Instability latency in the HL-LHC – a first look at crab cavities

Sondre Vik Furuseth^{1,2,*}, Xavier Buffat¹, Nicolas Mounet¹

¹European Organization for Nuclear Research, CERN, BE-ABP-HSC ²Ecole polytechnique fédérale de Lausanne, EPFL *sondre.vik.furuseth@cern.ch

CERN BE-ABP-HSC Section meeting, July 2020

Introduction

Numerical and Experimental Verification

Crab Cavities

LHC vs HL-LHC (dipolar noise only)

Summary

Loss of Landau damping by diffusion [WP2 2019-11-26].

A diffusion is centred at the mode tune, $Q_x(J_x, J_y) = Q_{\text{LD}m,x}$. Example with head-tail mode and rigid-bunch noise.

July 27, 2020

Noise Excited Wakefields [LMC 2019-12-04].

July 27, 2020

Analytical Latency Estimate

• In the limit
$$|\operatorname{Im}\{\Delta\omega_m\}/\operatorname{Re}\{\Delta\omega_m\}| \ll 1$$
:

$$\frac{L}{\tau_{\text{rev}}} = \frac{(\operatorname{Im}\{\Delta Q_{\text{SD}r0} - \Delta Q_{\text{coh}}\})^5}{\operatorname{Im}\{\Delta Q_{\text{SD}r0}\}a^2|\Delta Q_{\text{coh}}|^2} \frac{\operatorname{Re}\{\alpha_0\}^4}{J_{x,\text{eff}}\sigma_{\xi i}^2\eta_{mi}^2} \cdot \frac{\tilde{I}}{2.5},$$

$$1 \leq \tilde{I} = \int_0^1 \frac{5x^4 \mathrm{d}x}{1 - \frac{\operatorname{Im}\{\Delta Q_{\text{SD}r0} - \Delta Q_{\text{coh}}\}}{\operatorname{Im}\{\Delta Q_{\text{SD}r0}\}}(1-x)} \leq 1.25$$

- Assumed nonphysically that $\alpha = dM_{LD}/dM_{coh}$ was a constant $\alpha(t=0) = \alpha_0 \ (\approx 1).$
- What mostly matters in the end is:
 - $L \propto (\text{Im}\{\Delta Q_{\text{SD}r0} \Delta Q_{\text{coh}}\})^5$ Octupole margin.
 - $L \propto 1/\sigma_{\epsilon i}^2 \eta_{mi}^2$ Strength of noise on mode m.
 - (Summation over *i* implied)

 ΔO_{co}

 $\Delta O_{\rm F}$

 $M_{
m LD}$

 $\mathbf{X} \Delta O_{\mathrm{LD}}$

Re{ΔÔ

Numerical and Experimental Verification

Test case – Drilling

- Example case:
 - $\Delta Q_{\rm coh} = (-147 + 12.5i) \times 10^{-6}$ • $a_r = 7.5 \times 10^{-5} = 1.5 a_{\text{thresh}}$

 - $b_r = -0.7a_r$
 - $\eta_{mi}\sigma_{\varepsilon i} = 1 \times 10^{-4} \sigma_{x'}$ (Scale by $L \propto 1/(\eta_{mi}\sigma_{\epsilon i})^2$)
- Numerical latency is 1.65 s.
- Analytical latency is 3.84 s.
- When enforced constant α : Numerical latency is 3.88 s.
 - Derivation is accurate, with one too strong, but necessary, assumption.

Test case – Dependence on Octupole margin

- Example case with various a_x :
 - $\Delta Q_{\rm coh} = (-147 + 12.5i) \times 10^{-6}$
 - $b_x = -0.7a_x$
 - $\eta_{mi}\sigma_{\xi i} = 1 \times 10^{-4} \sigma_{x'}$ (Scale by $L \propto 1/(\eta_{mi}\sigma_{\xi i})^2$)
- Analytical latency \sim numerical $\!\!\times \!2.$
- Latency scales approximately as $(I_{\rm oct} I_{\rm oct,thr})^{4.5} \propto (a a_{\rm thresh})^{4.5}$
 - Faster at small margins

Latency Experiment (MD3288)

• Latencies measured in the LHC, with BSRT drifts.

Latency Experiment (MD3288) vs. PyRADISE

- Calculated latency with PyRADISE for these bunches with individual:
 - Emittance
 - Bunch length
 - Intensity
 - Noise amplitude
- Large error bars due to small uncertainty in emittance (10% \rightarrow factor \sim 2).
- Good agreement, considering that the latency scales over multiple orders of magnitude.

