

Epiphany Conference 2021

Mixing and CP violation in charm mesons at LHCb

Edward Shields on behalf of the LHCb collaboration Universitá di Milano-Bicocca & INFN edward.brendan.shields@cern.ch January 10, 2021

Mixing and CPV in Charm

Charge-Parity Violation (CPV) is a key requirement for the generation of the baryon-antibaryon asymmetry in the early Universe.

LHCb has observed direct CPV in Charm, but indirect CPV remains elusive.

Today, the following will be presented:

- Observation of CPV in Charm.
- Latest LHCb measurements.
- Outlook for Charm measurements at LHCb.

Mixing in Charm

Mixing occurs because the mass eigenstates of neutral D mesons are superpositions of the flavour eigenstates:

$$\left|D_{1,2}\right\rangle = p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle$$

Mixing is governed by the mixing parameters, x & y, where:

$$x = \frac{m_2 - m_1}{\Gamma} \quad \& \quad y = \frac{\Gamma_2 - \Gamma_1}{\Gamma}$$

Mixing has been observed in Charm but currently there is no evidence for CPV in mixing or interference.

3/20

Types of CPV in Charm

Decay-time dependent CPV

$$\left| \underbrace{\begin{array}{c} \overset{D^{0}}{\longrightarrow} & \overset{\overline{D}^{0}}{\longrightarrow} & \overset{\overline{D}^{0}}{\longleftarrow} & \overset{D^{0}}{\longrightarrow} & \overset{D^{0}}{\longrightarrow}$$

CPV in interference between mixing and decay

•
$$\phi \equiv \arg\left(\frac{q\bar{A}_{\bar{f}}}{pA_f}\right) \neq 0$$

Edward Shields

Mixing and CP violation in charm mesons at LHCb

LHCb detector

- The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$ equipped with charged-hadron identification detectors, calorimeters, and muon detectors.
- It is designed for the study of particles containing b or c quarks
- Excellent vertex resolution (~ $(15 + 29/p_T) \mu m$ IP resol.) and tracking $(\sigma_p/p \sim 0.5 - 1\%@5 - 200 \text{GeV}/c)$.

Observation of CPV at LHCb

Observation of CPV in charm by LHCb Phys. Rev. Lett. 122 (2019) 211803

Used $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$ decays collected in Run II. **Prompt decays**

Mixing and CP violation in charm mesons at LHCb

7/20

Edward Shields

ΔA_{CP} measurement Phys. Rev. Lett. 122 (2019) 211803

$$A_{CP} = \frac{\Gamma\left(D^0 \to f\right) - \Gamma\left(\bar{D}^0 \to f\right)}{\Gamma\left(D^0 \to f\right) + \Gamma\left(\bar{D}^0 \to f\right)}$$

What is measured at LHCb is:

$$A_{\rm raw} \equiv \frac{N_{D^0} - N_{\bar{D^0}}}{N_{D^0} + N_{\bar{D^0}}}$$

where

$$A_{\rm raw} \approx A_{CP} + A_{\rm prod} + A_{\rm det}$$

- $A_{\text{prod}} = \text{Production asymmetry}$
- $A_{det} = Detection asymmetry$

Both A_{prod} and A_{det} are independent of the final state. Therefore they cancel out when the difference between A_{CP} for the K^+K^- and $\pi^+\pi^-$ final states are taken.

$$\Delta A_{CP} = A_{CP} \left(KK \right) - A_{CP} \left(\pi \pi \right)$$

A multidimensional reweighting procedure is applied to match kinematics of the $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$ final states.

ΔA_{CP} results Phys. Rev. Lett. 122 (2019) 211803

Run II results:

$$\Delta A_{CP}^{\text{Prompt}} = [-18.2 \pm 3.2 \,(\text{stat}) \pm 0.9 \,(\text{syst})] \times 10^{-4}$$
$$\Delta A_{CP}^{\text{Semileptonic}} = [-9 \pm 8 \,(\text{stat}) \pm 5 \,(\text{syst})] \times 10^{-4}$$

Run I results:

PRL 116 (2016) 191601 & JHEP 07 (2014) 041

$$\Delta A_{CP}^{\text{Prompt}} = [-10 \pm 8 \,(\text{stat}) \pm 3 \,(\text{syst})] \times 10^{-4}$$
$$\Delta A_{CP}^{\text{Semileptonic}} = [-14 \pm 16 \,(\text{stat}) \pm 8 \,(\text{syst})] \times 10^{-4}$$

Run I + Run II combination:

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

First observation of charm CPV at 5.3σ !

10/20 Edward Shields Mixing and CP violation in charm mesons at LHCb

Latest LHCb measurements

Search for CPV in $\Xi_c^+ \rightarrow pK^-\pi^+$ Eur. Phys. J. C80 (2020) 986

- A first search for CPV in the Cabibbo-suppressed $\Xi_c^+ \to p K^- \pi^+$ decay.
- $\Lambda_c^+ \to p K^- \pi^+$ Cabibbo favoured decay is used as a validation channel.
- Based on two amplitude model independent approaches.
- Used Run I data (2011 & 2012, 3.0fb^{-1}) from Prompt decays.

