selcuk Haciomeroglu,^{6*} Georg H. Hoffstaetter,^{7*} Haixin Huang,^{4*} Marco Incagli,^{19*} Hoyong Jeong,^{16*} David Kaplan,^{13*} On Kim,^{6,15*} Ivan Koop,^{5*} Marin Karuza,^{35*} David Kawall,^{27*} Valeri Lebedev,^{8*} MyeongJae Lee,^{6*} Soohyung Lee,^{6*} Alberto Lusiani,^{24,19*} William J. Marciano,^{4*} Marios Maroudas,^{34*} Andrei Matlashov,^{6*} Francois Meot,^{4*} James P. Miller,^{3*} William M. Morse,^{4*} James Mott,^{3,8} Zhanibek Omarov,^{6,15*} Yuri F. Orlov,^{7*} Cenap Ozben,^{11*} SeongTae Park,^{6*} Giovanni Maria Piacentino,^{33*} Boris Podobedov,^{4*} Matthew Poelker,¹² Dinko Pocanic,^{37*} Joe Price,^{31*} Deepak Raparia,^{4*} Surjeet Rajendran,^{13*} Sergio Rescia,^{4*} B. Lee Roberts,^{3*} Yannis K. Semertzidis,^{6,15*} Alexander Silenko,^{14*} Edward Stephenson,^{10*} Riad Suleiman,^{12*} Michael Syphers,^{21*} Pia Thoerngren,^{23*} Volodya Tishchenko,^{4*} Nikolaos Tsoupas,^{4*} Spyros Tzamarias,^{1*} Alessandro Variola,^{18*} Graziano Venanzoni,^{19*} Eva Vilella,^{31*} Joost Vossebeld,^{31*} Peter Winter,² Eunil Won,^{16*} Konstantin Zioutas,^{34*}

²⁴Scuola Normale Superiore di Pisa, Pisa, Italy
²⁵Stanford University, Stanford, California, USA
²⁶TRIUMF, Vancouver, British Columbia, Canada
²⁷UMass Amherst, Amherst, Massachusetts, USA
²⁸Universität Hamburg, Hamburg, Germany
²⁹University of California at Berkeley, Berkeley, California, USA
³⁰University of Kentucky, Lexington, Kentucky, USA
³¹University of Liverpool, Liverpool, UK
³²University of Molise, Campobasso, Italy
³⁴University of Patras, Dept. of Physics, Patras-Rio, Greece
³⁵University of Rijeka, Rijeka, Croatia
³⁶University of Trieste and National Institute for Nuclear Physics (INFN-Trieste), Trieste, Italy
³⁷University of Virginia, Charlottesville, Virginia, USA

46

Technically driven timeline

- We have submitted our LOI to the Snowmass Process in the US and writing a White Paper for it.
- Preparing a CDR document, critical studies are finished
- Most of the collaborators are either Muon g-2 collaborators and/or original Storage ring EDM proponents

Summary

✓ EDM physics is must do, exciting and timely

✓ Hybrid, symmetric ring lattice works well. Minimized systematic error sources.
 Statistics and systematics to 10⁻²⁹e-cm

✓ E-field strength similar to TEVATRON (FNAL) ES-separators, ran for years...

 Working EDM lattice with long SCT and large enough acceptance provides the statistics

✓ Ring planarity <0.1mm, CW & CCW beam separation <0.01mm

References

- 1. Z. Omarov *et al.*, Comprehensive Symmetric-Hybrid ring design for pEDM experiment at below 10⁻²⁹*e*-cm, arXiv:2007.10332 (2020)
- 2. P.W. Graham *et al.*, Storage ring Probes for Dark Matter and Dark Energy, arXiv: 2005.11867 (2020)
- 3. S. Haciomeroglu and Y.K. Semertzidis, Hybrid ring design in the storage-ring proton EDM experiment, Phys. Rev. Accel. Beams 22 (3), 034001 (2019)
- 4. S.P. Chang *et al.*, Axionlike dark matter search using the storage ring EDM method, Phys. Rev. D99 (8), 083002 (2019)
- 5. S. Haciomeroglu *et al.*, SQUID-based Beam Position Monitor, *PoS* ICHEP2018 (2019) 279
- 6. N. Hempelmann *et al.*, Phase locking the spin precession in a storage ring, Phys. Rev. Lett. 119 (1), 014801 (2017)
- 7. G. Guidoboni *et al.*, How to reach a Thousand-second in-plane Polarization Lifetime with 0.97 GeV/c Deuterons in a storage ring, Phys. Rev. Lett. 117 (5), 054801 (2016)
- 8. V. Anastassopoulos *et al.*, A storage ring experiment to detect a proton electric dipole moment, Rev. Sci. Instrum. 87 (11), 115116 (2016)
- 9. E.M. Metodiev *et al.*, Analytical benchmarks for precision particle tracking in electric and magnetic rings, NIM A797, 311 (2015)
- 10. E.M. Metodiev *et al.*, Fringe electric fields of flat and cylindrical deflectors in electrostatic charged particle storage rings, Phys. Rev. Accel. Beams 17 (7), 074002 (2014)
- W.M. Morse *et al.*, rf Wien filter in an electric dipole moment storage ring: The "partially frozen spin" effect, Phys. Rev. Accel. Beams 16 (11), 114001 (2013)
- 12. N.P.M. Brantjes *et al.*, Correction systematic errors in high-sensitivity deuteron polarization measurements, Nucl. Instrum. Meth. A664, 49 (2012)
- 13. G.W. Bennett et al., An improved limit on the muon electric dipole moment, Phys. Rev. D 80, 052008 (2009)
- 14. F.J.M. Farley *et al.*, A new method of measuring electric dipole moments in storage rings, Phys. Rev. Lett. 93, 052001 (2004)

Extra slides

ARIADNE (monopole-dipole interactions, sensitive to axions) and proton EDM can help find the dark matter or exclude axions!

