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Abstract

What if you are interested in performing a particle simulation with
kinetic electrons and gyrokinetic ions?

In principle, the kinetic motion of electrons is described in terms of
electric and magnetic fields (E, B), while the standard gyrokinetic
motion of ions is described in terms of electric and magnetic
potentials (¢, A).

The dependence of standard gyrokinetic theory on perturbed
potentials (®1, A1), instead of perturbed fields (E1, B1), introduces
the requirement of specifying a choice of gauge.

Understandably, you might be worried that your nonlinear
gyrokinetic simulation results might depend on the choice of gauge
you made.
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Abstract

What if you are interested in performing a particle simulation with
kinetic electrons and gyrokinetic ions?

In principle, the kinetic motion of electrons is described in terms of
electric and magnetic fields (E, B), while the standard gyrokinetic
motion of ions is described in terms of electric and magnetic
potentials (¢, A).

The dependence of standard gyrokinetic theory on perturbed
potentials (®1, A1), instead of perturbed fields (E1, B1), introduces
the requirement of specifying a choice of gauge.

Understandably, you might be worried that your nonlinear
gyrokinetic simulation results might depend on the choice of gauge
you made. (Don't worry, standard nonlinear gyrokinetic is fine.)
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Of course, you might decide to use the potential representations of
the electromagnetic fields in your electron kinetic description, but
that seems wrong to be moving away from physical fields.

In this tutorial talk, | will show how standard gyrokinetic theory
can be transformed into a gauge-free gyrokinetic theory, which is
entirely expressed in terms of the perturbed electric and magnetic
fields.

A gauge-free gyrokinetic model can be used for hybrid-kinetic
simulations of magnetized plasmas in which particle species can be
represented in terms of either a Vlasov kinetic description or a
gauge-free Vlasov gyrokinetic description.
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Overview

e Hierarchy of Orbital Time Scales in Magnetized Plasmas

e Dynamical Reduction & Adiabatic Invariance

e Electromagnetic Potentials and Fields: Gauge Freedom

e Structure of a Gauge-free Reduced Vlasov-Maxwell Theory
e Reduced Vlasov-Maxwell Theory: Guiding-center Paradigm
e Gauge-free Gyrokinetic Vlasov-Maxwell Theory

e Summary and Ongoing Work

4/33



References

Brizard, A. J. and Hahm, T. S.
Foundations of nonlinear gyrokinetic theory,
Rev. Mod. Phys. 79, 421 (2007).

Cary, J. R. and Brizard, A. J.
Hamiltonian theory of guiding-center motion,
Rev. Mod. Phys. 81, 693 (2009).

Burby, J.W. and Brizard, A.J.
Gauge-free gyrokinetic electromagnetic theory,
Phys. Lett. A 383, 2172 (2019).

Brizard, A.J.

Exact conservation laws for gauge-free electromagnetic gyrokinetic
equations,

J. Plasma Phys. 87, 905870307 (2021).

5/33



Hierarchy of Orbital Time Scales in Magnetized Plasmas

Particle motion in uniform magnetic field By

e Gyro-motion perpendicular to a magnetic-field line with
constant gyro-frequency Q = q By/mc and constant gyro-radius

p = [vXbol/Q = v./Q

e Parallel motion along a magnetic-field line with constant
parallel velocity v = v - bg.

Particle motion in nonuniform magnetic field B = Va x V3
o (a,8) = Euler potentials (field-line labels)
o s = parallel coordinate along a field line
o b= 0x/ds = unit vector along field line.

e Magnitude B = |Va x V3| and direction b are not constant
and v, and v| are not conserved.
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e Magnetic-field inhomogeneity — Magnetic drifts

o Perpendicular gradient Ex VinB
o Magnetic curvature b-Vb

o Parallel gradient b-ViInB
o Magnetic twist b-VXxb

Quasi-periodic Hierarchy of Orbital Time Scales
Te L 1 K Tq
e Rapid gyro-motion about single field line: 7, — J;

e Intermediate bounce (or transit) motion along field line
(parallel gradient): 7, — Jy

e Slow drift (bounce-averaged precession) motion across field lines
(perpendicular gradient & magnetic curvature): 74 — Jg
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Example: 100 MeV proton orbiting in geomagnetic
dipole field at 2 ry

Figure: Normalized 3D Orbit (Q.1d/dt = ed/dT with € = 1/50):
Tg M ET, K Th K Tg ™ Th /€.
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Dynamical Reduction & Adiabatic Invariance

