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« Recently, it was predicted [1,2] that relativistic effects in fluxes of particles and heat in both tokamaks and stellarators are noticeable for 7. of tens keV, i.e. for T. < m.c*.

They appear due to Maxwell-Juttner distribution function.

 Fusion plasmas means temperatures about 20 — 70 keV. Nevertheless, practically all transport codes in fusion are still non-relativistic.

* The most general and straightforward way to obtain transport and MHD equations with Lorentz invariance is covariant formalism with 4-vectors [3]. However, for plasmas
In fusion devices, macroscopic flows are relatively slow and equations can be significantly simplified in non-covariant formulation without reduction of an accuracy.

1. I. Marushchenko et al., PPCF, 55, 085005 (2013); 2. G. Kapper et al., Phys. Plasmas, 25, 122509 (2018); 3. T. Mettens and R. Balescu, Phys. Fluids B, 2, 2076 (1990).

2 Transport Equations in Local Frame

 Relativistic “drifting” with V Maxwell-JUttner distribution in weakly relativistic limit:
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* Below we define relativistic fluxes in the rest frame using definitions given by other
authors and adapting it to our notations:
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Here, p. = n.1I. IS a scalar pressure. Internal thermal energy can be also repre-
sented as W, = (3/2 + R) n.T., which is similar to standard non-relativistic expres-
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* Integrating kinetic equation (KE) in local coordinate system, we use a Lorentz
invariance of 4-momentum volume: d*u/v = d*u’/y’. The Lorentz transformation
of momentum and energy from local system into the rest frame:
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Formally, these relations are precise, but below we apply it in weakly relativistic
approach with respect to V.

* After integrating KE, we obtain the relativistic continuity equation:
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Weakly relativistic expansion v, ~ 1 — V2/2¢ is supposed here.
 The momentum balance equation in local frame:
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Here, J = en.V is electron electric current; Hgy = PeOkj + Tk + nem ViV with 7, =

nem€<v,;u;> — pedyj, Where (0) is a label for “quasi-classical” term; pure relativistic
contributions, labeled by (r), are absent in non-relativistic limit:
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* The thermal energy balance equation in local frame:
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with “quasi-classical” terms, which coincide for 1/ — 0 with non-relativistic ones,
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and pure relativistic contributions, absent in non-relativistic limit:
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* Formally, the balance equations with a presence of relativistic corrections even
In “quasi-classical” terms are identical to standard non-relativistic transport
equations. The present form is suitable for implementation in any transport code.

3 Relativistic Momentum Correction

* In this section, following the logic of [4,5], we generalize the momentum correction
technique for relativistic approach.

 Solving linearized drift kinetic equation for  f. = f. — f.o,
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where k = u(v—1), p=Vy - Vp, B = B/B,, and thermodynamic forces,
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the fluxes of particles, energy and heat, respectively, can be calculated. While
[, = /vk5fedgv and Q. = /mGCQ(fy — 1)vk(5f€d3?),

the heat flux is ¢. = Q). — (5/2 + R)TeFk = Tef (/4: —5/2 — R)vk5f€d3v.

- Sonine polynomials L2*(2?) are perfectly tailored for non-relativistic limit, but in
relativistic approach the generalized Laguerre polinomials, L,/**(x), are optimal.

Considering the parallel fluxes, it is sufficient to account only 1st Legendre har-
monic, o f. = {F; with § = v /v. Then
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Representing F; and C.,(F)) = 2 [1, £€C.(6f.)d¢ as Laguerre series,
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and collisional "friction forces”,

. . B 2 —1
with weight w(x) = CMljliR”}/ (ﬁ> and a, =

we get relation between "flow velocities”, VHW,
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Similar to non-relativistic expressions,
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where M and N% correspond to differential and integral parts of Coulomb oper-
ator, respectlvely Colhsmns with ions are accounted only by differential part.

e Let us introduce the adjoint monoenergetic kinetic equation,

V(g) + ve(u)L(g) = Ralbvnfeo With v, (u) = vee(u) + v (u).

Integrating this equation with weight 5f.LY* R(k), where 6f. = 6f./f.0, i.e per-
forming <fd3 Sf.LY P R (k )> where (...) is averaging over magnetic surface,
and using adjoint properties of V and C,, we get system of linear equations with
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The order of this system, given by k..« = l.ax, 1S €xactly the same as for Sonine
polynomials in non-relativistic limit and is fairly low. Only the convolution of the
monoenergetic transport coefficients is required,
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Since mono-energetic D;; (given, for example, by DKES) are parametrized by only
v/v and E, /v, convolution [...D;;] is trivial with v = u/vy and v = v,(u).
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Summary 1: Braginskii equations are derived in mixed approach, with fully relativistic plasma electrons and weakly relativistic mean electron flow.

Summary 2: Using generalized Laguerre polynomials L/*"(x)

, With x = u(v — 1) and u = m.c*/T., method of momentum correction is generalized for relativistic approach.



