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Updated stability limits

CFC Baseline Relaxed CFC Baseline Relaxed
Oct. thes. [A] 820 550 460 Oct. thes. [A] -2100 -1540 -1350
Equi. teleindex 2.3 1.0 1.0 Equi. teleindex 3.6 2.9 2.7
(a) Positive polarity (b) Negative polarity

Table 1: Stabilising octupole current together with the teleindex required to reach the equivalent detuning
coefficient when operating the octupoles at the maximum of their capacity.
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CE{W > |t seems difficult to conciliate DA and stability requirement with
. the negative polarity, even with the new collimator settings
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Why is HL-LHC much more critical than LHC with the negative polarity

> The old baseline settings of HL-LHC are comparable to LHC 2016
settings™®, a simple scaling for the octupole threshold (single beam) yields :
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Why is HL-LHC much more critical than LHC with the negative polarity

> The old baseline settings of HL-LHC are comparable to LHC 2016
settings™®, a simple scaling for the octupole threshold (single beam) yields :
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the threshold to the cut tails reaches a factor
2, such that it is worse than the positive 0.21
polarity by +30 % — 945 A (less than half
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Limiting factor
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> As opposed to LHC, parasitic long-range interactions are rather weak at the
start of collision in HL-LHC thanks to 3* levelling
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As opposed to LHC, parasitic long-range interactions are rather weak at the
start of collision in HL-LHC thanks to 3* levelling

There exists solutions to mitigate the minimum of stability at 1.50
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> As opposed to LHC, parasitic long-range interactions are rather weak at the
start of collision in HL-LHC thanks to 3* levelling

> There exists solutions to mitigate the minimum of stability at 1.50

— The most stringent limit is for separations ~5-70 due to the long-range
contribution of the interaction at the IP
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> As opposed to LHC, parasitic long-range interactions are rather weak at the
start of collision in HL-LHC thanks to 3* levelling

> There exists solutions to mitigate the minimum of stability at 1.50

— The most stringent limit is for separations ~5-70 due to the long-range
contribution of the interaction at the IP

il ], (C\E/RW — The negative polarity could remain acceptable if we accept this
el o > transient unstable phase (<3s vs expected instability rise time : ~7s)



Parameter space with the positive polarity
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Parameter space with the positive polarity
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> Option 1 is feasible with various types of processes for the collapse of the

separation bump




Parameter space with the positive polarity
Xing L sep. IPs land 5 = Xing Lsep. IP1ors - Xing || sep. IPs 1 and 5
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> Option 1 is feasible with various types of processes for the collapse of the
separation bump

> Option 2 (CC disabled during the collapse) is limited by the impact of the Piwiniski o
angle at separations ~1.50. It is fully mitigated if a separation bump is introduced
in the crossing plane.
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Parameter space with the positive polarity and relaxed collimator settings
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Option 2 becomes doable with a asynchronous collapse of the separation
bumps in IPs 1 and 5
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Mitigation with a separation bump in the crossing plane : possible implementation
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> For a proper mitigation it is sufficient to implement the separation in the
parallel plane for the last bit of the process (~60 total separation)
- The existing 'lumiscan knobs' could do the job
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Mode coupling instability of colliding beams with sep. // Xing

Sep. || Xing Sep. L Xing

6 T 6

4 4

il 2

Y 0 'I Y o

=7 -2

-4 -4

=6 L\\\ 5 4 ? -6 5 4 6

° 4 , & & = ® 4 . 5 25

% -3 g & wp =4
X -4 5§ LB X -4

-6 —6

The beam-beam forces differ significantly in the two configurations

Note : The variations of the beam-beam force along the bunch are
neglected in the computation of the stability diagrams
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Mode coupling instability of colliding beams with sep. // Xing
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Mode coupling instability of colliding beams with sep. // Xing
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Mode coupling instability of colliding beams with sep. // Xing
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> The mode coupling instability of colliding beams is usually well damped by the damper

> The separation in the crossing plane seem to induce a mode coupling instability between radi
modes of the same synchrotron sideband. The damper is totally ineffective for sidebands > 4
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Mode coupling instability of colliding beams with sep. // Xing
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> The mode coupling instability of colliding beams is usually well damped by the damper

> The separation in the crossing plane seem to induce a mode coupling instability between radi
modes of the same synchrotron sideband. The damper is totally ineffective for sidebands > 4



Mode coupling instability of colliding beams with sep. // Xing
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> The mode coupling instability of colliding beams is usually well damped by the damper
> The separation in the crossing plane seem to induce a mode coupling instability between radi
modes of the same synchrotron sideband. The damper is totally ineffective for sidebands > 4
.’-7 CE/RW > Given the low growth rate, these modes will likely be Landau
ILUMI 3 : : . : . :
TRl 2 damped. To be confirmed with tracking simulations (on going)



Offset levelling at the low luminosity IPs

> With both polarities of the spectrometer the Piwinski angle is low in IP2
(® =0.16/ 0.38). Operating with the positive polarity of the octupoles,
there is no restriction on the separation (i.e. no need for a separation in
the crossing plane)
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> With both polarities of the spectrometer the Piwinski angle is low in IP2
(® =0.16/ 0.38). Operating with the positive polarity of the octupoles,

there is no restriction on the separation (i.e. no need for a separation in
the crossing plane)

> In IP8, the Piwinski angle is large for the spectrometer polarity that
enhances the crossing angle at the IP (¢ = 0.27 / 1.38)

— QOperating with the positive polarity, it will lead to instabilities of the
IP8 private bunches




Offset levelling at the low luminosity IPs

> With both polarities of the spectrometer the Piwinski angle is low in IP2
(® =0.16/ 0.38). Operating with the positive polarity of the octupoles,
there is no restriction on the separation (i.e. no need for a separation in
the crossing plane)

> In IP8, the Piwinski angle is large for the spectrometer polarity that
enhances the crossing angle at the IP (¢ = 0.27 / 1.38)

— QOperating with the positive polarity, it will lead to instabilities of the
IP8 private bunches

- Getrid of IP8 private bunches when operating LHCb with the bad polarity (if
they are problematic for operation)

- Level the luminosity a separation in the crossing plane



Summary

The negative polarity is unfavoured by the long-range interaction at the IP during the
collapse of the separation bump

- The current required for Landau damping are not compatible with DA at the start of collision

- The only possibility would be to rely on the speed of the collapse of the separation bump

> Option 1 (collision at f*=1.4 with CC enabled) with the positive polarity features no
reduction of Landau damping due to beam-beam through the cycle

- The impact of crab cavity amplitude noise on non-colliding beams should be assessed (see. Sondre's talk)

> Option 2 (collision at *=1.05 with CC disabled) with the positive polarity features loss
of Landau damping due to the offset interaction at the IP
- The usage of the lumiscan knobs to introduce a separation in the crossing plane sounds offers a interesting alternative
- Landau damping of a new type of mode coupling instability is under study

- The speed of the collapse is also an possible alternative

> Without mitigation, IP8 private bunches may become unstable with the spectrometer
polarity that enhances the crossing angle at the IP
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