Copernicus Webinar September 11th 2020, from Paris

Lucas Pinol

With J. Fumagalli, S. Garcia-Saenz, **S. Renaux-Petel**, J. Ronayne Thanks also to **J. Martin**, T. Papanikolaou, Y. Tada, V. Vennin *Institut d'Astrophysique de Paris (IAP)*

OBSERVATIONAL SIGNATURES OF MULTIFIELD INFLATION WITH CURVED FIELD SPACE

BACKGROUND, LINEAR FLUCTUATIONS AND NON-GAUSSIANITIES

Mainly based on **[Fumagalli, Garcia-Saenz, LP, Renaux-Petel, Ronayne 2019]** *Phys. Rev. Lett. 123, 201302* **[Garcia-Saenz, LP, Renaux-Petel 2020]** *J. High Energ. Phys.* **2020,** 73 (2020)

European Research Council Established by the European Commission

TABLE OF CONTENTS

I. USUAL PICTURE OF INFLATON A CONSISTENT COSMOLOGICAL STORY

II. MULTIFIELD INFLATION WITH CURVED FIELD SPACE GEOMETRICAL EFFECTS UNVEILED

III. PRIMORDIAL NON-GAUSSIANITIES GENERALIZING MALDACENA'S CALCULATION TO CURVED FIELD SPACE

IV. FROM MULTIFIELD TO SINGLE FIELD INTEGRATING OUT HEAVY ENTROPIC PERTURBATIONS

I. USUAL PICTURE OF INFLATION

A CONSISTENT COSMOLOGICAL $STORY$ $\qquad \qquad \rightarrow \qquad \qquad \rightarrow$

VERY BROAD PICTURE

- Cosmology: history, content and laws of the Universe
- Early Universe: before emission of the CMB

LINKS WITH HIGH-ENERGY THEORIES

 $log(E/GeV)$

?

Natural units: $\hbar = c = 1$ and the only dimension is energy (or mass)

- 19 \leftarrow M_p : Planck mass M_s : String theory, quantum loop gravity etc.
- 16 \longrightarrow M_{GUT} : Grand Unified Theories (GUT): Unification of the fundamental non-grav. forces
	- H, inflation

The exact energy scale of inflation is not known *Detection of primordial GWs may tell us*

3 Standard Model, LHC

Accessible experiments on Earth

Inflation happens at high energies

It is sensitive to high-energy effects

We do not know physics at high energies so we can not say any thing about inflation

Let's work on inflation and hopefully we learn about high-energy physics

CMB OBSERVATION MOTIVATES INFLATION

$$
T \sim 2.73K ; \frac{\delta T}{T} \sim 10^{-5} ; |\Omega_k| \ll 1
$$

- \triangleright How is the universe so homogeneous? **Horizon problem**
- \triangleright Why is the universe so spatially flat? **Flatness problem**

CMB OBSERVATION MOTIVATES INFLATION

$$
T \sim 2.73K \; ; \; \frac{\delta T}{T} \sim 10^{-5} \; ; \; |\Omega_k| \ll 1
$$

- \triangleright How is the universe so homogeneous? **Horizon problem**
- \triangleright Why is the universe so spatially flat? **Flatness problem**

Inflation, an era of accelerated expansion of the Universe, solves both the horizon and flatness problems

$$
N_{\rm inf} = \ln\left(\frac{a_{\rm end}}{a_{\rm ini}}\right) \gtrsim 55
$$

OBSERVATIONAL CONSTRAINTS \triangleright 2-point (Gaussian) statistics:

Fluctuations in the CMB are mostly adiabatic $\zeta(\tau,\vec{x})$ the adiabatic curvature perturbation $\zeta_{\vec k}(\tau)$ its Fourier transform

dictates the statistics of the temperature anisotropies in the CMB

$$
\langle \zeta_{\vec{k}} \zeta_{\vec{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\vec{k}+\vec{k'}) \times P_{\zeta}(k)
$$

Dimensionless power spectrum is

$$
P_{\zeta}(k) = \frac{2 \pi^2}{k^3} P_{\zeta}(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1}
$$

3-point (Non-Gaussian) statistics:

$$
\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 \delta^{(3)}(\overrightarrow{k_1} + \overrightarrow{k_2} + \overrightarrow{k_3})
$$

$$
\times B_{\zeta}(\overrightarrow{k_1}, \overrightarrow{k_2}, \overrightarrow{k_3})
$$

Dimensionless bispectrum is

$$
B_{\zeta} = \frac{2\pi^2}{k^3} B_{\zeta} = f_{NL} \times (P_{\zeta})^2
$$

 4-point (Gaussian+Non-Gaussian) $\mathrm{T}_\zeta = \boldsymbol{g_{NL}} \times (\mathrm{P}_\zeta)$ 3 Trispectrum

OBSERVATIONAL CONSTRAINTS \triangleright 2-point (Gaussian) statistics:

Fluctuations in the CMB are mostly adiabatic $\zeta(\tau,\vec{x})$ the adiabatic curvature perturbation $\zeta_{\vec k}(\tau)$ its Fourier transform

dictates the statistics of the temperature anisotropies in the CMB

Planck constraints from the CMB

$$
\langle \zeta_{\vec{k}} \zeta_{\vec{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\vec{k} + \vec{k'}) \times P_{\zeta}(k)
$$

Dimensionless power spectrum is

$$
P_{\zeta}(k) = \frac{2 \pi^2}{k^3} P_{\zeta}(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1}
$$

3-point (Non-Gaussian) statistics:

$$
\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 \delta^{(3)}(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) \times B_{\zeta}(\vec{k}_1, \vec{k}_2, \vec{k}_3)
$$

Dimensionless bispectrum is

$$
B_{\zeta} = \frac{2\pi^2}{k^3} B_{\zeta} = f_{NL} \times (P_{\zeta})^2
$$

 4-point (Gaussian+Non-Gaussian) $\mathrm{T}_\zeta = \boldsymbol{g_{NL}} \times (\mathrm{P}_\zeta)$ 3 Trispectrum

OBSERVATIONAL CONSTRAINTS \triangleright 2-point (Gaussian) statistics:

Fluctuations in the CMB are mostly adiabatic $\zeta(\tau,\vec{x})$ the adiabatic curvature perturbation $\zeta_{\vec k}(\tau)$ its Fourier transform

dictates the statistics of the temperature anisotropies in the CMB

Planck constraints from the CMB

Large Scale Structure (LSS) experiments such as DESI or Euclid could constrain $|f_{NL}|$ <10

$$
\langle \zeta_{\vec{k}} \zeta_{\vec{k}'} \rangle = (2\pi)^3 \delta^{(3)}(\vec{k} + \vec{k'}) \times P_{\zeta}(k)
$$

Dimensionless power spectrum is

$$
P_{\zeta}(k) = \frac{2 \pi^2}{k^3} P_{\zeta}(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1}
$$

