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Wendelstein
7-X

e Introduction/motivation: Wendelstein 7-X (W7-X) stellarator and Electron Cyclotron
Current Drive (ECCD, EC-wave driven currents) experiments.

e Details of the experimentally observed crashes.

e Flux diffusion model with relaxations ———=—» application of the model

e Large crashes in W7-X / could Taylor model describe them?
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Wendelstein 7-X (W7-X) stellarator %m

o W7-Xis well optimised to avoid MHD activity.

e Electron-cyclotron resonance heating (ECRH, 10 MW, largest one in the world).

e 5 field periods, major radius R=5.5 m, minor radius r=0.53 m.
e Normally, no toroidal current (small bootstrap current) except
for ECCD (EC-wave driven currents) experiments.
& toroidal
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Wendelstein
7-X

Motivation

o In W7-X, vacuum & has an almost flat radial profile and does not cross any major rational

resonance.

Rotational transform, & (if nested flux
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Wendelstein
7-X

Motivation

o In W7-X, vacuum & has an almost flat radial profile and does not cross any major rational

resonance.

e During plasma operation the &-profile can be varied by EC-wave driven currents (ECCD).

The resulting current modifies the iota profile, which can lead to MHD-activity if passing

major rational values. .
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Motivation %ﬁ]

o In W7-X, vacuum & has an almost flat radial profile and does not cross any major rational

resonance.

e During plasma operation the &-profile can be varied by EC-wave driven currents (ECCD).
The resulting current modifies the iota profile, which can lead to MHD-activity if passing

major rational values.

e« In W7-X discharges with ECCD, phenomena reminiscent of tokamak “sawtooth”
instabilities are observed. There are also examples of discharges where related events

lead to termination of the entire plasma. 6
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Motivation NI

o In W7-X, vacuum & has an almost flat radial profile and does not cross any major rational

resonance.

e During plasma operation the &-profile can be varied by EC-wave driven currents (ECCD).
The resulting current modifies the iota profile, which can lead to MHD-activity if passing

major rational values.

e« In W7-X discharges with ECCD, phenomena reminiscent of tokamak “sawtooth”
instabilities are observed. There are also examples of discharges where related events

lead to termination of the entire plasma.

The origin of these MHD instabilities is under investigation:  [Zocco et al. JPP, 2019];
[Strumberger et al. Nucl. Fusion, 2020];
[Yu et al. Nucl. Fusion, 2020];
[Zocco et al. PPCF, 2020]

[Zocco et al. Nucl. Fusion, 2021]

The question addressed in this work is what happens to the plasma as a result of these instabilities.
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Experimental Program (XP) 20171206.025 W
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The temperature crashes appear shortly after
the start of the ECCD.

All crashes demonstrate similar trend of
central electron temperature decrease with
temperature increase in the external regions,
the other crash parameters vary (scale,
frequency and amplitude).

14

0 5 10 15 20 25
time , [s]

[Zanini et al, Nuclear Fusion, 2020 & 2021], [Aleynikova et al, Nuclear Fusion, 2021]
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Wendelstein
7-X

Conservation of helical flux in relaxations

Several models for sawtooth crashes:
Taylor (1975), Kadomtsev (1975), Bhattacharjee (1980&1982,) Waelbroeck (1989), Porcelli (1996).

Helical flux, y = w/1, — ¢, reorganisation (a.k.a. Kadomtsev) model: dominant mode helical
flux is conserved while the flux profile becomes monotonic.

plasma volume conservation

rdr = ridr + rydr,

a b
e reconnected helical flux
dy., = dy; = dy, Y @
« lower magnetic energy state B 4

FIG.1. Auxiligry field B, in a column in the initial state (a), when the inner surface touches the outer surface (b),
during reconnection due to finite resistivity (¢) and after reconnection (d).

_ e e ——

current sheets Kadomtsev, B. B. (1975). Disruptive instability in tokamaks. FizP), 1, 710-715.
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Wendelstein
° ° ° ° 7_x
Conservation of helical flux in relaxations m

Several models for sawtooth crashes:
Taylor (1975), Kadomtsev (1975), Bhattacharjee (1980&1982,) Waelbroeck (1989), Porcelli (1996).

Helical flux, y = w/1, — ¢, reorganisation (a.k.a. Kadomtsev) model: dominant mode helical
flux is conserved while the flux profil

0.125 4
. —— Dbefore relaxation
e plasma volume conservation 0.120 A
—— after relaxation
rdr = ridr + rydr, 0.115 - after relaxatio
e
= 0.110 1
. Y
e reconnected helical flux =
L_) 0.105 A
Ao = dy1 = dity o
L 0.100 -
« lower magnetic energy state 00951
0.090 A
e current sheets 0.0 0.1 0.2 0.3 0.4 0.5

reff[m].