Dynamical Reduction
8 — 6 (guiding-center) — 4 (bounce-center) — 2 (drift-center)
(K, 1)

| ) (. Bik,t) 4
(X, Py W, 1.') _ (Jda Cd)

(x,p; w, t)
(b, Cb)

{ (e Ce)
o Dynamical reduction by extended phase-space transformation

(which includes the time-energy canonical pair (w, t)):
= asymptotic elimination of a fast orbital angle {, = (g, (b, Ca)

= construction of an adiabatic invariant Jy = (Jg, J, Ja)-

o Condition for adiabatic invariance (dJ;/dt), = 0.
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Lagrangian Reduction — Reduced Hamiltonian Dynamics

e Particle phase-space Lagrangian (o = orbit parameter)

. _ (4 dx _ 9t _
L(x,t,p,w,¢,A)_(CA+p) Cewo (g% + K~ w)

o Euler-Poincaré one-form: Ldo — v = v,dz* — Hdo
o Symplectic part v, dz* — Poisson bracket { , }

w=dy= % Wap dz* ANdZ? = J=w 8 = {zo‘, zﬁ}
o Euler-Lagrange equations — Hamilton equations

dzf  0OH dz® a5 OH

“s gy = gm0 gy =3 5 = {7 A
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e Dynamical reduction by phase-space transformation

z—z=Tz = (X,p,w,t) = (73;7’6)

o Reduced Lagrangian: v — 7 = T_lfy +dS

I[(z;0,AE,B) = 7, ‘ili — H(p;®,A,E,B)
V4 L
= P, d— + JdC H(Z°,J;¢,A E,B)
do do
o Reduced action invariance:
_ dJ _ OH
o — = =0
¢+6¢ — io o

o Reduced Hamiltonian dynamics on Z-space (@

-7 jabz{?, 7"} L 9z {7", P}
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Electromagnetic Potentials and Fields: Gauge Freedom

o Gauge transformation

(®,A) - (cp _ 1o

c8t’A+vX>

o Gauge invariance of the Reduced Lagrangian density £

o Gauge freedom < Charge conservation law

190 [0 oL
_c8t<8¢> T Veon =0

o Minimal coupling in particle Lagrangian
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Structure of a Gauge-free Reduced Vlasov-Maxwell Theory

Reduced canonical Hamiltonian formulation
H(p,w;®,A,E,B) = mv|?)/2 + q® — w + V(v;E,B)

o Gauge-free reduced velocity v = [p — (q/c)A]/m
o Potentials and fields (¢, A, E, B) are evaluated at X
o Reduced ponderomotive Hamiltonian W(v; E, B).

e Canonical reduced Hamilton equations

dx/dt = OH/0p and dp/dt = —V
o Reduced force equation
dv q dx
= — 4E -7
Mo~ 95T Cd
o Reduced electric and magnetic dipole moments

(7, 15) = (— OV /IE, — 9V /OB)

xB + VE-w+VB-1u

13/33



Reduced Vlasov-Maxwell Equations

o Reduced Vlasov equation

of

of if_dﬁ(‘??
ot

d
_E.V E@iﬁ

o Reduced Maxwell equations
V-E = 4mp = 4x (@ - V-p)

vxp_ 0B _Amy Ay P oM
c Ot c c ot

o Reduced charge-current densities & Polarization-Magnetization

= — - dx o0V ov
a]:P))M) = /pf<q7 qE? _67E7 _8B>a

~—
o
[
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o Reduced Maxwell fields

D=E+4rP V-D=4np
H=B-4rM cVXH-0D/0t =4rn)

o Dynamical reduction guarantees reduced charge conservation law

o o d - ~ 0P —
5TV = 8t(g—V-IP’)Jrv-(JJratJrchM)
Jo -
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Reduced energy-momentum conservation laws
o Reduced Noether equation

%(f-dx — ?51&) + V. (T-éx — §5t> =0

o Reduced energy-momentum densities
— 1
g = /fK+E D - <|E|2—\B|2>
4 8

P /fmv+ DxB

A7 c

o Reduced energy-density flux

S = /fCh(K+EXH
dt
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o Reduced stress tensor — Not Manifestly Symmetric

o Apparent asymmetry of the reduced stress tensor implies that
the azimuthal angular momentum may not be conserved:

oP R _
;D“MLVT (Bx/(?go):z-(/fN)
p
unless the reduced torque N vanishes identically:
N = g><mv - (fxE +*><B)
- dt H

Ponderomotive & polarization-magnetization conspire to
produce a symmetric reduced stress tensor
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Reduced Vlasov-Maxwell Theory: Guiding-Center Paradigm

