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Loss of Landau damping by diffusion [WP2 2019-11-26].

A diffusion is centred at the mode tune, Qx(Jx, Jy) = QLDm,x.
Example with head-tail mode and rigid-bunch noise.

0 2 4 6 8 10
Jx

0

2

4

6

8

10

J y Q x
(J x
, J y
) =

Q L
D,
x

−10−3

−10−2

−10−1

−100

0

10−3
10−2
10−1
100

ΔΨ
(t
=
6Δ
0m

in
)/Ψ

0
−0.25 0.00 0.25 0.50 0.75

Re{ΔQcoh} ×10−3

0

1

2

3

4

5

Im
{Δ

Q
co
h}

×10−5
Stable (t= 0 min)

Unstable (t= 6 min)

July 27, 2020 Sondre Vik Furuseth Instability latency with Crab Cavities 3

https://indico.cern.ch/event/860231/


Noise Excited Wakefields [LMC 2019-12-04].

Wakefields drive
coherent modes

exp[−iωrevQcohmt]

Landau damping
stabilizes

the modes
∆Qcohm→∆QLDm

External noise
ξ(t) excites

the modes to
finite amplitudes

Diffusion of
particles that
are resonant

with the modes

Diffusion coefficient

D∝
σ2ξi(Q)η2mi|∆Qcohm|2

Im{QLDm}2
B(Q)

[ABP Forum 2019-11-07].

σ2
ξi(Q)

[
εg
βeff

]
:

PSD of noise type at tune Q,
– Noise types: dipolar, headtail . . .

ηmi :
Efficiency of the noise type i
on head-tail mode m.

∆Qcohm : Impedance-driven tune shift.

Im{QLDm} :
Growth rate of damped mode.
Impedance + Landau damping.
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Analytical Latency Estimate
• In the limit |Im{∆ωm}/Re{∆ωm}| � 1:

L

τrev
=

(Im{∆QSDr0−∆Qcoh})5

Im{∆QSDr0}a2|∆Qcoh|2
Re{α0}4

Jx,effσ
2
ξiη

2
mi

· Ĩ
2.5

,

1 ≤ Ĩ =
1
∫
0

5x4dx

1− Im{∆QSDr0−∆Qcoh}
Im{∆QSDr0} (1− x)

≤ 1.25

• Assumed nonphysically that α = dMLD/dMcoh was a
constant α(t=0) = α0 (≈ 1).

• What mostly matters in the end is:
• L ∝ (Im{∆QSDr0−∆Qcoh})5 – Octupole margin.
• L ∝ 1/σ2

ξiη
2
mi – Strength of noise on mode m.

• (Summation over i implied)

Re{ΔQ}

Im{ΔQ}ΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔ

ΔΔQcohΔΔ

ΔΔQLDΔΔ

ΔΔQSDrΔΔ

ΔMcohΔ

ΔΔQFΔΔ

ΔMLDΔ
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Numerical and Experimental Verification
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Test case – Drilling
• Example case:
• ∆Qcoh = (−147 + 12.5i)× 10−6

• ax = 7.5× 10−5 = 1.5athresh
• bx = −0.7ax
• ηmiσξi = 1× 10−4 σx′

(Scale by L ∝ 1/(ηmiσξi)
2)

• Numerical latency is 1.65 s .

• Analytical latency is 3.84 s .

• When enforced constant α:
Numerical latency is 3.88 s .
• Derivation is accurate, with one too

strong, but necessary, assumption.
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Test case – Dependence on Octupole margin
• Example case with various ax:
• ∆Qcoh = (−147 + 12.5i)× 10−6

• bx = −0.7ax
• ηmiσξi = 1× 10−4 σx′

(Scale by L ∝ 1/(ηmiσξi)
2)

• Analytical latency ∼ numerical×2.

• Latency scales approximately as
(Ioct − Ioct,thr)

4.5 ∝ (a− athresh)4.5

• Faster at small margins
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Latency Experiment (MD3288)
• Latencies measured in the LHC, with BSRT drifts.
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Latency Experiment (MD3288) vs. PyRADISE
• Calculated latency with PyRADISE for

these bunches with individual:
• Emittance
• Bunch length
• Intensity
• Noise amplitude

• Large error bars due to small uncertainty
in emittance (10%→ factor ∼2).

• Good agreement, considering that the
latency scales over multiple orders of
magnitude. 450 750 10501350
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Crab Cavities
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Crab Cavities (CC)
The CCs can affect the latency in three ways:
1. CC impedance modifies the coherent single-bunch tune shift ∆Qcoh .
• Small impact on the resulting latency.
• The latency in the LHC will be compared to the HL-LHC including this impedance.

2. CC impedance introduces high-frequency multi-bunch modes with Im{∆Qcohm}
larger than normal. The octupole threshold Ioct,thr grew ∼ 5% .
[227th HSC meeting 2020-06-15].

• Initial checks show a small reduction of the latency.
• The same latency achieved by also increasing Ioct by ∼ 5% (backup)

3. CC amplitude noise can drive head-tail modes with large (ηm1σξ1)2

(implemented in COMBI, ongoing work in PyRADISE/BimBim).
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CC Amplitude Noise in COMBI

• Relative noise amplitude definition

δz =
δx′(z)

σ′
= δ0 + zδ1

where δ0 is the rel. rigid bunch kick, and δ1 is
the rel. crab amplitude noise

δ1 =
1

z

∆x′CC
σ′CC

=
∆φCC
σIP

=
∆VCC
VCC

∆φCC
σIP

• The targeted maximum emittance growth driven by CC noise is 1.6 %/h
[CERN-ACC-NOTE-2018-0002] – The transverse feedback is ineffective in reducing it.
The corresponding maximum amplitude noise (without phase noise) is√〈

δ2
1

〉
= 2.6× 10−5
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First CC Latency simulations with COMBI

• LHC 2018 flat top
(Q′ =15, 100 turns ADT time)

• Dip. noise σξ0 =
√
〈δ20〉 = 1× 10−3

(∼10 times measured LHC noise floor including
the ADT)

• Crab amp. noise σξ1/σz =
√
〈δ21〉 = 5× 10−5

(∼2 times the specification)

• The latencies are comparable, although the kicks from crab amplitude noise are much
lower than the ones from the dipole noise (σξ1 = 4× 10−6 � 1× 10−3).

