

Exclusive dilepton production in ultraperipheral lead-lead collisions in the ATLAS experiment

Agnieszka Ogrodnik (AGH UST), on behalf of ATLAS Collaboration

This work is partially supported by the ETIUDA UMO-2020/36/T/ST2/00086 grant

Motivation

- Photon-photon interactions can be observed in ultraperipheral heavy-ion collisions at the LHC due to large EM fields associated with relativistic ions (cross-sections scale with ~ Z⁴)
- EM field is treated as a beam of quasi-real photons with small virtuality (equivalent photon approximation)

- Exclusive production of dileptons (γγ → l+l-, with l± = e± or μ±) is one of the basic processes in photon-photon interactions recently exclusive dimuon production was measured by ATLAS based on 2015 Pb+Pb data: https://arxiv.org/pdf/2011.12211.pdf
- Dielectron pair production is background contribution in other rare processes (e.g. light-by-light scattering, <u>https://arxiv.org/pdf/2008.05355.pdf</u>)
- Precise measurement of exclusive dilepton production cross-section would provide a reference for other photonuclear and photo production processes (also suggested in some theoretical papers: <u>https://arxiv.org/pdf/1908.05180.pdf,10.1016/j.physletb.</u> 2020.135682)
- The ratio of the cross-sections for certain process to the exclusive dilepton production cross section results in cancellation of some systematic uncertainties, including the one related with modeling of initial photon-fluxes

Event characteristics

- Exclusive dilepton events are characterized by :
 - Two low-p_T opposite sign leptons (of the order of a few GeV) and otherwise empty detector
 - Leptons are produced back-to-back in azimuthal angle (described by low dilepton transverse momentum, *p*_{T,ll})
- ATLAS was optimized to detect high-energy particles - low kinematic requirements necessitate careful estimation of trigger and particle reconstruction efficiency

Exclusive dimuon production - selection

arXiv:2011.12211

- Recent measurement based on 0.48 nb⁻¹ of Pb+Pb collision data at $\sqrt{s_{NN}} = 5.02$ TeV
- Fiducial region defined by several requirements: $p_{T\mu} > 4$ GeV, $|\eta_{\mu}| < 2.4$, invariant mass $m_{\mu\mu} > 10$ GeV, and $p_{T\mu\mu} < 2$ GeV
- Events are divided into 3 classes based on the signal in the Zero-Degree Calorimeter (ZDC), which describes forward neutron activity
- In selected events one can identify several processes that should present different activity in the forward region:
 - Signal events: for both LO and NLO process ion is intact
 - Background events with ion dissociation: photon is emitted from substructure of one nucleus (or both nuclei)

• The association between given ZDC signal and given process is nontrivial due to possible ion excitation and presence of EM pile-up

Exclusive dimuon production - background

arXiv:2011.12211

- Based on number of neutrons detected in ZDC, events are categorized in 0n0n, Xn0n and XnXn classes
- The differences between these classes are strongly pronounced in acoplanarity distribution
- The data is compared with STARlight+Pythia8 simulation for γγ → μ⁺μ⁻ process with FSR and LPair for dissociative events (for pp collisions)
- The simultaneous fit is performed in all ZDC topology classes to estimate fraction of dissociative events

Exclusive dimuon production - results

arXiv:2011.12211

• The cross-sections are measured as a function of several kinematic variables as:

- compared with 32.1 μ b from STARlight and 30.8 μ b from STARlight+Pythia8
- The cross-sections on the right are presented as a function of absolute dimuon rapidity in 3 mass slices
- Data is compared with STARlight MC simulation of $\gamma\gamma \rightarrow \mu^+\mu^-$ process w/o FSR
- Good agreement is found in central region of rapidity distribution (small |y_{μμ}|), but data/simulation ratio increases with |y_{μμ}|

What can we learn about initial photon fluxes?

arXiv:2011.12211

• The muon kinematics can be used to estimate initial photon energies

 $k_{\min,\max} = (1/2)m_{\mu\mu}\exp(\pm y_{\mu\mu})$

- The cross section is presented as a function of maximum and minimum photon energies
- The comparison with STARlight calculations shows that the predictions are correct in intermediate region 5-20 GeV, but there is a disagreement between the data and MC for lower k_{min} and higher k_{max}
- Perhaps there is a need for the refinement of the initial photon flux in the calculations

Performance studies using dielectron events

- The new Pb+Pb data was collected in 2018 with integrated luminosity of 1.7 nb⁻¹
- A dedicated trigger was designed, that allows to record exclusive dielectron events
- It required special optimization, especially at the Level-1 trigger, to improve the performance wrt similar trigger used in 2015
- Loosely selected exclusive dielectron events accepted by independent trigger are used to measure the Level-1 trigger efficiency
- The good trigger performance in the low energy region enables lowering of p_T requirement on single electron (compared to muon selection in dimuon analysis)

Dielectron events - control distributions

- Events are selected to pass the dielectron trigger and several requirements: exactly two oppositely charged electrons with $p_{Te} > 2.5 \text{ GeV}$, $|\eta_e| < 2.47$ (excluding $1.37 < |\eta_e| < 1.52$), additional track veto and dielectron acoplanarity below 0.01
- About 28k dielectron events are selected
- The MC samples based on STARlight w/o FSR are corrected for trigger and reconstruction/ID efficiency
- In general good agreement is found between data and simulation
- An excess of data in the high $p_{T,ee}$ region likely due to a contribution of FSR

Summary and outlook

- Exclusive dilepton pairs can be measured in ultraperipheral heavy-ion collisions with the ATLAS detector
- Measurement of dimuon pairs based on 0.48 nb⁻¹ of Pb+Pb data from 2015 has been recently submitted for publication
- Results provide a valuable reference for theoretical approaches in the modeling of the initial photon flux
- The Pb+Pb data from 2018 provide 3-3.5 times higher integrated luminosity, that should result in better precision measurements
- Exclusive dielectron pairs have relatively high production cross sections what make this process a benchmark process at the LHC for detector calibrations

Backup

 Fraction of events in each of Xn0n and XnXn classes is dependent on dilepton mass and rapidity

Exclusive dilepton production in ATLAS

Backup

- The purpose of the ATLAS Zero-Degree Calorimeters (ZDC) is to detect forward neutrons with $|\eta| > 8.3$ in heavy-ion collisions
- The ZDC is installed ±140 m from the interaction point
- On each arm there are four modules one EM module, and 3 hadronic modules

