Impact of non-axisymmetric magnetic field perturbations on flows

R. Varennes¹, X. Garbet¹, L. Vermare², Y. Sarazin¹, V. Grandgirard¹, G. Dif-Pradalier¹, M. Peret²

¹CEA, IRFM, France ²LPP, CNRS, Ecole polytechnique, France

Introduction

- Plasma rotation plays a key role in plasma confinement [1][2];
- Control of plasma rotation in reactor-sized tokamak is challenging [3];
- Intrinsic bulk plasma rotation is driven by turbulence and *Neoclassical Toroidal Viscosity* **(NTV)**;
- Magnetic field ripple is responsible for the NTV.

Objective: Understand the competition/synergy between turbulence and NTV with gyrokinetic simulations.

Theoretical model

 \blacksquare A reduced model based on the mean toroidal velocity V_T reads :

$$\frac{\partial V_T}{\partial t} = \text{Neoclassical Toroidal Viscosity} + \text{Turbulent torque}$$

Ripple constrains V_T through neoclassical friction ν_{ω}

FIG.1 – Kinetic effects induced by ripple : drift of banana bounce points (a) and toroidal trapping between coils (b). Neoclassical friction ν_{φ} comes from the collisions between trapped populations.

Turbulence constrains V_T through turbulent viscosity χ_{turb}

FIG.2 – Snapshot of the turbulent structures seen through a colormap on the electric potential. From rest, V_T grows due to wave-particle interactions.

Goal: Obtain coefficients of turbulent momentum transport from simulations and use neoclassical friction u_{φ} predictions to find the ripple amplitude threshold for which neoclassical effects overcome turbulence.

Turbulent momentum transport

- Turbulence impacts V_T through the toroidal Reynold's stress Π_{ω}
- -Axisymmetric theory [4][5]: $\Pi_{\varphi} = -\chi_{\mathrm{turb}} \frac{\partial V_T}{\partial r} + \mathcal{V}V_T + \Pi_{res}$ (Eq.1) Viscosity Pinch Residual
- Obtention of χ_{turb} , \mathcal{V} and Π_{res} using gyrokinetic simulations:
 - Simulations of turbulent plasma without ripple with different initial toroidal velocity \rightarrow FIG.3 shows the dominance of the viscosity : $-\chi_{\text{turb}} \frac{\partial V_T}{\partial r}$;
 - Eq.1 defines a plane in the $(V_T, \partial_r V_T, \Pi_{\varphi})$ space;

Mean square plane fit using simulations output gives an estimation of χ_{turb} within a radial range (see FIG.4 for an example).

FIG.3 - Radial profiles of V_T , $\partial_r V_T$ and Π_{φ} taken at turbulent saturation for simulations initialized at different toroidal velocity $V_T(t=0) = V_0 e^{4(\rho-0.5)^2}$

FIG.4 - Plane fit of Π_{φ} using point cloud from simulations giving an estimation of the turbulent viscosity within a radial range.

Neoclassical friction

- Ripple is responsible for magnetic braking M in the toroidal direction: the NTV;
- Neoclassical theory [6][7] with ripple gives :

$$m = -v_{\varphi} \left(V_T - k_T \frac{\nabla T}{eB_P} \right)$$
 Friction Thermal drive

- GYSELA code shows good agreement with neoclassical predictions;
- $-\nu_{\omega}$ increases with the ripple amplitude.

Conclusion

- Ripple is responsible for a neoclassical friction that constrains the toroidal velocity;
- Turbulence is a source of intrinsic rotation;
- Evolution of mean toroidal flow ruled by competing turbulent stress and ripple drag forces;
- The radial electric field grows in response to the modification of the toroidal velocity;
- Simulations suggest that neoclassic drag overcomes turbulent stress for typical realistic ripple amplitudes in WEST;
- Future work taking into account boundary physics with realistic WEST ripple amplitude is necessary to understand the shape of $\frac{dE_{\gamma}}{dr}$ and the transition toward high-confinement modes.

Competition ripple/turbulence

Complete model reads :

■ Boundary physics not in the model → radially gaussian ripple (cf FIG.5)

FIG.5 – Polar map of the ripple amplitude used for simulations.

FIG.6 – Radial profiles of estimated turbulent relaxation frequency and predicted neoclassical frictions.

FIG.7 – Time evolution of V_T and E_r in the range $0.45 < \rho < 0.55$ for different ripple amplitudes. Model verification using 2 simulations:

- With dominant neoclassical friction
- With dominant turbulent viscosity
- $\delta_0 = 0.1\%$ case dominated by turbulence
- $\delta_0=1.0\%$ case driven by neoclassical friction \rightarrow increase of E_r to fulfill force balance

References

See FIG.6

- [1] T. S. Hahmand and K. H. Burrell, PoP 1995
- [2] P. Mantica, PRL 2009
- [3] M.N. Rosenbluth & F.L.Hinton NF 1996
- [4] A. Peeters, NF 2011
- [5] P. Diamond, NF 2009
- [6] X.Garbet, PoP 2010
- [7] J.W. Connor, NF 1973