Guiding-center dynamics with higher-order corrections
e Guiding-center Lagrangian (Tronko & Brizard, 2015)

N 1 . .
Lye = [:eA—i—p”b—eJ <R+2V><b> - X

P
+edC — (q¢+ L +MB>
o Gyrogauge invariance R = V1-2 and polarization %V X b

o Guiding-center magnetic-moment adiabatic invariant
(for magnetic dipole field)

Q
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100 MeV proton orbiting in geomagnetic dipole field at 2
(Brizard & Markowski, 2021)

Figure: Normalized 3D Orbits (Q1d/dt = e d/d7 with € = 1/50): exact
particle orbit (left) and guiding-center orbit (right).

19/33



Magnetic-moment adiabatic invariance & Azimuthal angular
canonical momentum

i
o [TV Ty UV Ty

Figure: (Left) Normalized magnetic moment: o (light) wo + € p1 (dark).
(Right) Normalized azimuthal canonical momentum: 1 /B.r? (light)
guiding-center pullback Ty Py, (dark) with P, (dark horizontal line).

o Axisymmetric dipole field — P, is an exact invariant

1 ~\ 0X
TgCPgC(p = ngC\IJ — 62J<R + 2VXb> '%_'_:PLP
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Lowest-order Guiding-center Lagrangian
(Brizard & Tronci, 2016)

P2
Lee = (gA+P||B> X+ JC— <q¢+ il N +uB>

o Guiding-center Euler-Lagrange equations

[)HB—X X gB*/c = gE* and b-X = py/m
yield the guiding-center equations of motion
P B* cb ) . B*
m B B

X =
where (Jacobian Jy) B = b-B* and
ge* = gqE — uVB — o 85/8t
gB*/c = ¢B/c + pHVXB
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Symmetric guiding-center stress tensor

o Guiding-center canonical momentum p = (e/c) A +pj, b
o Guiding-center electric and magnetic dipole moments

7 = (eb/Q)x dx/dt = (eb/Q) x OV/Op

n = —EB + 7™ X (ﬁHb/mc)
o Guiding-center torque
_ dx N Byb
N = —XXmV— (—ub+1r><p>><B
dt c

o Guiding-center stress tensor

Tge = 471(2 B| —BB>+PCGL+/pf [P (8pb+b8p>]’

where Pcar, = [ F[(B3/m)bb + 7iB (1 — bb)]
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Gauge-free Gyrokinetic Vlasov-Maxwell Theory

o Dynamical Reduction: Particle — Guiding-center — Gyrocenter
Gyrocenter Lagrangian (derived from gyrokinetic orderings)

Ly = (%A3+pllgo+ngy>‘X+Jé
il
- <2m + ,LLBO + qlllgy>

o Unperturbed background magnetic vector potential Aj contains
higher-order guiding-center corrections

o Gyrocenter symplectic momentum Mg, = €My, + - -+ and the
gyrocenter potential Wy, = € W1y + - -+ may include first-order
electromagnetic potential perturbations (®1,A;) and field
perturbations (E1, B1), which are selected on the basis of specific

theoretical or numerical considerations.
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Symplectic gyrocenter Hamilton equations

X = ;;ggyyx <ngy+agtgy> +%?{j|y
Pl = - ?ij' (VHgy + m;?)
where Jgy = bgy . Bgy and
bi, = bo + Mgy /dp
B, = By + (¢/q) VX (p Bo + Mgy)

o We construct a gyrocenter transformation that produces
gauge-free equations of motion (see Burby & Brizard, 2019)
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o Guiding-center push-forward of perturbed electromagnetic fields

(Esge: Brge) = (TolEr T!B1) = (Ex(X+ po), Bu(X + py))

o First-order gyrocenter symplectic momentum & Hamiltonian
(Brizard, Symplectic gyrokinetic Vlasov-Maxwell theory, 2020)

0lQ

pHBO qg()
Mgy = (A1ge) + <<E1gc>+mc X <Blg0>> X Q0

qwlgy = q<¢1gc> + /‘L<<Bl||gc>>

o Second-order gyrocenter Hamiltonian (zero-Larmor-radius limit)

HZLR _ mc
. T 2B2
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o First-order gyrocenter polarization and magnetization

OKogy mc? pbo

= E —— xB
8E1 Bg L mc X B1
8K2gy Bl mC2 pngo P||BO
Ry 21 M (E AT v B A0
0B1 MBO+B§ 1—i_mcx:l ch