Crab Cavities

July 27, 2020

Sondre Vik Furuseth

Instability latency with Crab Cavities

11

Crab Cavities (CC)

The CCs can affect the latency in three ways:

1. CC impedance modifies the coherent single-bunch tune shift $\Delta Q_{\rm coh}$.

- Small impact on the resulting latency.
- The latency in the LHC will be compared to the HL-LHC including this impedance.
- 2. CC impedance introduces high-frequency multi-bunch modes with $\text{Im}\{\Delta Q_{\text{coh}m}\}\$ larger than normal. The octupole threshold $I_{\text{oct,thr}}$ grew $\sim 5\%$. [227th HSC meeting 2020-06-15].
 - Initial checks show a small reduction of the latency.
 - The same latency achieved by also increasing $I_{
 m oct}$ by $\sim 5\%$ (backup)
- 3. CC amplitude noise can drive head-tail modes with large $(\eta_{m1}\sigma_{\xi 1})^2$ (implemented in COMBI, ongoing work in PyRADISE/BimBim).

CC Amplitude Noise in COMBI

• Relative noise amplitude definition

$$\delta_z = \frac{\delta x'(z)}{\sigma'} = \delta_0 + z\delta_1$$

where δ_0 is the rel. rigid bunch kick, and δ_1 is the rel. crab amplitude noise

$$\delta_1 = \frac{1}{z} \frac{\Delta x'_{CC}}{\sigma'_{CC}} = \frac{\Delta \phi_{CC}}{\sigma_{\rm IP}} = \frac{\Delta V_{CC}}{V_{CC}} \frac{\Delta \phi_{CC}}{\sigma_{\rm IP}}$$

 The targeted maximum emittance growth driven by CC noise is 1.6 %/h [CERN-ACC-NOTE-2018-0002] – The transverse feedback is ineffective in reducing it. The corresponding maximum amplitude noise (without phase noise) is

$$\sqrt{\left< \delta_1^2 \right>} = 2.6 imes 10^{-5}$$

First CC Latency simulations with COMBI

- Din • LHC 2018 flat top Crab (Q' = 15, 100 turns ADT time)/τ [1/min] 10⁰ • Dip. noise $\sigma_{\xi 0} = \sqrt{\langle \delta_0^2 \rangle} = 1 \times 10^{-3}$ $(\sim 10 \text{ times measured LHC noise floor including})$ the ADT) 10^{-1} • Crab amp. noise $\sigma_{\xi 1}/\sigma_z=\sqrt{\langle \delta_1^2
 angle}=5 imes 10^{-5}$ $(\sim 2 \text{ times the specification})$ -20-1010 20 0 Chromaticity
- The latencies are comparable, although the kicks from crab amplitude noise are much lower than the ones from the dipole noise ($\sigma_{\xi 1} = 4 \times 10^{-6} \ll 1 \times 10^{-3}$).
- Difference likely caused by the ADT, which improves the stability of modes with large η_{m0} but not those with large η_{m1} , thus increasing the latency with dipolar noise.
- Next step: confirm hypothesis by implementing and calculating η_{m1} in BimBim.

LHC vs HL-LHC (dipolar noise only)

LHC – Latency of the worst mode

- Scan of \sim 2018 LHC.
 - $\varepsilon_n = 2 \, \mu m$
 - $I_{\rm oct} = 280 \, \text{A}$
 - $N=1.1 imes10^{11}~\mathrm{ppb}$
 - $4\sigma_s=1.1\,\mathrm{ns}$
 - *E* = 6.5 TeV
 - $\sigma_{\xi}=1 imes10^{-4}\sigma_{x',2\,\mu\mathrm{m}}$
- Local optimum found, as in MD3288, for $Q' \approx 5$ and g = 0.01, compared to the more normal $Q' \approx 15$.

In backup, comparison to octupole margin.

HL-LHC – Latency of the worst mode (with CC)

- Scan at end of ramp in design HL-LHC, including CC impedance.
 - $arepsilon_n=1.7\,\mu{
 m m}$ (tails cut at $3\sigma)$
 - $I_{\rm oct} = 550 \, {\sf A}$
 - $N=2.3 imes10^{11}~{
 m ppb}$
 - $4\sigma_s = 1.2\,\mathrm{ns}$
 - *E* = 7 TeV
 - $\sigma_{\xi} = 1 \times 10^{-4} \sigma_{x',2\,\mu\mathrm{m}}$
- Much longer latencies than in 2018 LHC.
- Slightly shorter latencies than without the CC impedance.