3-point (Non-Gaussian) statistics:

$$
\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 \delta^{(3)}(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) \times B_{\zeta}(\vec{k}_1, \vec{k}_2, \vec{k}_3)
$$

Dimensionless bispectrum is

$$
B_{\zeta} = \frac{2\pi^2}{k^3} B_{\zeta} = f_{NL} \times (P_{\zeta})^2
$$

 4-point (Gaussian+Non-Gaussian) $\mathrm{T}_\zeta = \boldsymbol{g_{NL}} \times (\mathrm{P}_\zeta)$ 3 Trispectrum

SLOW-ROLL SINGLE FIELD INFLATION

• Quasi de Sitter space: $\epsilon = -\frac{1}{112} \ll 1$; ሶ $\frac{1}{H^2} \ll 1$; $\eta =$ $\dot{\epsilon}$ $\frac{1}{H\epsilon} \ll 1$

$$
\Rightarrow \frac{M_p V'}{V} \ll 1 ; \frac{M_p^2 |V''|}{V} \ll 1
$$

- Single-clock: only one scalar degree of freedom
- Canonical kinetic term

SLOW-ROLL SINGLE FIELD INFLATION

- Quasi de Sitter space: $\epsilon = -\frac{1}{112} \ll 1$; ሶ $\frac{1}{H^2} \ll 1$; $\eta =$ $\dot{\epsilon}$ $\frac{1}{H\epsilon} \ll 1$
	- \Rightarrow $M_p V'$ \boldsymbol{V} ≪ 1 ; $M_p^2|V^{\prime\prime}|$ V ≪
- Single-clock: only one scalar degree of freedom
- Canonical kinetic term

$\boldsymbol{\Phi}$ V(Ф

Success and failure

- \checkmark Enough expansion to solve the horizon and flatness problems
- \checkmark Nearly scale-invariant scalar power spectrum on large scales
- **Small non-Gaussianities** \checkmark Small tensor-to-scalar ratio
- Few theoretical motivation: realistic UV completions typically predict **several scalar fields with non-canonical kinetic terms**
- ❖ Sensitive to Planck scale suppressed operators, quantum loops renormalize the potential:

 >1

 $\mathcal V$. The contract of the eta problem: $\frac{M_p^2 |V''|}{\sigma}$ V

II. MULTIFIELD INFLATION WITH CURVED FIELD SPACE

GEOMETRICAL EFFECTS UNVEILED

MULTIFIELD INFLATION

$$
S = \int \sqrt{-g} \left(\frac{R}{2} - \sum_{a,b} g^{\mu\nu} \delta_{ab} \partial_{\mu} \phi^a \partial_{\nu} \phi^b - V(\phi^c) \right)
$$

Flat field space Φ_1 Φ_2 $V(\Phi_1,\Phi_2)$ **Non-geodesic motion Minimum of the potential One geodesic** Vanishing curvature: $R_{fs} = 0$ Aligned

MULTIFIELD INFLATION

$$
S = \int \sqrt{-g} \left(\frac{R}{2} - \sum_{a,b} g^{\mu\nu} \delta_{ab} \partial_{\mu} \phi^a \partial_{\nu} \phi^b - V(\phi^c) \right)
$$

MULTIFIELD INFLATION WITH CURVED FIELD SPACE

$$
S = \int \sqrt{-g} \left(\frac{R}{2} - \sum_{a,b} g^{\mu\nu} G_{ab} (\phi^c) \partial_\mu \phi^a \partial_\nu \phi^b - V(\phi^c) \right)
$$

Curved field space Φ_1 $\boldsymbol{\Phi}$ $V(\Phi_1,\Phi_2)$ **Non-geodesic motion Minimum of the potential One geodesic** Scalar curvature: $R_{fs} \neq 0$ Not aligned

MULTIFIELD INFLATION WI CURVED FIELD SPACE

$$
S = \int \sqrt{-g} \left(\frac{R}{2} - \sum_{a,b} g^{\mu\nu} G_{ab} (\phi^c) \partial_\mu \phi^a \partial_\nu \phi^b - V(\phi^c) \right)
$$

measures deviation from a geodesic in field space

Local curvature in field space Ricci scalar R_{fs} constructed from G

SOME PREVIOUS WORKS INTERESTING MULTIFIELD FEATURES

 Super-Hubble evolution of adiabatic perturbations, sourced by entropic ones: ζ and the contract of ζ

- Single-field (SF) consistency relation is modified: $r = -8n_t \times \sin^2(\Delta)$, with
- Correlated adiabatic-entropic perturbations: $cos(\Delta) = P_{\zeta S}/\sqrt{P_{\zeta\zeta}P_{SS}}$

[Wands, Bartolo, Matarrese, Riotto 2002] [Langlois 1999]

Copernicus Webinar, from Paris, September 11th 2020 Copernicus Webmar, from Faris, September 11th 2020
Lucas Pinol 21

SOME PREVIOUS WORKS INTERESTING MULTIFIELD FEATURES

- Super-Hubble evolution of adiabatic perturbations, sourced by entropic ones: ζ and the contract of ζ
	- Single-field (SF) consistency relation is modified: $r = -8n_t \times \sin^2(\Delta)$, with
	- Correlated adiabatic-entropic perturbations: $cos(\Delta) = P_{\zeta S}/\sqrt{P_{\zeta\zeta}P_{SS}}$
- \triangleright Features in the power spectrum (sudden turn, fastly-evolving entropic mass...):
	- Oscillations / step at scales that exit the horizon when the feature happens
	- Quantum clocks: minimal oscillations even without features in the background trajectory **[Chen, Namjoo, Wang 2015]**

[Wands, Bartolo, Matarrese, Riotto 2002] [Langlois 1999]

[Lesgourgues 1999]

SOME PREVIOUS WORKS INTERESTING MULTIFIELD FEATURES

- Super-Hubble evolution of adiabatic perturbations, sourced by entropic ones: ζ and the contract of ζ
	- Single-field (SF) consistency relation is modified: $r = -8n_t \times \sin^2(\Delta)$, with
	- Correlated adiabatic-entropic perturbations: $cos(\Delta) = P_{\zeta S}/\sqrt{P_{\zeta\zeta}P_{SS}}$
- \triangleright Features in the power spectrum (sudden turn, fastly-evolving entropic mass...):
	- Oscillations / step at scales that exit the horizon when the feature happens
	- Quantum clocks: minimal oscillations even without features in the background trajectory **[Chen, Namjoo, Wang 2015]**
- Non-Gaussianities are enhanced:
	- Maldacena's result $f_{\text{nl}} = O(\epsilon, \eta)$ and SF consistency relation $f_{\text{nl}}^{\text{squeezed}} = n_s 1$ are broken
	- An extra massive field affects the shape and amplitude of $f_{nl}^{squeezed}$ depending on its mass and spin Quasi-Single Field: **[Chen, Wang 2009]**, Cosmological Collider: **[Arkani-Hamed, Maldacena 2015]**, Cosmological Bootstrap **[Arkani-Hamed, Baumann, Lee, Pimentel 2018]**

