A method for the measurement of J/ψ cross section in hadronic matter using femtoscopy.

Marzieh Bahmani

Daniel Kikola, Leszek Kosarzewski (Czech Technical University)

Warsaw University of Technology

XXVII Epiphany Conference 2021

The work was supported by the National Science Centre, Poland (grant no. 2018/30/E/ST2/00089.)

• Quark Gluon Plasma (QGP) exists for short time in high energy nuclear collision

- It cools down and partons form hadrons which will be registered by Experiments. Hence hadronic phase always accompany the QGP signal.
- Physicists developed a variety of approaches to access the properties of QGP.

< □ > < □ > < □ > < □ > < □ > < □ >

- One of the approaches is suppression of quarkonium production (Matsui & Satz (1986)), suppression happens due to color Debye screening.
- Suppression of a given state depends on the energy density (hence the temperature) of the partonic matter.
- Simulates measurement of production of J/ψ, ψ(2s), Υ(1S), Υ(2S), Υ(3S) and other quarkonium states could provide information about thermodynamic properties of the QGP.
- Another approach is using open heavy flavour meson as a tool for probing QGP.

< ロ > < 同 > < 回 > < 回 >

- But, there are other ways of quarkonium interaction with partonic matter.
- A lot of data, yet no complete theoretical model.
- One of important factor interaction of quarkonium with hadronic matter.

- Measurement of femtoscopic correlations (low relative momenta) of J/ψ -hadron give access to the cross section for elastic and inelastic interactions of J/ψ with hadrons.
- Femtoscopic correlations of D^0 with hadrons provide information about the size of the volume from which the correlated pair of a D^0 and a hadron is emitted.
- Femtoscopic correlations is sensitive to effects from Final State Interaction (FSI) and also Size of the emission source.
- It offers a formalism to calculate the parameters of interaction.
- The breakup cross section of quarkonium in hadronic matter (elastic and inelastic) is obtained using the parameter of interaction
- This study will provide a good opportunity to test the measurement of charmonium-hadron interaction and improve models of quarkonium production in HIC.

イロト 不得 トイヨト イヨト 二日

Femtoscopic correlations J/ψ -hadron

femtoscopic correlation function for two particles:

$$C(p_1, p_2) = \frac{P_2(p_1, p_2)}{P_1(p_1)P_1(p_2)}$$
(1)

 P_1 and P_2 are the probability of observing particles with a given momentum

• For nonidentical particles the effective interactions:

$$C(k^*) = \int d^3 r^* S(r^*) |\Psi_{(r^*,k^*)}|^2$$
(2)

 k^* is pair c.m.s ($k^*=p_1^*=-p_2^*\equiv Q/2)$ and ${\it S}(r^*)$ is the source function

$$\Psi(\vec{r^*}, -k^*) \doteq e^{i\vec{k^*} \cdot \vec{r^*}} + \frac{f^S(k^*)}{r^*} e^{-ik^* \cdot r^*}, \qquad (3)$$

which represents the stationary solution of the scattering problem.

イロト 不得下 イヨト イヨト 二日

Femtoscopic correlations J/ψ -hadron

The s-wave scattering amplitude in the effective range approximation:

$$f^{S}(k^{*}) = \left(\frac{1}{f_{0}^{S}} + \frac{1}{2}d_{0}^{S}k^{*2} - ik^{*}\right)^{-1},\tag{4}$$

assuming $\vec{r^*}$ with Gaussian distribution according to Lednicky and Lyuboshitz analytical model,

the correlation function can be calculated analytically:

$$C(k^{*}) = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left| \frac{f^{S}(k^{*})}{r_{0}} \right|^{2} \left(1 - \frac{d_{0}^{S}}{2\sqrt{\pi}r_{0}} \right) + \frac{2\operatorname{Re}(f^{S})(k^{*})}{\sqrt{\pi}r_{0}} F_{1}(Qr_{0}) - \frac{\operatorname{Im}(f^{S}(k^{*}))}{r_{0}} F_{2}(Qr_{0}) \right],$$
(5)

where $F_1(z) = \int_0^z dx e^{x^2 - z^2} / z$ and $F_2(z) = (1 - e^{-z^2}) / z$.

This model relates the two-particle correlation functions with source sizes and scattering amplitudes.

