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Loss of Landau damping by diffusion wez 20101126,

A diffusion is centred at the mode tune, Q. (J;, Jy) = Qrom.a-

Example with head-tail mode and rigid-bunch noise.
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https://indico.cern.ch/event/860231/

Noise Excited Wakefields wwmc 2010-12.001

Wakefields drive

Landau damping

External noise

Diffusion of

coherent modes b stabilizes §(t) excites particles that
exp|—iWror Qeonml] the modes the modes to are resonant
. reviceotm AQcohm — AQLDm finite amplitudes with the modes

PSD of noise type at tune @,
— Noise types: dipolar, headtail ...

@) 7]

Diffusion coefficient
OCU&( )nmz‘AQCOhWA

Im{QLDm}

. Efficiency of the noise type i
" on head-tail mode m.

. Impedance-driven tune shift.

Growth rate of damped mode.

[ABP Forum 2019-11-07]. " Impedance + Landau damping.
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https://indico.cern.ch/event/856481/

Analytical Latency Estimate

e In the limit [Im{Awp, }/ Re{Aw,, }| < 1:
L (Im{AQspro—AQcn})’ Re{ag}* I

Trev N Im{AQSDTO}a2|AQCOh|2 Jx,eﬁggin?m 2.5

-1 S5ztdx
<] = < 1.
L<1 g 1— Im{AQsDro—AQcoh}(l _ ZL‘) = 1.25 _
Im{AQspro} AQr Re{Aé}

e Assumed nonphysically that & = dMpp/dMen was a
constant a(t=0) = ap (= 1).
e What mostly matters in the end is:
AQLp

* L o< (Im{AQspro—AQcon})® — Octupole margin.
* L o< 1/agm},; — Strength of noise on mode m.

® (Summation over i implied)

Mip
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Numerical and Experimental Verification




Test case — Dirilling

e Example case:

® AQeon = (—147 + 12.51) x 107°

® a,=7bx 107° = 1.50thresh ‘ ‘ 1.6

¢ b, =—0.7a, Lor

i NMmiO¢i = 1 x 10_4 Oy 30.8* 1.2

(Scale by L o< 1/(nmioei)?) Zosel -

o Numerical latency is 1.655s . 2‘004 0832
o Analytical latency is 3.84s . Eoz» 1Ho.4
e When enforced constant a: '

Numerical latency is 3.88s. 0.0, 1 1 1 1l

-5 0 5 10 15

e Derivation is accurate, with one too Re{AQcop} [a]
strong, but necessary, assumption.
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Test case — Dependence on Octupole margin

o Example case with various a;: 103 — , ,
* AQeon = (—147 4+ 12.51) x 1076
* b, =—07a, 10%¢
© Do = 1 x 107 g, 1
(Scale by L o< 1/(nmioei)?) o 10°F
o Analytical latency ~ numericalx2. E’ 1000
e Latency scales approximately as %
I I 4.5 4.5 — 10714 . .
( oct — oct,thr) X (CL - athresh) — Analytical Lazency
* Faster at small margins —2[ == «(a = Atnresn)*®
g 107 L . PyRADISE: a(0)
: PYRADISE: a(t)
10—3 I I

0.1 0.2 0.4 1
a — dthresh [athresh]
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Latency Experiment (MD3288)

e Latencies measured in the LHC, with BSRT drifts.
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Latency Experiment (MD3288) vs. PyRADISE

° CaICUIated Iatency W|th PyRADISE for T T T T T T T

these bunches with individual: % Experiment —
* Emittance 102 =EPyrRADISE | 1102
* Bunch length = T = =
* Intensity ‘g — T
* Noise amplitude : 1
o Large error bars due to small uncertainty % 101k, X X 110t
in emittance (10% — factor ~2). g X T
e Good agreement, considering that the i T
latency scales over multiple orders of
magnitude. 10°450 750 10501350 1650225025502850 1°"

Bunch slot Bunch slot
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Crab Cavities




Crab Cavities (CC)

The CCs can affect the latency in three ways:
1. CC impedance modifies the coherent single-bunch tune shift AQcon -

* Small impact on the resulting latency.

® The latency in the LHC will be compared to the HL-LHC including this impedance.
2. CC impedance introduces high-frequency multi-bunch modes with Im{AQonm }

larger than normal. The octupole threshold Ioet tny grew ~ 5% .

[227th HSC meeting 2020-06-15].

* Initial checks show a small reduction of the latency.

* The same latency achieved by also increasing .. by ~ 5% (backup)

3. CC amplitude noise can drive head-tail modes with large (1m10¢1)?
(implemented in COMBI, ongoing work in PyRADISE/BimBim).
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https://indico.cern.ch/event/924630/

CC Amplitude Noise in COMBI

o Relative noise amplitude definition

/
5, = 9 5t s,
g

/ =

where Jg is the rel. rigid bunch kick, and d; is
the rel. crab amplitude noise

1Azoo — Adcc — AVoo Adcc 107 T Tk

51 - - 7 - — Relative crab amplitude noise
Z 0o orp Voo orp
e The targeted maximum emittance growth driven by CC noise is 1.6 % /h

[CERN-ACC-NOTE-2018-0002] — The transverse feedback is ineffective in reducing it.
The corresponding maximum amplitude noise (without phase noise) is

(63) =2.6 x 107°

Relative emittance growth rate [1/h]
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https://cds.cern.ch/record/2301292/files/CERN-ACC-NOTE-2018-0002.pdf

First CC Latency simulations with COMBI

e LHC 2018 flat top \ e E:Zb
(Q' =15, 100 turns ADT time) z 100 |
* Dip. noise o¢o = /(0%) =1 x 1073 £ “
(~10 times measured LHC noise floor including &
the ADT) a |
 Crab amp. noise o¢1/0, = /(6) =5 x 107 107 *\
(~2 times the specification) -20 -0 0 10 20
Chromaticity

e The latencies are comparable, although the kicks from crab amplitude noise are much
lower than the ones from the dipole noise (o¢; = 4 x 1078 < 1 x 1073).

o Difference likely caused by the ADT, which improves the stability of modes with large
Nmo but not those with large 7,,1, thus increasing the latency with dipolar noise.

o Next step: confirm hypothesis by implementing and calculating 7),,,1 in BimBim.