• Difference likely caused by the ADT, which improves the stability of modes with large
ηm0 but not those with large ηm1, thus increasing the latency with dipolar noise.

• Next step: confirm hypothesis by implementing and calculating ηm1 in BimBim.
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LHC vs HL-LHC (dipolar noise only)
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LHC – Latency of the worst mode
• Scan of ∼2018 LHC.
• εn = 2 µm
• Ioct = 280 A
• N = 1.1× 1011 ppb
• 4σs = 1.1 ns
• E = 6.5 TeV
• σξ = 1× 10−4σx′,2 µm

• Local optimum found, as in MD3288,
for Q′ ≈ 5 and g = 0.01, compared to
the more normal Q′ ≈ 15.

In backup, comparison to octupole margin.
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HL-LHC – Latency of the worst mode (with CC)
• Scan at end of ramp in design HL-LHC,

including CC impedance.
• εn = 1.7 µm (tails cut at 3σ)
• Ioct = 550 A
• N = 2.3× 1011 ppb
• 4σs = 1.2 ns
• E = 7 TeV
• σξ = 1× 10−4σx′,2 µm

• Much longer latencies than in 2018 LHC.

• Slightly shorter latencies than without
the CC impedance.

In backup, comparison to octupole margin.
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LHC vs HL-LHC
Latency (only dipolar noise) is predicted to be longer in the HL-LHC (right) than in LHC 2018.
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Towards specification for HL-LHC
• Worst single bunch mode in standard

configuration (g =0.02, Q′ ∈[13,17]):
• ∆Qcohm = (−99.7+1.947i)× 10−6

• ηm0 = 0.0214
• Ioct,thr ≈ 248 A
• HL-LHC parameters as on earlier slide

• The noise amplitude is important:
• σξ0 ≈ 1× 10−4σx′,2 µm

based on emittance growth rate
(assuming wide spectrum).

• 50 Hz lines found up to
σξ0 ∼ 1× 10−3σx′,2 µm
[S. Kostoglou, 8th HL-LHC collab. meeting 2018-11-16].
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Summary
• The diffusion model has been extended, giving an analytical latency, which is

typically ∼ 2× numerical latency found with PyRADISE.

• The diffusion model agrees with the experimental latency in MD3288.

• The latency of a given mode is found to mainly depend on the octupole margin and
the noise amplitude. Understanding the noise is key to predicting the latency.

• The latencies in the HL-LHC has been investigated.
Without crab cavities (CC) turned on, they will be longer than in the LHC.

• The crab cavities can affect the situation in several ways
• CC impedance has minimal impact on the achievable latency.
• CC amplitude noise with large η1m can be a problem.

• Outlook:
• Estimate the impact if CC have to be turned on before collision in HL-LHC.
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Thank you for your attention!

home.cern

http://home.cern


B: Isolatency curves
Q1 If Im{∆Qcoh} doubles, what is the latency ?

A1 What matters mostly is the distance to the
stability diagram, (∆QSDr −∆Qcoh) ∈ I. The
latency can decrease marginally, or the mode
can have become unstable.

Q2 If Im{∆Qcoh} doubles, but athresh only
increases by 5%, how much must a ∝ Ioct be
increased to maintain the same latency.

A2 See A1 and isolatency curves for an uncut
Gaussian beam on the right. Short answer is to
increase a by 5% as well.
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Isolatency curves – How large octupole
margin is required to achieve a given
latency. Typical worst (HL-) LHC modes
have ratios ∈ [10, 100]. The theory
assumes large ratios, at small ratio, the
latencies are large.
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B: LHC – Latency of the worst mode
On the left is the octupole margin with Ioct = 280 A.
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B: HL-LHC – Latency of the worst mode (with CC)
On the left is the octupole margin with Ioct = 550 A.
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B: Diffusion dependence on Chromaticity
• The chromaticity modifies the spectrum of single particles

cos[φ(t)] = cos

[
ωrev

(
Q0t+

∫ t

0

Q′δdt

)]
=

∞∑
n=−∞

J|n|

(
Q′σδ
Qs

)
cos[ωrev(Q0 + nQs)t],

• This is equivalent to the head-tail chromatic phase shift of the mode.

• Hence, the chromaticity does not affect the diffusion directly
(but it does indirectly, by modifying ∆Qcoh and η).
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B: Definitions
• The effective action for a horizontal mode is defined as:

Jx,eff =

∞∞∫∫
0 0

dJ2J2
xΨ′δ[Jx − Jxr(Jy)]

∞∞∫∫
0 0

dJ2JxΨ′δ[Jx − Jxr(Jy)]

• The noise moment of a mode is defined as the normalized inner product between the
mode and the noise:

ηmi =

∣∣∣∣∣ 〈mmΞi〉
√
mmmm

√
ΞiΞi

∣∣∣∣∣
• ∆QSDr is defined as the tune shift of the stability diagram with the same real part as

the mode.
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