- Elastic and inelastic cross section for J/ψ -hadron interaction can be calculated from the scattering amplitude.
- The scattering amplitude can be extracted from experimental data by fitting the J/ψ -hadron femtoscopic correlation function.
- Measurement of J/ψ breakup cross section due to its interaction with hadrons.

$$\sigma_{tot} = \sigma_{inel} + \sigma_{el} = \frac{4\pi}{k^*} \operatorname{Im}(f^S(k^*))$$

< □ > < □ > < □ > < □ > < □ > < □ >

Feasibility study for J/ψ -hadron cross section measurement

The expected number of J/ψ -hadron pairs for LHCb-like and STAR-like experiments for the data collected with LHCb in 2012 data taking period, and STAR in 2017 and the foreseen run in 2023 For obtaining the $N_{J/\psi-h}$ for each experiment: $\langle N_{J/\psi-h} \rangle = \langle N_{J/\psi} \rangle \langle N_h \rangle$

			Published raw J/ψ yield and L_{int}		Expected raw J/ψ yield and L_{int}			Expected number of pairs
Detector	Decay channel	\sqrt{s} [TeV]	J/ψ yield	$L_{int}[pb^{-1}]$	$L_{int}[pb^{-1}]$	$N_{J/\psi} imes 10^6$	N_h	$N_{J/\psi-h} imes 10^6$
LHCb	$J/\psi ightarrow \mu^+\mu^-$	8	2.6×10^{6}	18.4	2082	294	5.31	1562
STAR	$J/\psi ightarrow e^+e^-$	0.5	9581	22.1	400	0.173	4.82	0.83
STAR	$J/\psi ightarrow e^+e^-$	0.51	9581	22.1	2200	0.95	4.82	4.6
STAR	$J/\psi ightarrow \mu^+\mu^-$	0.51	1154	22.0	2200	0.115	4.82	0.56

イロト 不得 トイラト イラト 一日

Parameters of interaction (Lednicky-Lyuboshitz model)

- For each parameter set we assume $r_0 = 1.25$ fm and $\text{Im}(d_0^S) = 0$ PhysRevC.99.024001, PhysRevD.87.052016, PhysRevC.83.064905.
- The sensitivity of inelastic cross section for J/ψ -hadron interaction to the parameter of interaction, the imaginary part of scattering length.

Set No.	$\operatorname{Re}(d_0^S)$ [fm]	$\operatorname{Re}(f_0^S)$ [fm]	$\operatorname{Im}(f_0^S)[\operatorname{fm}]$
1	1.0	0.2	0.0
2	1.0	0.2	0.5
3	1.0	0.5	0.5
4	1.0	1.0	0.5
5	0.0	0.5	1.0
6	0.0	1.5	1.0

10/21

Feasibility study for J/ψ -hadron measurement at LHCb and STAR experiments

Simulated sample with Pythia 8.2 configured within parameters of LHCb experiments(LHCb 8TeV and L_{int} 2082pb⁻¹) and STAR experiments (STAR 500GeV, L_{int} 2200 pb⁻¹).

 $\bullet\,$ Non-femtoscopic background: resonances which can decay to $J/\psi\,+\,$ hadron such as B mesons

A D N A B N A B N A B N

3

The psuedoexperimental femtoscopic correlation functions and J/ψ breakup cross section

$$\chi^2$$
/NDF= (29.63/36), (37.7/36), (24.23/36)

$$\chi^2$$
/NDF= (26.41/36), (40.12/36), (46.42/36)

 J/ψ -hadron cross section via femtoscopy XXVII Epiphany Conference 2021 12 / 21

Parameter of interaction

Interaction parameters extracted with fit of the Lednicky-Lyuboshitz model to femtoscopic correlation functions simulated for LHCb-like. The parameters r_0 and $Im(d_0^S)$ are fixed to 1.25 and 0 fm respectively.

LHCb-like, $\sqrt{s} = 8$ TeV, $L_{int} = 2028 \ pb^{-1}$						
Parameter set No.	$\operatorname{Re}(d_0^S)$ [fm]	$\operatorname{Re}(f_0^S)$ [fm]	$\operatorname{Im}(f_0^S)[\operatorname{fm}]$	χ^2/NDF		
1	$1.00{\pm}0.215$	$0.20{\pm}0.001$	$0.00{\pm}0.008$	29.62/36		
2	$0.99 {\pm} 0.019$	$0.20{\pm}0.001$	$0.49 {\pm} 0.002$	37.17/36		
3	$1.02{\pm}0.018$	$0.50 {\pm} 0.002$	$0.50 {\pm} 0.002$	24.23/36		
4	$0.98 {\pm} 0.025$	$1.00{\pm}0.003$	$0.50 {\pm} 0.002$	26.41/36		
5	$0.00{\pm}0.017$	$0.50 {\pm} 0.001$	$0.98 {\pm} 0.003$	40.12/36		
6	$0.01 {\pm} 0.037$	$1.50{\pm}0.006$	$0.99{\pm}0.005$	46.42/36		

The result for the STAR-like experiments in the backup slides and the result of this study is already available at arXiv:2012.11250.