In backup, comparison to octupole margin.

CERN

17

LHC vs HL-LHC

Latency (only dipolar noise) is predicted to be longer in the HL-LHC (right) than in LHC 2018.

Towards specification for HL-LHC

- Worst single bunch mode in standard configuration (g =0.02, Q' ∈[13,17]):
 - $\Delta Q_{\text{coh}m} = (-99.7 + 1.947i) \times 10^{-6}$
 - $\eta_{m0} = 0.0214$
 - $I_{
 m oct,thr} \approx 248\,
 m A$
 - HL-LHC parameters as on earlier slide
- The noise amplitude is important:
 - $\sigma_{\xi 0} \approx 1 \times 10^{-4} \sigma_{x',2\,\mu m}$ based on emittance growth rate (assuming wide spectrum).
 - 50 Hz lines found up to 10 $\sigma_{\xi 0} \sim 1 \times 10^{-3} \sigma_{x',2 \,\mu m}$ [S. Kostoglou, 8th HL-LHC collab. meeting 2018-11-16].

CERN

Summary

- The diffusion model has been extended, giving an **analytical latency**, which is typically $\sim 2 \times$ **numerical latency** found with PyRADISE.
- The diffusion model agrees with the experimental latency in MD3288.
- The latency of a given mode is found to mainly depend on the **octupole margin** and the **noise amplitude**. Understanding the noise is key to predicting the latency.
- The latencies in the HL-LHC has been investigated.
 Without crab cavities (CC) turned on, they will be longer than in the LHC.
- The crab cavities can affect the situation in several ways
 - CC impedance has minimal impact on the achievable latency.
 - CC amplitude noise with large η_{1m} can be a problem.
- Outlook:
 - Estimate the impact if CC have to be turned on before collision in HL-LHC.

Thank you for your attention!

B: Isolatency curves

Q1 If $Im{\Delta Q_{coh}}$ doubles, what is the latency ?

- A1 What matters mostly is the distance to the stability diagram, $(\Delta Q_{\text{SD}r} \Delta Q_{\text{coh}}) \in \mathbb{I}$. The latency can decrease marginally, or the mode can have become unstable.
- Q2 If $Im{\Delta Q_{coh}}$ doubles, but a_{thresh} only increases by 5%, how much must $a \propto I_{oct}$ be increased to maintain the same latency.
- A2 See A1 and isolatency curves for an uncut Gaussian beam on the right. Short answer is to increase a by 5% as well.

Isolatency curves – How large octupole margin is required to achieve a given latency. Typical worst (HL-) LHC modes have ratios $\in [10, 100]$. The theory assumes large ratios, at small ratio, the latencies are large.

B: LHC – Latency of the worst mode

uly 27, 2020

B: HL-LHC – Latency of the worst mode (with CC)

luly 27, 2020

B: Diffusion dependence on Chromaticity

• The chromaticity modifies the spectrum of single particles

$$\cos[\phi(t)] = \cos\left[\omega_{\text{rev}}\left(Q_0t + \int_0^t Q'\delta dt\right)\right]$$
$$= \sum_{n=-\infty}^\infty J_{|n|}\left(\frac{Q'\sigma_\delta}{Q_s}\right)\cos[\omega_{\text{rev}}(Q_0 + nQ_s)t]$$

- This is equivalent to the head-tail chromatic phase shift of the mode.
- Hence, the chromaticity does not affect the diffusion directly (but it does indirectly, by modifying $\Delta Q_{\rm coh}$ and η).

B: Definitions

• The effective action for a horizontal mode is defined as:

r

$$J_{x,\text{eff}} = \frac{\int_{0}^{\infty} \int_{0}^{\infty} dJ^2 J_x^2 \Psi' \delta[J_x - J_{xr}(J_y)]}{\int_{0}^{\infty} \int_{0}^{\infty} dJ^2 J_x \Psi' \delta[J_x - J_{xr}(J_y)]}$$

• The noise moment of a mode is defined as the normalized inner product between the mode and the noise:

$$\eta_{mi} = \left| \frac{\langle \overline{m_m} \Xi_i \rangle}{\sqrt{\overline{m_m}} m_m} \sqrt{\overline{\Xi_i} \Xi_i} \right|$$

• $\Delta Q_{\mathrm{SD}r}$ is defined as the tune shift of the stability diagram with the same real part as the mode.