Bi  0Kay  Pbo
JR— JR—— X _
a BO + 8E1 mc

o Gyrocenter magnetization includes intrinsic magnetic-dipole and
moving electric-dipole contributions.
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Gauge-free gyrocenter equations of motion (X, py)

Py = <<E1g0> + p,|7|7bco X <Blg0>> X (z)b(?
by = by + € OP1gy/0p|
= by + €(bo X (Bige)) X bo/Bo
By, = Bj + ¢(Big) + (c/q) VX (pbo + ¢ Prgy)
VHgy + 8gltgy = VKgy — €(Eige) + €0P1gy /0t

Gyrokinetic Vlasov equation
OF : oF
—— X-VF ) — =
ot + TR apH
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Gyrokinetic Maxwell equations

V:.eE1 = A4x (ggy —V-]P’gy>

OE 4 OP
VX(Bo—FEBl)—E@—: = C”<ng+ @fy+cvagy)

o Gyrocenter polarization and magnetization

oK
Py, = /jgyF (53X + po — X)) gy — €8° Lrey
z 8E1

/ngyF [—u (Bo<<53(x+p0 _x)) 4+ ed? 2;)

8K P Bo
3 X o _ 3 2gy Il
+ ((5 (X4 pg — X)) gy — €0 OE, X

ng

where gy = (qBo/Qo) x X and

OPigy  OPigy \ _ 3 pHEO
((SEl(X)’ (SBl(X) - <5 (X+p0 X)> Tgy, Mgy X mc
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Gyrokinetic energy-momentum conservation laws
(Brizard, 2021)

e Gyrokinetic energy conservation law 0&yy /0t + V +Sgy, =0

o Gyrokinetic energy density

€ 1
Eoy = /jgy/:Kgy+47TEl']D)gy_87r (€2|E1‘2 - |B|2>

= /jgy
o 0Ngy 0Ky 1 o0 2
+E() <5E1(x) 5E1(x)>] + g (CIEP + 18P)

o Gyrokinetic energy-density flux

—+ Bo + €((B )>+i|31’2
2 0 € 1||gc 2 B,

. c
Sgy = /jgyFXKgy+eE1ngy
P 47
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e Gyrokinetic Noether momentum equation

0P, . qd o s -
B
—E(VEl-IP’gy + VBl'ng> - VBO'E

o Gyrokinetic canonical momentum density
. 9 ax Dgy
Pr, = /PjgyF (285 + Ny) + 72 xeBy
o Gyrokinetic canonical stress tensor (not manifestly symmetric)
. e €
Tey = PjgyFX (E Ao + ngy) T (Dgy E: + Bngy)

1 /s 2 2 €
1o (P - B7) + B
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Gyrokinetic angular-momentum conservation law

o Axisymmetric background magnetic field By —
Gyrokinetic canonical angular-momentum conservation law

ot &p
ox 0By B
*T _70 =
=T v(f%) 390 4
e OA angy . 0Ky
/ Ty F ( do Dy X D

where 9’ /J¢ denotes toroidal derivatives of background vector
fields (i.e., 0Bo/dyp =7Z X Bg) appearing in Mg, and Kyy.
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Upon using the gyrokinetic Vlasov-Maxwell equations, we obtain

oP; -
—: TV ( o 8@) /ngFz

where the gyrocenter torque vanishes as a result of the Jacobi
vector identity for vector fields

= > [u,-x(v,-xw,-) + Vix(W;xU;) + Wf><(U,-><Vi)] =0
i=1
with
(ULVL,W1) = (e(Bige), may. pybo/me)
(U2,V2,W,) = <6|317—67F27P\\Bo/mC>

(U3, V3,W3) = Xy€<E1gc>+p||BO/mCX€<Blgc>7eBO/QO>
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Summary and Ongoing Work

Nonlinear gyrokinetic Vlasov-Maxwell theory can be
constructed in terms of perturbation electric and magnetic
fields only.

o From a variational (Lagrangian) formulation, exact conservation
laws can be derived by Noether method.

o Hamiltonian formulations have recently been derived for the
guiding-center Vlasov-Maxwell equations and the gyrokinetic
Vlasov-Maxwell equations (to be published soon).

A.J. Brizard, Hamiltonian structure of the guiding-center
Vlasov-Maxwell equations, Phys. Plasmas 28, 102303 (2021)

Hybrid kinetic-gyrokinetic codes can now be built, in which
each particle dynamics (exact or reduced) is expressed in

terms of electromagnetic fields only.
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