[Wands, Bartolo, Matarrese, Riotto 2002] [Langlois 1999]

[Lesgourgues 1999]

INTERESTING MULTIFIELD FEATURES

 \bullet

ightharpoonup Multifield enables to inflate along steep potentials: $\epsilon_V = \frac{1}{2V^2} \approx \epsilon \left(1 + \frac{1}{\Omega}\right) \geq 1$ if strong bending

Steep potential

 $\simeq \epsilon | 1 +$

 η_{\perp}^2

[Fumagalli, Garcia-Saenz, LP, Renaux-Petel, Ronayne 2019]

9

 ≥ 1

[Garcia-Saenz, Renaux-Petel, Ronayne 2018]

 $V_{,\sigma}^2$

 $2V^2$

No bending = too fast rolling to inflate

With bending = slow enough rolling to inflate

FURTHER DEVELOPMENTS

[Hetz, Palma 2016]

FURTHER DEVELOPMENTS INTERESTING MULTIFIELD FEATURES

[Garcia-Saenz, Renaux-Petel, Ronayne 2018] [Fumagalli, Garcia-Saenz, LP, Renaux-Petel, Ronayne 2019]

ightharpoonup Multifield enables to inflate along steep potentials: $\epsilon_V = \frac{1}{2V^2} \approx \epsilon \left(1 + \frac{1}{\Omega}\right) \geq 1$ if strong bending $V_{,\sigma}^2$ $2V^2$ $\simeq \epsilon | 1 +$ η_{\perp}^2 9 ≥ 1

Multifield helps to satisfy the dS swampland conjectures

[Achucarro, Palma 2018] [Bjorkmo, Marsh 2019]

[Hetz, Palma 2016]

Steep potential

No bending = too fast rolling to inflate

With bending = slow enough rolling to inflate

FURTHER DEVELOPMENTS INTERESTING MULTIFIELD FEATURES

[Garcia-Saenz, Renaux-Petel, Ronayne 2018] [Fumagalli, Garcia-Saenz, LP, Renaux-Petel, Ronayne 2019]

ightharpoonup Multifield enables to inflate along steep potentials: $\epsilon_V = \frac{1}{2V^2} \approx \epsilon \left(1 + \frac{1}{\Omega}\right) \geq 1$ if strong bending $V_{,\sigma}^2$ $2V^2$ $\simeq \epsilon | 1 +$ η_{\perp}^2 9 ≥ 1

Multifield helps to satisfy the dS swampland conjectures

[Achucarro, Palma 2018] [Bjorkmo, Marsh 2019]

[Hetz, Palma 2016]

 \triangleright Inflationary α -attractors: supersymmetric-inspired models with curved field space, match well Planck constraints **[Kallosh, Linde, Roest 2013]**

FURTHER DEVELOPMENTS INTERESTING MULTIFIELD FEATURES [Garcia-Saenz, Renaux-Petel, Ronayne 2018] [Fumagalli, Garcia-Saenz, LP, Renaux-Petel, Ronayne 2019]

ightharpoonup Multifield enables to inflate along steep potentials: $\epsilon_V = \frac{1}{2V^2} \approx \epsilon \left(1 + \frac{1}{\Omega}\right) \geq 1$ if strong bending $V_{,\sigma}^2$ $2V^2$ $\simeq \epsilon | 1 +$ η_{\perp}^2 9 ≥ 1

Multifield helps to satisfy the dS swampland conjectures

[Achucarro, Palma 2018] [Bjorkmo, Marsh 2019]

[Hetz, Palma 2016]

- \triangleright Inflationary α -attractors: supersymmetric-inspired models with curved field space, match well Planck constraints **[Kallosh, Linde, Roest 2013]**
- \triangleright Recent works about curved field space: Geometrical destabilization of inflation Sidetracked inflation Multifield α -attractors Attractors and bifurcations in multifield inflation Hyperinflation

[Achúcarro, Kallosh, Linde, Wang, Welling 2017] [Brown 2017], [Mizuno, Mukhoyama 2018] [Fumagalli, Garcia-Saenz, LP, Renaux-Petel, Ronayne 2019] [Bjorkmo, Marsh 2019] [Christodoulidis, Roest, Sfakianakis 2019] [Garcia-Saenz, Renaux-Petel, Ronayne 2018] [Renaux-Petel, Turzynski 2015]

GEOMETRICAL DESTABILIZATION OF INFLATION TRAJECTORIES Other notation μ^2

STABILITY OF BACKGROUND

• A stable trajectory requires \perp **long wavelength** modes to be stable: $m_{s,eff}^2 > 0$

entropic perturbations on large scales

 Φ_1

 $V(\Phi_1,\Phi_2)$

 $\boldsymbol{\varphi}_{2}$

STABILITY OF BACKGROUND TRAJECTORIES

GEOMETRICAL DESTABILIZATION OF INFLATION

Other notation μ^2

 $V(\Phi_1, \Phi_2)$

• A stable trajectory requires \perp long wavelength modes to be stable: $m_{\rm s,eff}^2 > 0$

Hessian of the potential Bending Geometry of field-space

[S. Renaux-Petel, K. Turzynski 2015] • Geometrical destabilization of inflation: $m_{\rm s,eff}^2$ H^2 = V _{;SS} $\frac{W_{\text{ISS}}}{H^2} + 3\eta_{\perp}^2 + \epsilon R_{\text{fs}} M_p^2 < 0$

> 0 < 0 for hyperbolic field spaces

« bifurcation » in the language of dynamical systems

 $\mathbf{\Phi}_1$

Destabilization

 $\boldsymbol{\Phi}_2$

 $V(\phi) = \Lambda^4 \left(1 + \cos \theta \right)$ ϕ \int

Discrete shift symmetry protecting potential from quantum corrections

$$
V(\phi, \chi) = \Lambda^4 \left(1 + \cos \left(\frac{\phi}{f} \right) \right) + \frac{1}{2} m^2 \chi^2
$$

Negatively curved field spaces *Toy models (so far)*

$$
V(\phi, \chi) = \Lambda^4 \left(1 + \cos \left(\frac{\phi}{f} \right) \right) + \frac{1}{2} m^2 \chi^2
$$

Negatively curved field spaces *Toy models (so far)* **[Garcia-Saenz, Renaux-Petel, Ronayne 2018]**

Minimal metric:

$$
d\sigma^{2} = \left(1 + \frac{2\chi^{2}}{M^{2}}\right) d\phi^{2} + d\chi^{2}
$$

$$
R_{\text{fs}} = -\frac{4}{M^{2}(1 + 2\chi^{2}/M^{2})^{2}}
$$

$$
V(\phi, \chi) = \Lambda^4 \left(1 + \cos \left(\frac{\phi}{f} \right) \right) + \frac{1}{2} m^2 \chi^2
$$