CPV in $\Xi_c^+ \to p K^- \pi^+$ results Eur. Phys. J. C80 (2020) 986

 S_{CP} is the significance of the difference between baryons and anti-baryons.

No evidence of CPV found.

13/20

Mixing & CPV in $D^0 \to K^0_S \pi^+ \pi^-$ Phys. Rev. Lett. 122 (2019) 231802

Used $2.3 \times 10^6 D^0 \to K_S^0 \pi^+ \pi^-$ decays collected in Run I to measure mixing parameters.

N 160 ×10³

Candida

1M

$$\begin{aligned} x_{CP} &= \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right] \\ \Delta x &= \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \\ y_{CP} &= \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \\ \Delta y &= \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \\ 1.3 M \\ \Delta y &= \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \\ 1.3 M \\ \Delta y &= \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \\ 1.3 M \\ \Delta y &= \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \\ 1.3 M \\ \Delta y &= 0. \end{aligned}$$

Any significant discrepancy between x_{CP}, y_{CP} and x, ywould indicate CPV.

10 1800 1900 $m(K_c^0\pi^+\pi^-)$ [MeV/c²] Mixing and CP violation in charm mesons at LHCb

150 $[MeV/c^2]$

14/20

$\frac{\text{Mixing \& CPV in } D^0 \rightarrow K_S^0 \pi^+ \pi^-}{\text{Phys. Rev. Lett. 122 (2019) 231802}} \text{ results}$

The measured values are:

$$\begin{split} x_{CP} &= [2.7 \pm 1.6 \, (\mathrm{stat}) \pm 0.4 \, (\mathrm{syst})] \times 10^{-3} \\ y_{CP} &= [7.4 \pm 3.6 \, (\mathrm{stat}) \pm 1.1 \, (\mathrm{syst})] \times 10^{-3} \\ \Delta x &= [-0.53 \pm 0.70 \, (\mathrm{stat}) \pm 0.22 \, (\mathrm{syst})] \times 10^{-3} \\ \Delta y &= [0.6 \pm 1.6 \, (\mathrm{stat}) \pm 0.3 \, (\mathrm{syst})] \times 10^{-3} \end{split}$$

we can derive x from this:

 $x = \left(2.7^{+1.7}_{-1.5}\right) \times 10^{-3}$

When this is combined with the world average, there is evidence of a mass difference between the neutral charm-meson eigenstates.

$$x = \left(3.9^{+1.1}_{-1.2}\right) \times 10^{-3}$$

 * world average as of 2019.

Time-dependent CPV in $D^0 \rightarrow h^+ h^-$ Phys. Rev. D101 (2020) 012005

Measurement of parameter A_{Γ} with $D^0 \to \pi^+ \pi^- / K^+ K^-$ decays.

With Run II Semileptonic data (5.4fb^{-1})

$$A_{CP}(f,t) \equiv \frac{\Gamma\left(D^{0} \to f,t\right) - \Gamma\left(\bar{D}^{0} \to f,t\right)}{\Gamma\left(D^{0} \to f,t\right) + \Gamma\left(\bar{D}^{0} \to f,t\right)}$$
$$\approx a_{CP}^{dir}(f) - \frac{t}{\tau_{D}^{0}}A_{\Gamma}(f)$$

16/20

When combined with Run I results:

JHEP 04 (2015) 043 & Phys. Rev. Lett. 118 (2017) 261803

$$A_{\Gamma} \left(K^{+} K^{-} \right) = \left(-4.4 \pm 2.3 \pm 0.6 \right) \times 10^{-4}$$
$$A_{\Gamma} \left(\pi^{+} \pi^{-} \right) = \left(2.5 \pm 4.3 \pm 0.7 \right) \times 10^{-4}$$

Outlook

Outlook for LHCb LHCb-PUB-2018-009

Run III

- Run III will begin in 2022 and provide 5-10 times the sensitivity to direct and indirect CPV in Charm.
- For decay-time dependent CPV in particular, effects not deriving from the Standard Model could be highlighted.
- A new detector and trigger system will help with greater efficiency in some channels.

Upgrade II

- Upgrade II will come with a huge gain in statistics.
- Will allow measurements with incredible precision of CP violating parameters.

Outlook for LHCb LHCb-PUB-2018-009

Mixing and CPV in $D^{\circ} \to K_{S}^{\circ}\pi^{+}\pi^{-}$								
Sample (lumi \mathcal{L})	Tag	Yield	$\sigma(x)$	$\sigma(y)$	$\sigma(q/p)$	$\sigma(\phi)$		
Bup 1-2 (0 fb ⁻¹)	\mathbf{SL}	10M	0.07%	0.05%	0.07	4.6°		
11111 - 2(910)	Prompt	36M	0.05%	0.05%	0.04	1.8°		
$P_{uv} = 1 + 2 (22 \text{ fb}^{-1})$	\mathbf{SL}	33M	0.036%	0.030%	0.036	2.5°		
11111-3(2310)	Prompt	200M	0.020%	0.020%	0.017	0.77°		
$P_{uv} = 1 + 4 (50 \text{ fb}^{-1})$	\mathbf{SL}	78M	0.024%	0.019%	0.024	1.7°		
1.0111-4(5010)	Prompt	520M	0.012%	0.013%	0.011	0.48°		
$P_{uv} = 1.5 (200 \text{ fb}^{-1})$	\mathbf{SL}	490M	0.009%	0.008%	0.009	0.69°		
1001 I-0 (000 ID)	Prompt	$3500 \mathrm{M}$	0.005%	0.005%	0.004	0.18°		

٦....