Instability latency with Crab Cavities
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LHC vs HL-LHC (dipolar noise only)




LHC — Latency of the worst mode

« Scan of ~2018 LHC. 0.04 105
® g, =2pum 104
e ... =280A 0.03 s —
e N =1.1x 10" ppb - 10° g
5 E
* 40, =1.1ns E 102 =
« E=65TeV 5 0.02 B
4 = 101 &
® 0 = 1x10 O/ 2 um S %
e Local optimum found, as in MD3288, 0.01f 10° 4
for Q' ~ 5 and g = 0.01, compared to ‘ 107!
the more normal ' ~ 15. 0.00 10-2

In backup, comparison to octupole margin.

CE/RW
1

SZA



HL-LHC - Latency of the worst mode (with CC)

e Scan at end of ramp in design HL-LHC, 004 10°
including CC impedance. 104
* ¢, = 1.7pm (tails cut at 30) 0.03 0% =
* Lot = 550A = 5
e N =23 x 10" ppb 3 102 =
* 40, =12ns 5 0:02 o &
e E=T7TeV o %
® 0¢ = 1x 10_40m’,2um 0.01 10° 3
e Much longer latencies than in 2018 LHC. 107!
102

o Slightly shorter latencies than without 0.00
the CC impedance.

In backup, comparison to octupole margin.
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LHC vs HL-LHC

Latency (only dipolar noise) is predicted to be longer in the HL-LHC (right) than in LHC 2018.
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Towards specification for HL-LHC

e Worst single bunch mode in standard

configuration (g =0.02, Q' €[13,17]): 1073

* AQecohm = (—99.7+1.947i) x 1076

° Nmo = 0.0214

° [oct,thr ~ 248 A

® HL-LHC parameters as on earlier slide
e The noise amplitude is important:

® O R 1 x ].0740':5/72um

based on emittance growth rate

10~

Noise amplitude [oy/]

(assuming wide spectrum).

300

Ioct [A]
400

500

. -5
* 50 Hz lines fo”;‘d up to 107°60 1.25 1.50 1.75 2.00
Tgo ~ 1x 10~ O/ 2 pm
[S. Kostoglou, 8th HL-LHC collab. meeting 2018-11-16].

a [ainresn]
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https://indico.cern.ch/event/742082/contributions/3084846/

Summary

o The diffusion model has been extended, giving an analytical latency, which is
typically ~ 2x numerical latency found with PyRADISE.

e The diffusion model agrees with the experimental latency in MD3288.

e The latency of a given mode is found to mainly depend on the octupole margin and
the noise amplitude. Understanding the noise is key to predicting the latency.

e The latencies in the HL-LHC has been investigated.
Without crab cavities (CC) turned on, they will be longer than in the LHC.

e The crab cavities can affect the situation in several ways

* CC impedance has minimal impact on the achievable latency.
* CC amplitude noise with large 7,, can be a problem.

e Outlook:
* Estimate the impact if CC have to be turned on before collision in HL-LHC.
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Thank you for your attention!
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B: Isolatency curves

If In{AQcon} doubles, what is the latency ?
What matters mostly is the distance to the
stability diagram, (AQsp, — AQcon) € I. The
latency can decrease marginally, or the mode
can have become unstable.

If Im{AQcon} doubles, but a¢presh only
increases by 5%, how much must a o< I, be
increased to maintain the same latency.

See Al and isolatency curves for an uncut
Gaussian beam on the right. Short answer is to
increase a by 5% as well.
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Isolatency curves — How large octupole
margin is required to achieve a given
latency. Typical worst (HL-) LHC modes
have ratios € [10,100]. The theory
assumes large ratios, at small ratio, the
latencies are large.
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B: LHC — Latency of the worst mode

On the left is the octupole margin with It = 280 A.
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B: HL-LHC - Latency of the worst mode (with CC)

On the left is the octupole margin with It = 550 A.
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B: Diffusion dependence on Chromaticity

e The chromaticity modifies the spectrum of single particles

t
coS lwrev (Qot +/ Q’édt)}
0

cos[¢(t)]

o0 /

Q'os
> (@

n=—oo

> cos(wrev (Qo + nQs)t],

e This is equivalent to the head-tail chromatic phase shift of the mode.

e Hence, the chromaticity does not affect the diffusion directly
(but it does indirectly, by modifying AQcon and 7).

July 27,

2020
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B: Definitions
e The effective action for a horizontal mode is defined as:

e ele ¢}
[ dJ2I20'5[ T, — Jur(Jy)]
00

Jx,eff = o000

[ 216 Ty — Jur(Jy)]
00
e The noise moment of a mode is defined as the normalized inner product between the
mode and the noise:

p—1

(MmEi)

VIt 22
o AQgsp, is defined as the tune shift of the stability diagram with the same real part as
the mode.

Nmi =
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