Negatively curved field spaces *Toy models (so far)* **Minimal metric: [Garcia-Saenz, Renaux-Petel, Ronayne 2018]**

 $d\sigma^2 = \left(1 + \right)$ $2\chi^2$ M^2 $d\phi^2 + d\chi^2$ $R_{\text{fs}} = -$ 4 $M^2(1+2\chi^2/M^2)^2$

Hyperbolic metric:

$$
d\sigma^{2} = \left(1 + \frac{2\chi^{2}}{M^{2}}\right) d\phi^{2}
$$

$$
+ \frac{2\sqrt{2}\chi}{M} d\phi d\chi + d\chi^{2}
$$

$$
R_{\text{fs}} = -\frac{4}{M^{2}}
$$

$$
V(\phi, \chi) = \Lambda^4 \left(1 + \cos \left(\frac{\phi}{f} \right) \right) + \frac{1}{2} m^2 \chi^2
$$

Negatively curved field spaces *Toy models (so far)*

2

Minimal metric:

$$
d\sigma^{2} = \left(1 + \frac{2\chi^{2}}{M^{2}}\right) d\phi^{2} + d\chi
$$

$$
R_{\text{fs}} = -\frac{4}{M^{2}(1 + 2\chi^{2}/M^{2})^{2}}
$$

Hyperbolic metric:

 \overline{d}

$$
d\sigma^{2} = \left(1 + \frac{2\chi^{2}}{M^{2}}\right) d\phi^{2}
$$

$$
+ \frac{2\sqrt{2}\chi}{M} d\phi d\chi + d\chi^{2}
$$

$$
R_{\text{fs}} = -\frac{4}{M^{2}}
$$

HYPERINFLATION NON-GAUSSIANITIES

[Fumagalli, Garcia-Saenz, Pinol, Renaux-Petel, Ronayne 2019] *Phys. Rev. Lett. 123, 201302*

Setup The scalar fields ϕ , χ live on an internal hyperbolic plane radial angular

Spiraling trajectory enables to inflate along steep potentials:

Interesting for eta problem and swampland conjectures!

E Embedding of the hyperbolic plane in 3D Radial trajectory **Hyperinflation trajectory**

 χ

Destabi-

lization

 $M \ll M_n$

 \boldsymbol{D}

 $R_{\text{fs}} = -$

4

Hyperbolic field space

This is not the potential

 $M²$

HYPERINFLATION NON-GAUSSIANITIES

[Fumagalli, Garcia-Saenz, Pinol, Renaux-Petel, Ronayne 2019] *Phys. Rev. Lett. 123, 201302*

Setup The scalar fields ϕ , χ live on an internal hyperbolic plane radial angular

Interesting observational signatures:

Large non-Gaussianities in exotic flattened configurations

$$
f_{\rm nl}^{\rm eq} = \mathcal{O}(1); f_{\rm nl}^{\rm flat} = \mathcal{O}(50)
$$

Target for upcoming LSS experiments

E Embedding of the hyperbolic plane in 3D Radial trajectory **Hyperinflation trajectory**

This is not the potential

 $\boldsymbol{\phi}$

Hyperbolic field space

 $M_{\rm n}$

$$
R_{\rm fs} = -\frac{4}{M^2}, \qquad M \ll
$$

HYPERINFLATION BISPECTRUM USING [D. Mulryne, J. Ronayne 2016]

Transport approach to numerically evolve 2-pt and 3-pt correlation functions in multifield inflation with curved field space

HYPERINFLATION BISPECTRUM USING EFT

Effective single-field cubic action

$$
S_{(3)}^{EFT}[\zeta] = \int d\tau d^3x \ a \frac{\epsilon}{H} M_p^2 \left(\frac{1}{c_s^2} - 1\right) \left(\zeta'(\partial_i \zeta)^2 + \frac{A}{c_s^2} {\zeta'}^3\right)
$$

Here, $m_s^2 < 0$ and $c_s^2 = -1$, *leading to exotic NGs*

Justified because in this class of models, one has: $\left|m_{\mathcal{S}}^2\right|\gg H^2$

One can « integrate out » entropic perturbations

A unknown (so far)

Expected to be of order 1

HYPERINFLATION BISPECTRUM USING EFT

Effective single-field cubic action

$$
S_{(3)}^{EFT}[\zeta] = \int d\tau d^3x \ a \frac{\epsilon}{H} M_p^2 \left(\frac{1}{c_s^2} - 1\right) \left(\zeta'(\partial_i \zeta)^2 + \frac{A}{c_s^2} {\zeta'}^3\right)
$$

Here, $m_s^2 < 0$ and $c_s^2 = -1$, *leading to exotic NGs*

$$
f_{\rm NL}^{\rm flat} \simeq 50 \times (A+1)
$$

$$
f_{\rm NL}^{\rm flat} \sim O(50)
$$

If $A \sim 1$

HYPERINFLATION BISPECTRUM USING EFT

Effective single-field cubic action

$$
S_{(3)}^{EFT}[\zeta] = \int d\tau d^3x \ \ a \frac{\epsilon}{H} M_p^2 \left(\frac{1}{c_s^2} - 1\right) \left(\zeta'(\partial_i \zeta)^2 + \frac{A}{c_s^2} \zeta'^3\right)
$$

Here, $m_s^2 < 0$ and $c_s^2 = -1$, *leading to exotic NGs*

$$
f_{\rm NL}^{\rm flat} \simeq 50 \times (A+1)
$$

 $f_{\rm NL}^{\rm flat} \sim O(50)$

If $A \sim 1$

unknown (so far)

Copernicus Webinar, from Paris, September 11th 2020 Lucas Pinol 43
Lucas Pinol 43

III. REVISITING PRIMORDIAL NON-GAUSSIANITIES

GENERALIZING MALDACENA'S CALCULATION TO CURVED FIELD SPACE [Garcia-Saenz, Pinol, Renaux-Petel]

J. High Energ. Phys. **2020,** 73 (2020)

 $\mathcal{L}(\zeta,\mathcal{F})=\mathcal{L}^{(2)}(\zeta,\mathcal{F})+\mathcal{L}_{\text{Maldacena}}^{(3)}$ ζ + $\mathcal{L}_{\text{new}}^{(3)}$ $\mathbf{L}_{\rm new}^{(3)}(\zeta,\mathcal{F})+\mathcal{D}^{(3)}$

Dictating the power spectrum: 2-point function

Dictating the bispectrum: 3-point function

EXPANDING AND SIMPLIFYING THE ACTION USING INTEGRATION BY PARTS AND LINEAR EQUATIONS OF MOTION

 \triangleright We perform integrations by parts to make explicit the size of interactions