Ksenia Aleynikova, 19th European Fusion Theory Conference, 15.10.21 4.2



Wendelstein
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Conservation of helical flux in relaxations m

Several models for sawtooth crashes:
Taylor (1975), Kadomtsev (1975), Bhattacharjee (1980&1982,) Waelbroeck (1989), Porcelli (1996).
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Wendelstein
° ° ° ° 7_x
Conservation of helical flux in relaxations m

Several models for sawtooth crashes:
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Wendelstein
° ° ° ° 7_x
Flux diffusion model with relaxations %m

Following Strand & Houlberg (2001), we write the evolution equation for the poloidal flux y:

. aw JZRO a Sll al// V, j 400 - Ill“\\ _f:z(:)d
CD> A i
Vot = pp dp J 0p  2amp a0l -
£ 0 - S
. . < 1
Ohm's law for the toroidal current density: X W\
~—200-
' — ‘ —400
J(r, 1) = 0||E(r’ f) tJcp 00 01 02 03 04 05

lefr [M]

where o) is the parallel conductivity, i is the permeability constant, r and R, are minor and
major plasma radius.

\Once I;ches mstbilty”trget value 1 (|n thls ca ] > 1 or 1 < ) fx

relax relax relax
| reorganisation is triggered. Then diffusive evolution of the post-crash flux profile is calculated )‘

| until the relax | is reached agam
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Application of the model Ll

XP20171206.025
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Application of the model

Wendelstein
7-X

XP20171206.025
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The ECCD current density has been calculated
with the Travis ray-tracing code [1].

The plasma current and iota evolution is
calculated from the flux diffusion equation
with relaxations.

Time evolution is color-coded.

Lrelax 1 — 1.1
Lrelax 516 — 0.79

Mixing area is getting larger.

[1] Marushchenko et al, Computer Physics Communications 185/1 (2014).



Application of the model Ll

XP20171206.025

Two type of crashes: associated with & = 1 resonant surface and & = 5/6.

1/1
~10.40 T

T. (ECE13) — —  —
éTeinplasrr}acentre ,,,,, Te (ECE245) —_— tor I I I I | | | | | |

~10.45 4~

T, [keV]

—10.50 A

Te mid-radéius
g II\kIIIIIII//\
| ’ d

—-10.55 : '/' ' '\I'\H’!/'/' l
9

9 9.05 9.1 9.15 9.2 9.25 9.0 9.1
time, [S] time [s]

| [KA]

The shape is due to resistive evolution of the current sheet

5/6 resonance (not only 1/1) is important.
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Current saturation with and without crashes%m
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Toroidal current saturates at a lower value due to continuous magnetic energy
dissipation via MHD crashes.
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Wendelstein

Large crashes in W7-X

Itor

Teln plasma centre
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| We note that the global invariant K, corresponds to
@ =0 of the hierarchy

A
Ka=f ary® 22
, )
0

It may be plausibly argued that since K, is the only
invariant that is independent of g, it is the sole mem-
ber of the intersection of all sets, each of which con-
tains an infinite number of constants of the motion for
each assumed helicity. In the presence of at least two
’ modes strongly coupled to one another, it is likely that
| K, is the only surviving invariant.

A. Bhattacharjee and R L Dewar The Phy5|cs of Fluids 25, 887 (1982)
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Taylor theory %m

The key assumption in the Taylor theory is that a plasma subject to an instability will seek to
minimize its magnetic energy,

1 2
W=——|B“dV,
2

subject to the constraint of fixed magnetic helicity,
K, = [z. Bav,

and toroidal flux on the plasma boundary.
This assumption leads to the prediction of a plasma state, where the current flows in the
direction of the magnetic field and the current density is proportional to the field strength, i.e.

VX?=/¢§

with constant y. We suggest that the nonlinear result of the large crash in W7-X may be such a
Taylor-relaxed state.
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Taylor relaxed state in W7-X
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Wendelstein
7-X

XP20171207.008 The Stepped-Pressure Equilibrium

Code (SPEC) [2] is well suited for
such calculations since it solves the

—

Beltrami equation V X B = ,u?
in toroidal geometry.

Helicity and total enclosed toroidal
magnetic flux are conserved.

Predicted current jump o0/ =~ 550A is in a good agreement with the experiment.
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[2] Hudson et al, Physics of Plasmas 19 (11), 112502 (2012).
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Wendelstein
7-X

Taylor relaxed state in W7-X
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A positive plasma current, resulting in an increase of 1 makes the edge magnetic

islands move into plasma.

edge’

This result is consistent with the experimental observation [Gao et al, Nuclear Fusion, 2019].
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Conclusions NI

o Flux diffusion model with relaxations was demonstrated.

« Application for sawtooth cycles in W7-X:
« similar (to the experiment) evolution of the total toroidal current

« sawtooth crashes force an earlier saturation of the total toroidal
current than it is expected due to ECCD

« At least in case of (effective) off-axis ECCD, we distinguish three types of temperature crashes,
according to the temperature profile flattening area: small, medium and large crashes.

« Plausible importance of 5/6 mode was demonstrated.

o« Comparison of current jumps (for the largest crashes) observed in the experiment and
obtained from Taylor relaxed state was done (good agreement).

More about this work can be found in: [Aleynikova et al, Nuclear Fusion, 2021].
On-going:

« Implementation of the temperature crashes (starting from a simple “toy” model)
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