 A_{Γ}

	Sample (\mathcal{L})	Tag	Yield K^+K^-	$\sigma(A_{\Gamma})$	Yield $\pi^+\pi^-$	$\sigma(A_{\Gamma})$
	Run 1–2 (9 fb $^{-1}$)	Prompt	60M	0.013%	18M	0.024%
	Run 1–3 (23 fb ⁻¹)	Prompt	310M	0.0056%	92M	0.0104~%
	Run 1–4 (50 fb ⁻¹)	Prompt	793M	0.0035%	236M	0.0065~%
	Run 1–5 (300 fb ⁻¹)	Prompt	$5.3\mathrm{G}$	0.0014%	1.6G	0.0025~%
19/20	Edward Shie	lds N	Mixing and CF	^o violation	i in charm m	esons at LH

- LHCb continues to provide a wide range of excellent physics results.
- Incredible precision could be reached on mixing and CPV parameters in the coming years.

Keep an eye out for:

- New A_{Γ} measurement with full Run II Prompt data sample.
- Measurement of mixing and CPV parameters with Run II $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ data sample.

Coming soon!

BACKUP

Mixing in Charm

The mass eigenstates of neutral D mesons are not flavour eigenstates. But they can be written in terms of the flavour eigenstates:

$$\left|D_{1,2}\right\rangle = p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle$$

The time evolution of the flavour eigenstates is then given by

$$\left| D^{0}\left(t\right) \right\rangle = g_{+}\left(t\right) \left| D^{0} \right\rangle + \frac{q}{p}g_{-}\left(t\right) \left| \bar{D}^{0} \right\rangle$$
$$\left| \bar{D}^{0}\left(t\right) \right\rangle = \frac{p}{q}g_{-}\left(t\right) \left| D^{0} \right\rangle + g_{+}\left(t\right) \left| \bar{D}^{0} \right\rangle$$

where
$$g_{\pm}(t) = e^{-iMt}e^{i\Gamma t/2} \left[\cos \left(-i(x+iy)\Gamma t/2 \right) \right].$$

$\begin{array}{c} \hline \text{CPV in } \Xi_c^+ \xrightarrow{} pK^-\pi^+ \\ \text{Eur. Phys. J. C80 (2020) 986} \end{array} \end{array}$ measurement

Binned S_{CP} method

- Tests for localised asymmetries in the phase-space of $H_c^+ \to p K^- \pi^+$.
- Based on a bin-by-bin comparison of H_c^+ and H_c^- baryons.
- For each bin *i*, the significance of the difference between number of H_c^+ and H_c^- baryons is

$$S_{CP}^{i} = \frac{n_{+}^{i} - \alpha n_{-}^{i}}{\sqrt{\alpha \left(n_{+}^{i} - n_{-}^{i}\right)}}$$

where $\alpha = n_+/n_-$ which is the total number of H_c^{\pm} candidates.

• In the hypothesis of no CPV, S_{CP} values are expected to be distributed according to a normal distribution.

Unbinned kNN method

- This method is based on the concept of a set of nearest neighbour candidates (n_k) in a combined sample of two datasets: baryons and antibaryons.
- A test statistic T for the null hypothesis is defined as

$$T = \frac{1}{n_k (n_+ + n_-)} \sum_{i=1}^{n_+ + n_-} \sum_{k=1}^{n_k} I(i, k),$$

where I(i, k) = 1 if the i^{th} candidate and k^{th} nearest neighbour have the same charge and I(i, k) = 0 otherwise.

• In the hypothesis of no CPV, T is distributed as a Gaussian with well known mean and variance (μ_T, σ_T) .

'Bin-flip' method for $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ Phys. Rev. Lett. 122 (2019) 231802

- Partition the Dalitz plot into bins that have nearly constant phase-space differences $\Delta \delta \left(m_{-}^2, m_{+}^2\right)$ between the D^0 and \bar{D}^0 amplitudes within each bin.
- The bins are organised symmetrically about the Dalitz plots principal bisector, and given indices $\pm b$.
- Take the ratio of events between initially produced D^0 (\overline{D}^0) mesons in the +b and -b bins.

Reweighting in ΔA_{CP} measurement

Edward Shields

Mixing and CP violation in charm mesons at LHCb

Binning scheme for $H_c^+ \to p K^- \pi^+$

Left is $\Lambda_c^+ \to p K^- \pi^+$, right is $\Xi_c^+ \to p K^- \pi^+$.

27/20 Edward Shields Mixing and CP violation in charm mesons at LHCb