 \triangleright Linear equations of motion $\frac{\delta S^{(2)}}{m} = 0$ and $\frac{\delta S^{(2)}}{m} = 0$ can be used at any time $\delta \zeta$ $= 0$ $\delta S^{(2)}$ $\delta \mathcal{F}$ $= 0$

 \triangleright Resulting Lagrangian, after $O(40)$ integrations by parts and $O(10)$ uses of equations of motion:

USING INTEGRATION BY PARTS AND LINEAR EQUATIONS OF MOTION EXPANDING AND SIMPLIFYING THE ACTION

 \triangleright We perform integrations by parts to make explicit the size of interactions

 \triangleright Linear equations of motion $\frac{\delta S^{(2)}}{\delta} = 0$ and $\frac{\delta S^{(2)}}{\delta} = 0$ can be used at any time $\delta \zeta$ $= 0$ $\delta S^{(2)}$ $\delta \mathcal{F}$ $= 0$

 \triangleright Resulting Lagrangian, after $O(40)$ integrations by parts and $O(10)$ uses of equations of motion:

 $\mathcal{L}(\zeta,\mathcal{F})=\mathcal{L}^{(2)}(\zeta,\mathcal{F})+\mathcal{L}_{\text{Maldacena}}^{(3)}(\zeta,\chi)+\mathcal{L}_{\text{new}}^{(3)}(\zeta,\mathcal{F})+\mathcal{D}$

USING INTEGRATION BY PARTS AND LINEAR EQUATIONS OF MOTION EXPANDING AND SIMPLIFYING THE ACTION

 \triangleright We perform integrations by parts to make explicit the size of interactions

 \triangleright Linear equations of motion $\frac{\delta S^{(2)}}{\delta} = 0$ and $\frac{\delta S^{(2)}}{\delta} = 0$ can be used at any time $\delta \zeta$ $= 0$ $\delta S^{(2)}$ $\delta \mathcal{F}$ $= 0$

 \triangleright Resulting Lagrangian, after $O(40)$ integrations by parts and $O(10)$ uses of equations of motion:

$$
\mathcal{L}(\zeta, \mathcal{F}) = \mathcal{L}^{(2)}(\zeta, \mathcal{F}) + \mathcal{L}_{\text{Maldacena}}^{(3)}(\zeta, \chi) + \mathcal{L}_{\text{new}}^{(3)}(\zeta, \mathcal{F}) + \mathcal{D}
$$
\n
$$
\mathcal{L}^{(2)}(\zeta, \mathcal{F}) = \frac{a^3}{2} \left(2\epsilon M_p^2 \left(\dot{\zeta}^2 - \frac{(\partial \zeta)^2}{a^2} \right) + \dot{\mathcal{F}}^2 - \frac{(\partial \mathcal{F})^2}{a^2} - m_s^2 \mathcal{F}^2 + 4 \dot{\sigma} \eta_{\perp} \mathcal{F} \dot{\zeta} \right)
$$
\n
$$
m_s^2 = V_{\text{,ss}} - H^2 \eta_{\perp}^2 + \epsilon R_{\text{fs}} H^2 M_p^2
$$
\nMixing via the bending

\nHessian of the potential

\nBending of the trajectory

\nField-space curvature

a^2 **EXPANDING AND SIMPLIFYING THE ACTION USING INTEGRATION BY PARTS AND LINEAR EQUATIONS OF MOTION**

 \triangleright We perform integrations by parts to make explicit the size of interactions

 \triangleright Linear equations of motion $\frac{\delta S^{(2)}}{\delta} = 0$ and $\frac{\delta S^{(2)}}{\delta} = 0$ can be used at any time $\delta \zeta$ $= 0$ $\delta S^{(2)}$ $\delta \mathcal{F}$ $= 0$

 \triangleright Resulting Lagrangian, after $O(40)$ integrations by parts and $O(10)$ uses of equations of motion:

$$
\mathcal{L}(\zeta,\mathcal{F})=\mathcal{L}^{(2)}(\zeta,\mathcal{F})+\mathcal{L}_{\text{Maldacena}}^{(3)}(\zeta,\chi)+\mathcal{L}_{\text{new}}^{(3)}(\zeta,\mathcal{F})+\mathcal{D}
$$

 $\mathcal{L}_{\text{Maldacena}}^{(3)}(\zeta,\chi) = a^3 M_p^2 \left[\epsilon(\epsilon - \eta) \dot{\zeta}^2 \zeta + \epsilon(\epsilon + \eta) \zeta \right]$ $\partial \zeta)^2$ $\frac{1}{a^2}$ + ϵ 2 -2 1 $\frac{1}{a^4}$ $(\partial \zeta)(\partial \chi)\partial^2 \chi +$ ϵ $\frac{c}{4a^4}\partial^2 \zeta(\partial \chi)^2$ **[J. Maldacena 2003]**

 $\boldsymbol{\partial^2 \chi}$

 $= \epsilon \dot{\zeta} +$

ሶ

 $\frac{\tilde{u}}{M_p^2}\eta_{\perp}\mathcal{F}$

USING INTEGRATION BY PARTS AND LINEAR EQUATIONS OF MOTION EXPANDING AND SIMPLIFYING THE ACTION

 \triangleright We perform integrations by parts to make explicit the size of interactions

 \triangleright Linear equations of motion $\frac{\delta S^{(2)}}{\delta} = 0$ and $\frac{\delta S^{(2)}}{\delta} = 0$ can be used at any time $\delta \zeta$ $= 0$ $\delta S^{(2)}$ $\delta \mathcal{F}$ $= 0$

 \triangleright Resulting Lagrangian, after $O(40)$ integrations by parts and $O(10)$ uses of equations of motion:

$$
\mathcal{L}(\zeta,\mathcal{F}) = \mathcal{L}^{(2)}(\zeta,\mathcal{F}) + \mathcal{L}_{\text{Maldacena}}^{(3)}(\zeta,\chi) + \mathcal{L}_{\text{new}}^{(3)}(\zeta,\mathcal{F}) + \mathcal{D}_{\text{new}}
$$

New interactions

Boundary terms: Total time derivatives contribute to 3-pt functions **[C. Burrage, R. Ribeiro, D. Seery 2011] [F. Arroja, T. Tanaka 2011]**

