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1 Introduction

• Recently, it was predicted [1,2] that relativistic effects in fluxes of particles and heat in both tokamaks and stellarators are noticeable for Te of tens keV, i.e. for Te � mec
2.

They appear due to Maxwell–Jüttner distribution function.

• Fusion plasmas means temperatures about 20 – 70 keV. Nevertheless, practically all transport codes in fusion are still non-relativistic.

• The most general and straightforward way to obtain transport and MHD equations with Lorentz invariance is covariant formalism with 4-vectors [3]. However, for plasmas
in fusion devices, macroscopic flows are relatively slow and equations can be significantly simplified in non-covariant formulation without reduction of an accuracy.

1. I. Marushchenko et al., PPCF, 55, 085005 (2013); 2. G. Kapper et al., Phys. Plasmas, 25, 122509 (2018); 3. T. Mettens and R. Balescu, Phys. Fluids B, 2, 2076 (1990).

2 Transport Equations in Local Frame

• Relativistic “drifting” with V Maxwell-Jüttner distribution in weakly relativistic limit:
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• Below we define relativistic fluxes in the rest frame using definitions given by other
authors and adapting it to our notations:
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Here, pe = neTe is a scalar pressure. Internal thermal energy can be also repre-
sented as We = (3/2 +R)neTe, which is similar to standard non-relativistic expres-
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• Integrating kinetic equation (KE) in local coordinate system, we use a Lorentz
invariance of 4-momentum volume: d3u/γ = d3u′/γ′. The Lorentz transformation
of momentum and energy from local system into the rest frame:
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Formally, these relations are precise, but below we apply it in weakly relativistic
approach with respect to V .

• After integrating KE, we obtain the relativistic continuity equation:
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Weakly relativistic expansion γ0 ' 1− V 2/2c2 is supposed here.
• The momentum balance equation in local frame:
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Here, J = eneV is electron electric current; Π
(0)
kj = peδkj + πkj + nemeVkVj with πkj =

neme〈v′ku′j〉 − peδkj, where (0) is a label for “quasi-classical” term; pure relativistic
contributions, labeled by (r), are absent in non-relativistic limit:
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• The thermal energy balance equation in local frame:
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with “quasi-classical” terms, which coincide for 1/µ→ 0 with non-relativistic ones,
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and pure relativistic contributions, absent in non-relativistic limit:
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• Formally, the balance equations with a presence of relativistic corrections even
in “quasi-classical” terms are identical to standard non-relativistic transport
equations. The present form is suitable for implementation in any transport code.

3 Relativistic Momentum Correction

• In this section, following the logic of [4,5], we generalize the momentum correction
technique for relativistic approach.

• Solving linearized drift kinetic equation for δfe = fe − fe0,
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the fluxes of particles, energy and heat, respectively, can be calculated. While
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• Sonine polynomials L
3/2
n (x2) are perfectly tailored for non-relativistic limit, but in

relativistic approach the generalized Laguerre polinomials, L3/2+R
n (κ), are optimal.

Considering the parallel fluxes, it is sufficient to account only 1st Legendre har-
monic, δfe = ξF1 with ξ = v‖/v. Then
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we get relation between ”flow velocities”, V (n)
‖ , and collisional ”friction forces”,
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Similar to non-relativistic expressions,
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where Mab
nk and Nab

nk correspond to differential and integral parts of Coulomb oper-
ator, respectively. Collisions with ions are accounted only by differential part.

• Let us introduce the adjoint monoenergetic kinetic equation,
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The order of this system, given by kmax = lmax, is exactly the same as for Sonine
polynomials in non-relativistic limit and is fairly low. Only the convolution of the
monoenergetic transport coefficients is required,
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Since mono-energetic Dij (given, for example, by DKES) are parametrized by only
ν/v and Er/v, convolution J...DijK is trivial with v = u/γ and ν ≡ νe(u).
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Summary 1: Braginskii equations are derived in mixed approach, with fully relativistic plasma electrons and weakly relativistic mean electron flow.

Summary 2: Using generalized Laguerre polynomials L3/2+R
n (κ), with κ = µ(γ − 1) and µ = mec

2/Te, method of momentum correction is generalized for relativistic approach.