ARIADNE: Axion Resonant InterAction DetectioN Experiment

ARIADNE needs a CP violating phase to see an effect.

ARIADNE

- If ARIADNE finds a signal, then we are done. We will know the axion mass → axion dark matter experiment.
- If ARIADNE doesn't observe a signal, then it could be due to the absence of extra CP-violating source.
- Proton EDM experiment can clarify the situation. The large axion mass can be probed effectively.

Probing high-mass axions with ARIADNE and pEDM

53

pEDM polarimeter principle: probing the proton spin components as a function of storage time

The EDM signal: early to late change

• Comparing the (left-right)/(left+right) counts vs. time we monitor the vertical component of spin

M.C. data

Spin Coherence Time

- Not all particles have same deviation from magic momentum, or same horizontal and vertical divergence (second order effects)
- They Cause a spread in the g-2 frequencies:

$$d\omega_a = a\vartheta_x^2 + b\vartheta_y^2 + c\left(\frac{dP}{P}\right)^2$$

 Correct by tuning plate shape/straight section length plus fine tuning with sextupoles (current plan) or cooling (mixing) during storage (under evaluation).

Is the polarimeter analyzing power good at P_{magic}? YES!

Analyzing power can be further optimized

Fig. 4. Angle-averaged effective analyzing power. Curves show our fits. Points are the data included in the fits. Errors are statistical only

Fig.4. The angle averaged effective analyzing power as a function of the proton kinetic energy. The magic momentum of 0.7GeV/c corresponds to 232MeV.

A charged particle between Electric Field plates would be lost right away.

K. Kirch

The nEDM@PSI collaboration

13 Institutions, 7 Countries, 50 individuals

PAUL SCHERRER INSTITUT

n2EDM

The target sensitivity for nEDM is 10⁻²⁶ecm or better, for n2EDM 10⁻²⁷ecm or better

Key Features of nEDM@SNS

Brad Filippone

- Sensitivity: ~2x10⁻²⁸ e-cm, 100 times better than existing limit
- In-situ Production of UCN in superfluid helium (no UCN transport)
- Polarized ³He co-magnetometer
 - Also functions as neutron spin precession monitor via spin-dependent n-³He capture cross section using wavelength-shifted scintillation light in the LHe
 - Ability to vary influence of external B-fields via "dressed spins"
 - Extra RF field allows synching of n & ³He relative precession frequency
- Superconducting Magnetic Shield
- Two cells with opposite E-field
- Control of central-volume temperature
 - Can vary ³He diffusion (mfp)- big change in geometric phase effect on ³He

Arguably the most ambitious of all neutron EDM experiments

History/Status of nEDM@SNS

- **2011:** NSAC Neutron Subcommittee
- 2013: Critical R&D successfully demonstrated
- 2014-2017: Critical Component Demonstration (CCD) phase begun
 - Build working, full-scale, prototypes of technically-challenging subsystems (use these in the full experiment)
 - 4yr NSF proposal for 6.5M\$ CCD funded
 - DOE commitment of $\approx 1.8M$ \$/yr for CCD
- 2018-2020: Large scale Integration and Conventional Component Procurement
- **2021:** Begin Commissioning and Data-taking

The TUM EDM experiment

P. Fierlinger

- Initially a 'conventional' Ramsey experiment
- UCN trapped at room temperature, ultimately cryogenic trap
- Double chamber with co-magnetometer option
- ¹⁹⁹Hg, Cs, ¹²⁹Xe, ³He, SQUID magnetometers
- Portable and modular setup, including magnetically shielded room
- Ultimate goal: 10⁻²⁸ ecm sensitivity, staged approach (syst. and stat.)

SLOW

IEUTRONS

Most hardware built & tested

E.g.: passive magnetic shielding factor >6 million @ 1 mHz (without ext. compensation coils!) I.Altarev et a I. Altarev et a

I.Altarev et al., arXiv:1501.07408 I. Altarev et al., , arXiv:1501.07861

- The smallest gradients over an extended volume ever realized:
 < 50 pT / m stable gradient over EDM cell volume
- Residual field drift < 5 fT in typical Ramsey cycle time Hg and Cs magnetometry on < 20 fT level:

Basically all magnetic field related systematics under control A charged particle between Electric Field plates would be lost right away...

Cosmological inventory

Axion Dark matter

- Dark matter: 0.3-0.5 GeV/cm³
- Axions in the 1-300μeV range: 10¹²-10¹⁴/cm³, classical system.
- Lifetime ~7×10⁴⁴s (100µeV / *m_a*)⁵
- Cold Dark Matter (v/c~10⁻³), Kinetic energy ~10⁻⁶ m_a , very narrow line in spectrum.

Axion Dark matter

- Velocity range: <10⁻³*c* (bound in galaxies)
- Mass range: >10⁻²²eV (size of galaxies)
- Coherence length (De Broglie wavelength):

$$l_{DB} \approx 1 \text{m} \times \left(\frac{1 \text{meV}}{m_a}\right)$$

Beam position monitor: SQUID array

Cylindrical Dewar: original design (KRISS)

SQUID-based BPMs, Korea

- The new design is to be delivered by summer
- ▶ Will be 2fT√Hz
- We will make wire tests in Korea
- Would be good to test here at COSY

Selcuk Haciomeroglu, IBS-CAPP