NEW INTERACTIONS

23

 $\lambda_{\perp} =$ η_{\perp} $H\eta_{\perp}$; $\mu_s =$ $\dot{m_{\rm s}}$ Hm_s

$$
\mathcal{L}_{\text{new}}^{(3)}(\zeta, \mathcal{F}) = \frac{1}{2} m_s^2 \zeta \mathcal{F} \left((\epsilon + \mu_s) \mathcal{F} + (2\epsilon - \eta - 2\lambda_\perp) \frac{2\dot{\sigma}\eta_\perp}{m_s^2} \dot{\zeta} \right) + \frac{\dot{\sigma}\eta_\perp}{a^2 H} \mathcal{F}(\partial \zeta)^2
$$

$$
- \frac{\dot{\sigma}\eta_\perp}{H} \dot{\zeta}^2 \mathcal{F} - \frac{1}{H} \left(H^2 \eta_\perp^2 - \epsilon H^2 M_p^2 R_{fs} \right) \dot{\zeta} \mathcal{F}^2 - \frac{1}{6} \left(V_{\text{ssss}} - 2\dot{\sigma} H \eta_\perp R_{fs} + \epsilon H^2 M_p^2 R_{fs,s} \right) \mathcal{F}^3
$$

$$
+ \frac{1}{2} \epsilon \zeta \left(\dot{\mathcal{F}}^2 + \frac{(\partial \mathcal{F})^2}{a^2} \right) - \frac{1}{a^2} \dot{\mathcal{F}}(\partial \mathcal{F}) (\partial \chi) \qquad \text{Check: } \zeta \text{ is well massless at any order as it should}
$$

(Weinberg adiabatic mode)

NEW INTERACTIONS

Applications*: quasi-single field, cosmological collider physics, single-field effective theory*

$$
\mathcal{L}_{\text{new}}^{(3)}(\zeta,\mathcal{F}) = \frac{1}{2} m_s^2 \zeta \mathcal{F} \left((\epsilon + \mu_s) \mathcal{F} + (2\epsilon - \eta - 2\lambda_\perp) \frac{2\dot{\sigma} \eta_\perp}{m_s^2} \dot{\zeta} \right) + \frac{\dot{\sigma} \eta_\perp}{a^2 H} \mathcal{F} (\partial \zeta)^2
$$

$$
- \frac{\dot{\sigma} \eta_\perp}{H} \dot{\zeta}^2 \mathcal{F} - \frac{1}{H} \left(H^2 \eta_\perp^2 - \epsilon H^2 M_p^2 R_{fs} \right) \dot{\zeta} \mathcal{F}^2 - \frac{1}{6} \left(V_{\text{ss}} - 2\dot{\sigma} H \eta_\perp R_{fs} + \epsilon H^2 M_p^2 R_{fs,s} \right) \mathcal{F}^3
$$

$$
+ \frac{1}{2} \epsilon \zeta \left(\dot{\mathcal{F}}^2 + \frac{(\partial \mathcal{F})^2}{a^2} \right) - \frac{1}{a^2} \dot{\mathcal{F}} (\partial \mathcal{F}) (\partial \chi)
$$

NEW INTERACTIONS

Applications*: quasi-single field, cosmological collider physics, single-field effective theory*

$$
\mathcal{L}_{\text{new}}^{(3)}(\zeta,\mathcal{F}) = \frac{1}{2} m_s^2 \zeta \mathcal{F} \left((\epsilon + \mu_s) \mathcal{F} + (2\epsilon - \eta - 2\lambda_\perp) \frac{2\dot{\sigma} \eta_\perp}{m_s^2} \dot{\zeta} \right) + \frac{\dot{\sigma} \eta_\perp}{a^2 H} \mathcal{F} (\partial \zeta)^2
$$

$$
- \frac{\dot{\sigma} \eta_\perp}{H} \dot{\zeta}^2 \mathcal{F} - \frac{1}{H} \left(H^2 \eta_\perp^2 - \epsilon H^2 M_p^2 R_{fs} \right) \dot{\zeta} \mathcal{F}^2 - \frac{1}{6} \left(V_{\text{ss}} - 2\dot{\sigma} H \eta_\perp R_{fs} + \epsilon H^2 M_p^2 R_{fs,s} \right) \mathcal{F}^3
$$

$$
+ \frac{1}{2} \epsilon \zeta \left(\dot{\mathcal{F}}^2 + \frac{(\partial \mathcal{F})^2}{a^2} \right) - \frac{1}{a^2} \dot{\mathcal{F}} (\partial \mathcal{F}) (\partial \chi)
$$
 Useful form of the action for integrating out *F* when it is heavy

IV. INTEGRATING OUT HEAVY ENTROPIC FLUCTUATIONS AN EFFECTIVE THEORY FOR THE OBSERVABLE CURVATURE PERTURBATION

$$
S[\zeta, \mathcal{F}] \xrightarrow{\mathcal{F}_{\text{heavy}}(\zeta)} S_{\text{EFT}}[\zeta] = S[\zeta, \mathcal{F}_{\text{heavy}}(\zeta)]
$$

[Garcia-Saenz, Pinol, Renaux-Petel] *J. High Energ. Phys.* **2020,** 73 (2020)

A HIERARCHY OF SCALES WHEN ENTROPIC FLUCTUATIONS ARE HEAVY

 \triangleright Equation of motion for \mathcal{F} :

$$
\ddot{\mathcal{F}} + 3H\dot{\mathcal{F}} + \left(m_s^2 + \frac{k^2}{a^2}\right)\mathcal{F} = 2\dot{\sigma}\eta_{\perp}\dot{\zeta}
$$

Hierarchy of scales Energy of the "experiment" $H \ll m_s$ **E** M_{p} m_s k/a H **time**

Integrate out the heavy perturbation

Like in the Fermi theory: Integrate out the heavy W, Z bosons and consider contact interactions for fermions

A HIERARCHY OF SCALES WHEN ENTROPIC FLUCTUATIONS ARE HEAVY

 \triangleright Equation of motion for \mathcal{F} :

$$
\ddot{\mathbf{X}} + 3\mathbf{X}\dot{\mathbf{F}} + \left(m_s^2 + \frac{\mathbf{V}}{d\mathbf{X}}\right)\mathbf{F} = 2\dot{\sigma}\eta_{\perp}\dot{\zeta}
$$

\nheavy $\left(\mathbf{F}_{\text{heavy}}^{\text{LO}} = \frac{2\dot{\sigma}\eta_{\perp}}{m_s^2}\dot{\zeta}\right) \boldsymbol{\omega}^2, \boldsymbol{\omega}H, \frac{k^2}{a^2} \ll m_s^2$

When F is

Energy of the "experiment" $H \ll m_s$

time

Hierarchy of scales

E

 M_p

 m_s

 k/a

 H

Integrate out the heavy perturbation

Like in the Fermi theory: Integrate out the heavy W, Z bosons and consider contact interactions for fermions

A HIERARCHY OF SCALES THE QUADRATIC EFFECTIVE ACTION

 \triangleright Equation of motion for \mathcal{F} :

$$
\ddot{\mathbf{X}} + 3\mathbf{X}\dot{\mathbf{F}} + \left(m_s^2 + \frac{\mathbf{Y}}{a\mathbf{X}}\right)\mathbf{F} = 2\dot{\sigma}\eta_{\perp}\dot{\zeta}
$$

When **F** is heavy $\left(\mathcal{F}_{\text{heavy}}^{\text{LO}} = \frac{2\dot{\sigma}\eta_{\perp}}{m_s^2}\dot{\zeta}\right)$

