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 Stellarators are becoming a viable alternative to tokamaks

 So far, no global fluid simulations of stellarators that take into account the boundary

 Plasma boundary determines the heat flux on plasma-facing materials

 In the boundary: collisionality may be high and turbulence time-scales much longer than 
𝜔𝑐𝑖
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• fluid drift-reduced Braginskii equations [Zeiler, IPP 5/88 1999]

 GBS is a two-fluid, global, flux-driven turbulence code that solves the drift-reduced 
Braginskii equations

Introduction
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GBS has been used to simulate 
the edge of tokamaks
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Giacomin et al., NF 2020

Ricci and Rogers, PoP 2013 

Giacomin et al., submitted to JCP



This talk: 
Global GBS simulations in a stellarator with an 
island divertor
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 No separation between equilibrium and fluctuating quantities 



This talk: 
Global GBS simulations in a stellarator with an 
island divertor
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 Density and temperature sources generate the gradients that drive turbulence



GBS solves the drift-reduced Braginskii equations
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 Set of equations for n, Te, Ti, V∥e, V∥i, 𝜔, ϕ

• Density (𝑛) equation:

• Electron and ion temperatures (𝑇𝑒 , 𝑇𝑖) equations: energy conservation

• Parallel electron and ion velocities (𝑉∥𝑒, 𝑉∥𝑖): parallel force balance

• Electrostatic potential (Φ): obtained from vorticity (quasi-neutrality)

𝛻 ∙ 𝚪ExB = 𝐛 ⋅ 𝛻ϕ × 𝛻n + 2n
B

2
𝛻 ×

𝐛

B
∙ 𝛻ϕ



What stellarator vacuum field do we use in the 
simulation?
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 Dommaschk potentials [Dommaschk, CPC 1986] are a solution of 

Laplace’s equation in a torus:

R

𝑍
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5-field period stellarator
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5-field period stellarator with a 5/9 chain of islands

 All rotational transform from rotation of the ellipses



GBS domain boundary intersects divertor islands
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GBS domain boundary intersects divertor islands
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Steady-state of simulation dominated by coherent 
mode
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density
density



Steady-state of simulation dominated by coherent 
mode
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 An m=4 mode that dominates the global dynamics is present in the steady-state

 Mode rotates with ~ ion diamagnetic frequency

 No broad-band turbulence

 Radial transport due to <  ΓExB >𝑡 = <  𝑛  𝑉ExB >𝑡 balances source

density
density



Equilibrium profiles
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density potential



Effectiveness of the island divertor
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 On the TOP of the simulation box, pressure is maximum where field lines strike:



Non-local linear theory predicts the observed m=4 mode
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 Linearize GBS equations by assuming quantities vary as:

𝐧 = 𝟓

𝒎 = 𝟒



Non-local linear theory predicts the observed m=4 mode
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LCFScore



Is the linear mode able to transport? 
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 Solve for 𝑛0~Φ0 and obtain the perturbation’s amplitude needed to balance the source



Our mode!

Linear mode is able to transport the same 𝚪𝐄𝐱𝐁
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amplitude of linear mode s.t.

satisfies balance eq. / amplitude 

of fluctuations in GBS



Nature of the linear mode: balloning
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r
No drift-waves drive

(𝛁∥𝒑𝒆 = 𝟎 in 𝑽∥𝒆 eq.)

No ballooning drive
(curvature(p)=0 in vorticity eq.)



Conclusions & Future Work
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 First global fluid simulations of a stellarator have been performed with GBS code

 Unlike tokamak experiments/simulations, no broad-band turbulence nor blobs were 
observed. Instead, a low poloidal mode (m=4) dominates simulation

 Linear theory points to ballooning mode

 Is this coherent mode a property of the configuration used? 

 TJ-K stellarator  LHD-like stellarator