イロト イポト イヨト イヨト

Femtoscopic correlations of D0-hadron

- The goal is to model D⁰-D⁰ femtoscopic correlations in heavy ion collisions, Since the possibility of producing the D meson in experiment with high multiplicity is low, It is suggested to also study the D⁰-hadron correlation as well and model the source size.
- However in order to perform these studies we need MC generator which produce charm meson femtoscopic correlation in heavy ion collisions, and such generator is not yet published.
- Instead, we can study the D⁰-D
 0 and D⁰-hadron femtoscopic correlations in pp samples, however in this case we shall use the source size already measured by experiment as an input parameter and model the correlation function.
- Studies (PoS(INPC2016)334) shows that for non-identical particle the source size has such relation:

$$R_{\rho_1,\rho_2} = \sqrt{R_{\rho_1}^2 + R_{\rho_2}^2} \tag{6}$$

• by using this equation one can access the source size obtained by D^0 -hadron correlation to find the source size by $D^0 - \overline{D^0}$ correlation

Femtoscopic correlations of D^0 -hadron

• Simulated sample with Pythia 8.2 configured within parameters of STAR experiments (STAR 200GeV).

- Number of hadron from charge hadron multiplicity distribution and D⁰ yield from arXiv:1812.10224.
- Estimated number of D^0 -hadron pairs \simeq 60 M
- The CF plot is for set 6 of parameters.

A D F A B F A B F A B

Summary and Conclusion

- We proposed an experimental method to study elastic and inelastic interaction of charmonium and bottomonium with hadrons
- The proposed approach is straightforward and experiments employed similar strategy to study final-state interactions with success.
- We used the femtoscopic correlation function and the Lednicky-Lyuboshitz analytical model to extract the scattering length and the effective range of the quarkonium-hadron interaction at low relative momenta.
- Our feasibility study showed that LHCb can already measure both elastic and inelastic(break up) cross sections in a hadronic matter as a function of relative momentum k* and STAR future run in 2023 can provide enough statistics for this study. Result of this study is already available at arXiv:2012.11250.
- Ongoing work on feasibility study on mesurement of the source size for D⁰-hadron pairs using femtoscopic correlation.

イロト 不得 トイヨト イヨト 二日

A D N A B N A B N A B N

3

Backup

J/ψ -hadron interaction model in heavy ion collision

- J/ψ suppression in the QGP due to the color Debye screening.
- $\bullet~J/\psi$ yield can also be decreased by interaction with hadron produced in the collision
- The probability of such interaction increases as hadron density increases (stronger in central collision)
- Such scenario is considered in the comover interaction model(however the model also includes the regeneration of J/ψ)
- J/ψ cross section in interactions with hadrons is a crucial parameter of the model
- There are some calculation based on different models for J/ψ breakup cross section for J/ψ -hadron center of mass energy in order of few GeV.
- Directly measuring it using femtoscopic correlation will provide a good opportunity to test and improve those models.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

STAR-like experiment results

 χ^2 /NDF= (37.36/36), (35.09/36), (41.37/36)

 $\chi^2/\text{NDF}=$ (37.56/36), (27.91/36), (49.10/36)

STAR-like, $\sqrt{s} = 500$ GeV, $L_{int} = 2.2 f b^{-1}$						
Parameter set No.	$\operatorname{Re}(d_0^S)$ [fm]	$\operatorname{Re}(f_0^S)$ [fm]	$\operatorname{Im}(f_0^S)[\operatorname{fm}]$	χ^2/NDF		
1	$1.02{\pm}5.05$	$0.21 {\pm} 0.02$	$0.01{\pm}~0.07$	37.36/36		
2	$1.06 {\pm} 0.50$	$0.16 {\pm} 0.03$	$0.52{\pm}0.06$	35.09/36		
3	1.13 ± 0.49	$0.49 {\pm} 0.04$	$0.51 {\pm} 0.05$	41.37/36		
4	$0.80{\pm}0.58$	$1.01{\pm}0.07$	$0.55 {\pm} 0.05$	37.56/36		
5	$0.00{\pm}1.97$	$0.52{\pm}0.02$	$1.04{\pm}0.08$	27.91/36		
6	$0.55 {\pm} 0.79$	$1.56{\pm}0.14$	$0.87{\pm}0.10$	49.10/36		

<ロト < 部 ト < 注 ト < 注 ト ・ 注 ・ </p>

STAR-like, $\sqrt{s} = 500$ GeV, $L_{int} = 400 pb^{-1}$						
Parameter set No.	$\operatorname{Re}(d_0^S)$ [fm]	$\operatorname{Re}(f_0^S)$ [fm]	$\operatorname{Im}(f_0^S)[\operatorname{fm}]$	χ^2/NDF		
1	0.00 ± 1.45	$0.21 {\pm} 0.04$	$0.00 {\pm} 0.05$	37.70/36		
2	$0.44{\pm}1.33$	$0.24{\pm}0.07$	$0.59{\pm}0.13$	50.53/36		
3	$2.39{\pm}1.09$	$0.70 {\pm} 0.13$	$0.71 {\pm} 0.15$	43.32/36		
4	$1.38{\pm}1.15$	$1.07 {\pm} 0.14$	$0.47 {\pm} 0.11$	32.26/36		
5	$0.44{\pm}0.84$	$0.54{\pm}0.10$	$1.30{\pm}0.24$	40.89/36		
6	$0.00{\pm}1.34$	$1.61{\pm}0.10$	$1.20{\pm}0.18$	34.04/36		