Effective single-field action for the curvature perturbation

$$
S_2^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 \epsilon \left(\frac{\zeta'^2}{c_s^2} - (\partial_i \zeta)^2\right)
$$

With a speed of sound c_s :

$$
\boxed{\frac{1}{c_s^2} = 1 + \frac{4H^2\eta_\perp^2}{m_s^2}}
$$

History of scales

\n**E**

\n
$$
M_p
$$

\n
$$
m_s
$$

\n
$$
time
$$

\n
$$
m_s
$$

\nEnergy of the "experiment"
$$
H \ll m_s
$$

Integrate out the heavy perturbation

Like in the Fermi theory: Integrate out the heavy W, Z bosons and consider contact interactions for fermions

THE CUBIC EFFECTIVE ACTION FULL RESULT P(X) cubic lagrangian:

$$
S_3^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 M_p^2 \frac{\epsilon}{c_s^2}
$$

The only new parameter is **A**, and depends on the UV physics

$$
\begin{pmatrix}\n\frac{g_1}{\mathcal{H}}\zeta^{\prime 3} + \\
g_2\zeta^{\prime 2}\zeta + \\
g_3c_s^2\zeta(\partial_i\zeta)^2 + \\
\frac{\tilde{g}_3c_s^2}{\mathcal{H}}\zeta^{\prime}(\partial_i\zeta)^2 + \\
g_4\zeta^{\prime}\partial_i\partial^{-2}\zeta^{\prime}\partial_i\zeta + \\
g_5\partial^2\zeta(\partial_i\partial^{-2}\zeta^{\prime})^2\n\end{pmatrix}
$$
 with

$$
g_1 = \left(\frac{1}{c_s^2} - 1\right) A
$$

\n
$$
g_2 = \epsilon - \eta + 2s
$$

\n
$$
g_3 = \epsilon + \eta
$$

\n
$$
\tilde{g}_3 = \frac{1}{c_s^2} - 1
$$

\n
$$
g_4 = \frac{-2\epsilon}{c_s^2} \left(1 - \frac{\epsilon}{4}\right)
$$

\n
$$
g_5 = \frac{\epsilon^2}{4c_s^2}
$$

Copernicus Webinar, from Paris, September 11th 2020 Copernicus Webmar, from Faris, September 11th 2020
Lucas Pinol 58

RECOVERING THE EFT OF INFLAT THE CUBIC EFFECTIVE AC

$$
S_3^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 M_p^2 \frac{\epsilon}{c_s^2}
$$

The only new parameter is **A**, and depends on the UV physics

1 ℋ ′3 + 2 ′2 + 3 2 ² + 3 2 ℋ ′ ² + 4 ′ −2 ′ + 5 2 −2 ′ 2 with

 $g_1 =$ 1 c_s^2 $\frac{1}{2} - 1$ | A ϵ , η , $s \to 0$ **Slow-varying result: Non-Gaussianities** ∼ $\mathbf{1}$ c_s^2 $\frac{1}{2}$ – 1

 $\tilde{g}_3 =$ 1 c_s^2 $\frac{1}{2} - 1$

Copernicus Webinar, from Paris, September 11th 2020 coperinted webmar, from Faris, September 11th 2020
Lucas Pinol 59

REVISITED…

$$
S_3^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 M_p^2 \frac{\epsilon}{\mathcal{H}} \left(\frac{1}{c_s^2} - 1\right) \left(\zeta'(\partial_i \zeta)^2 + \frac{A}{c_s^2} \zeta'^3\right)
$$

with $A = -\frac{1}{2}(1 + c_s^2) + \cdots$

Previously known

Bending radius of the trajectory: $\kappa =$ $\sqrt{2\epsilon}M_p$ **REVISITED…** 11

$$
S_3^{\text{EFT}}[\zeta] = \int d\tau d^3 x a^2 M_p^2 \frac{\epsilon}{\mathcal{H}} \left(\frac{1}{c_s^2} - 1 \right) \left(\zeta' (\partial_i \zeta)^2 + \frac{A}{c_s^2} \zeta'^3 \right)
$$

with $A = -\frac{1}{2} (1 + c_s^2) - \frac{1}{6} (1 - c_s^2) \frac{\kappa V_{\text{5SS}}}{m_s^2} + \cdots$

 derivative of the potential (expected)

Self-coupling of entropic fluctuations

Bending radius of the trajectory: $\kappa =$ $\sqrt{2\epsilon}M_p$ **REVISITED…** 1⊥ 1⊥

$$
S_3^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 M_p^2 \frac{\epsilon}{\mathcal{H}} \left(\frac{1}{c_s^2} - 1 \right) \left(\zeta' (\partial_i \zeta)^2 + \frac{A}{c_s^2} \zeta'^3 \right)
$$

with $A = -\frac{1}{2} (1 + c_s^2) - \frac{1}{6} (1 - c_s^2) \frac{\kappa V_{\text{5SS}}}{m_s^2} + \frac{2}{3} (1 + 2c_s^2) \frac{\epsilon R_{\text{fs}} H^2 M_p^2}{m_s^2} + \cdots$

Scalar curvature of the field space

Bending radius of the trajectory: $\kappa =$ $\sqrt{2\epsilon}M_p$ **REVISITED…** 1⊥

$$
S_3^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 M_p^2 \frac{\epsilon}{\mathcal{H}} \left(\frac{1}{c_s^2} - 1\right) \left(\zeta'(\partial_i \zeta)^2 + \frac{A}{c_s^2} {\zeta'}^3\right)
$$

with $A = -\frac{1}{2}(1 + c_s^2) + \frac{2}{3}(1 + 2c_s^2) \frac{\epsilon R_{fs} H^2 M_p^2}{m_s^2} - \frac{1}{6}(1 - c_s^2) \left(\frac{\kappa V_{\text{,SSS}}}{m_s^2} + \frac{\kappa \epsilon H^2 M_p^2 R_{\text{fs,s}}}{m_s^2}\right)$

Derivative of the scalar curvature

REVISITED…

Bending radius of the trajectory: $\kappa =$ $\sqrt{2\epsilon}M_{\bm{p}}$

$$
S_3^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 M_p^2 \frac{\epsilon}{\mathcal{H}} \left(\frac{1}{c_s^2} - 1\right) \left(\zeta'(\partial_i \zeta)^2 + \frac{A}{c_s^2} \zeta'^3\right)
$$

with $A = -\frac{1}{2} (1 + c_s^2) + \frac{2}{3} (1 + 2c_s^2) \frac{\epsilon R_{fs} H^2 M_p^2}{m_s^2} - \frac{1}{6} (1 - c_s^2) \left(\frac{\kappa V_{;SSS}}{m_s^2} + \frac{\kappa \epsilon H^2 M_p^2 R_{fs,S}}{m_s^2}\right)$
Previously known

