Pressure effects on the topology of magnetic fields in stellarators

A. Baillod¹, J. Loizu¹, J. P. Graves¹, R. Jorge², A. Cerfon³, D. Malhotra³, J. Schilling³, Z. Qu⁴, M. Landreman⁵

October 11, 2021

¹ Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland ² Max-Planck-Institut für Plasmaphysik, Euratom Association, D-17491 Greifswald, Germany

³ Courant Institute, New York University 251 Mercer St. New York, NY 10012, USA

⁴ Mathematical Sciences Institute, the Australian National University, Canberra ACT 2601, Australia ⁵ University of Maryland, College Park, MD, 20742, USA

- 3D toroidal field: nested magnetic surfaces, magnetic islands, chaotic field lines
- $j \times B = \nabla p \rightarrow \text{pressure gradient generate currents}$ (Pfirsch-Schlüter, diamagnetic)
- Currents perturb vacuum field and can destroy nested magnetic surfaces
- Magnetic surfaces are usually destroyed before reaching MHD stability limits [Helander, 2014]
- Studied in various configurations (LHD [Suzuki et. al., 2020], W7-AS [Reiman, 2021.])

Definition: Equilibrium β -limit

 $\beta = 2\mu_0 p/B^2$ above which volume occupied by nested magnetic surfaces decreases.

Question

Can we characterize these equilibrium β -limits?

Starting from,

$$\mathbf{j} \times \mathbf{B} = \nabla \mathbf{p}$$

• Assuming nested flux surfaces, parallel current $Q = j \cdot B/B^2 = \sum Q_{mn} exp(im\theta - in\phi)$ with

$$Q_{mn} = \underbrace{-p'rac{J_{mn}}{m\iota-n}}_{ ext{Pfirsch-Schlüter "1/x" singularity}} + \underbrace{\hat{Q}_{mn}\delta(\psi-\psi_{mn})}_{\delta ext{-function current singularity}}$$

[A. Bhattacharjee et. al., 1995]

with $\iota=1/q$ the rotational transform

- · Mathematically well defined solutions exist if
 - 1. $p(\psi)$ constant around $\iota = n/m \to p(\psi)$ fractal [Grad, 1967], or **stepped** [Bruno and Laurence, 1996]
 - 2. Non-resonant geometry [Weitzner, 2014]
 - 3. $\iota(\psi)$ irrational when $p' \neq 0$ [Loizu, 2015]
 - 4. Combination of 1. and 3. [Hudson, 2017]

• Stepped pressure, sustained by N_{vol} interfaces

$$\left[\left[p+rac{B^2}{2\mu_0}
ight]
ight]_I=0 \qquad ext{across } \mathcal{I}_I$$

• Force free-field between interfaces

$$\nabla \times \mathsf{B} = \mu_I \mathsf{B}$$
 in \mathcal{V}_I

- Interfaces constrained to be nested surfaces
- In V_I , no constraints on topology (island, chaos possible)
- SPEC input: Coils or Plasma boundary, $\{\psi_{t,l}, p_l, I_{\phi,l}^s, I_{\phi,l}^v\}$
 - $I_{\phi,I}^{\mathsf{v}}$: externally driven currents, in \mathcal{V}_I
 - $I_{\phi,l}^{s}$: pressure driven currents, at \mathcal{I}_l
- SPEC output: B, geometry of \mathcal{I}_l

[Hudson et. al., 2020] [Baillod et. al., 2021]

EPFL We consider a classical stellarator with bootstrap current

• Coils s.t. $B_c \cdot \hat{n} = 0$ in vacuum on a rotating ellipse

Antoine Bailloc

- Coils s.t. $B_c \cdot \hat{n} = 0$ in vacuum on a rotating ellipse
- Linear pressure profile

$$p(\psi_t) = p_0 \left(1 - \frac{\psi_t}{\psi_a} \right) \tag{1}$$

N_{vol} = 7

EPFL We consider a classical stellarator with bootstrap current

- Coils s.t. $B_c \cdot \hat{n} = 0$ in vacuum on a rotating ellipse
- Linear pressure profile

$$\rho(\psi_t) = \rho_0 \left(1 - \frac{\psi_t}{\psi_a} \right) \tag{1}$$

- $N_{vol} = 7$
- No externally driven currents

$$I_{\phi,I}^{\mathsf{v}} = 0 \qquad \forall I$$
 (2)

Antoine Baillo

- Coils s.t. $B_c \cdot \hat{n} = 0$ in vacuum on a rotating ellipse
- Linear pressure profile

$$p(\psi_t) = p_0 \left(1 - \frac{\psi_t}{\psi_a} \right) \tag{1}$$

- $N_{vol} = 7$
- No externally driven currents

$$I_{\phi,l}^{\nu} = 0 \qquad \forall l \tag{2}$$

• High aspect ratio tokamak bootstrap current approximation

$$j_{\phi} = \sqrt{\epsilon} R_0 \frac{dp}{d\psi_p} \to I_{\phi,l}^s = C \left(\frac{\psi_t}{\psi_a}\right)^{1/4} [[p]]_l, \tag{3}$$

 $C \sim R_0/\iota B_0$. Example: $C_{ITER} \sim 18[\text{A Pa}^{-1}]$

- Coils s.t. $B_c \cdot \hat{n} = 0$ in vacuum on a rotating ellipse
- Linear pressure profile

$$\rho(\psi_t) = \rho_0 \left(1 - \frac{\psi_t}{\psi_a} \right) \tag{1}$$

- N_{vol} = 7
- No externally driven currents

$$I_{\phi,l}^{\nu} = 0 \qquad \forall l \tag{2}$$

• High aspect ratio tokamak bootstrap current approximation

$$j_{\phi} = \sqrt{\epsilon} R_0 \frac{dp}{d\psi_p} \to I_{\phi,l}^s = C \left(\frac{\psi_t}{\psi_s}\right)^{1/4} [[p]]_l, \tag{3}$$

 $C \sim R_0/\iota B_0$. Example: $C_{ITER} \sim 18[\text{A Pa}^{-1}]$

Parameters of interest: $\{C, p_0\}$

EPFL The equilibrium β -limit is extracted as a function of C

$$\epsilon_I = \frac{R_0}{2\pi a^2 B_0} \mu_0 I_{\phi}(\langle \beta \rangle)$$

[Freidberg, ideal MHD, 2014]

Ideal limit $t_a = 0$ Chaos limit $t_a \sim 1$

EPFL Optimization can improve β -limit

- SPEC coupled with SIMSOPT [Landreman et. al., 2021]
- Proof of principle for equilibrium β -limit optimization

SIMONS FOUNDATION

EPFL Conclusions

- Shown: equilibrium β -limit can be **evaluated with SPEC**
- Obtained analytical understanding of the equilibrium β-limit in classical stellarators
- Improved equilibrium β -limits via **optimization**
- Outlooks
 - More shaped geometries (W7-AS, W7-X).
 Benchmark against PIES [A. Reimann, 2021]
 - Extract equilibrium β-limits dependencies in standard QA, QH and QI configurations.

Tokamaks

W7-A

W7-AS

W7-X

Backup slides