Scalar curvature of the field space Derivative of the

scalar curvature

 $\boldsymbol{\eta}_{\perp}$

Then you can compute f_{nl} in a slow-varying approximation

REVISITED…

Bending radius of the trajectory: $\kappa =$ $\sqrt{2\epsilon}M_p$

$$
S_3^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 M_p^2 \frac{\epsilon}{\mathcal{H}} \left(\frac{1}{c_s^2} - 1\right) \left(\zeta'(\partial_i \zeta)^2 + \frac{A}{c_s^2} \zeta'^3\right)
$$

with $A = -\frac{1}{2}(1 + c_s^2) + \frac{2}{3}(1 + 2c_s^2) \frac{\epsilon R_{\text{fs}} H^2 M_p^2}{m_s^2} - \frac{1}{6}(1 - c_s^2) \left(\frac{\kappa V_{\text{ssss}}}{m_s^2} + \frac{\kappa \epsilon H^2 M_p^2 R_{\text{fs,s}}}{m_s^2}\right)$
Previously known
Scalar curvature of the field space
Derivative of the

$$
f_{\rm nl}^{\rm eq} \simeq \left(\frac{1}{c_s^2} - 1\right) \left(-\frac{85}{324} + \frac{15}{243}A\right)
$$

All contributions matter, none is a priori negligible

scalar curvature

 η_{\perp}

Conditions to integrate out entropic perturbations are fulfilled

Conditions to integrate out entropic perturbations are fulfilled

 Our new formula enables to **compute** $A \simeq -0.33$ **0 without the geometric** $\propto R_{fs}$ contribution

Conditions to integrate out entropic perturbations are fulfilled

 \triangleright Analytical prediction for the whole shape of the bispectrum:

Vs. Numerics? 0.4

Copernicus Webinar, from Paris, September 11th 2020

Conditions to integrate out entropic perturbations are fulfilled

Our new formula enables to **compute**

 $A \simeq -0.33$

 \triangleright Analytical prediction for the whole shape of the bispectrum:

0 without the geometric $\propto R_{fs}$ contribution

HYPERINFLATION THE EFT OF INFLATION

Conditions to integrate out entropic perturbations are fulfilled

- Our new formula enables to **compute** $A \simeq -0.33$ **0** without the geometric $\propto R_{fs}$ contribution
- \triangleright Analytical prediction for the whole shape of the bispectrum:

RECAP OF THIS PART

Generic 2-field inflationary model with curved field space

$$
S = \int \sqrt{-g} \left(\frac{R}{2} - \sum_{a,b} g^{\mu\nu} G_{ab} (\phi^c) \partial_\mu \phi^a \partial_\nu \phi^b - V(\phi^c) \right)
$$

Expanding the action to 3rd order Choice of comoving gauge

$$
\mathcal{L}(\zeta,\mathcal{F})=\mathcal{L}^{(2)}(\zeta,\mathcal{F})+\mathcal{L}_{\text{not simplified}}^{(3)}(\zeta,\mathcal{F})
$$

Integrations by parts Uses of e.o.m.

$$
\mathcal{L}(\zeta,\mathcal{F})=\mathcal{L}^{(2)}(\zeta,\mathcal{F})+\mathcal{L}_{\text{Maldacena}}^{(3)}(\zeta,\chi)+\mathcal{L}_{\text{new}}^{(3)}(\zeta,\mathcal{F})+\mathcal{D}
$$

 $S_{\text{EFT}}[\zeta] = S[\zeta, \mathcal{F}_{\text{heavy}}(\zeta)]$ Expanding the action Trans to 3rd order $\mathcal{L}(\zeta,\mathcal{F})=\mathcal{L}^{(2)}(\zeta,\mathcal{F})+\mathcal{L}_{\text{not simplified}}^{(3)}(\zeta,\mathcal{F})$

 S

RECAP OF THIS PART

Single-field effective theory

Generic 2-field inflationary model with curved field space

$$
= \int \sqrt{-g} \left(\frac{R}{2} - \sum_{a,b} g^{\mu\nu} G_{ab} (\phi^c) \partial_\mu \phi^a \partial_\nu \phi^b - V(\phi^c) \right)
$$

Choice of comoving gauge

Integrations by parts Uses of e.o.m.

$$
\mathcal{L}(\zeta,\mathcal{F})=\mathcal{L}^{(2)}(\zeta,\mathcal{F})+\mathcal{L}^{(3)}_{\text{Maldacena}}(\zeta,\chi)+\mathcal{L}^{(3)}_{\text{new}}(\zeta,\mathcal{F})+\mathcal{D}
$$

REGAP OF THIS PART	Generic 2-field inflationary model with curved field space																		
\n $\text{Single-field effective theory}$ \n	\n $S = \int \sqrt{-g} \left(\frac{R}{2} - \sum_{a,b} g^{\mu\nu} G_{ab} (\phi^c) \partial_\mu \phi^a \partial_\nu \phi^b - V(\phi^c) \right)$ \n																		
\n $S_{EFT}[\zeta] = S[\zeta, \mathcal{F}_{\text{heavy}}(\zeta)]$ \n	\n $\sum_{a,b} \sum_{\substack{a,b \\ \text{dual order}}} \frac{\zeta_{a,b}}{\zeta_{a,b}} \left(\frac{R}{2} - \sum_{a,b} g^{\mu\nu} G_{ab} (\phi^c) \partial_\mu \phi^a \partial_\nu \phi^b - V(\phi^c) \right)$ \n																		
\n $P(X)$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n $C_S \rightarrow 1$ \n	\n <math< td=""></math<>

COL

OUTLOOK 1

- Other signatures of multifield models
	- \triangleright Production of Primordial Black Holes (PBHs) in models with transient turns **[G. Palma, S. Sypsas, C. Zenteno 2020] [J. Fumagalli, S. Renaux-Petel, J. Ronayne, L. Witkowski 2020]**

OUTLOOK 1

- Other signatures of multifield models
	- \triangleright Production of Primordial Black Holes (PBHs) in models with transient turns **[G. Palma, S. Sypsas, C. Zenteno 2020] [J. Fumagalli, S. Renaux-Petel, J. Ronayne, L. Witkowski 2020]**
	- \triangleright Production of secondary Gravitational Waves (GWs) in multifield inflation?

work in progress…

 \triangleright Spectral distorsions in the CMB?

just a thought…
- Other signatures of multifield models
	- \triangleright Production of Primordial Black Holes (PBHs) in models with transient turns **[G. Palma, S. Sypsas, C. Zenteno 2020] [J. Fumagalli, S. Renaux-Petel, J. Ronayne, L. Witkowski 2020]**
	- \triangleright Production of secondary Gravitational Waves (GWs) in multifield inflation?

work in progress…

 \triangleright Spectral distorsions in the CMB?

just a thought…

Extending Maldacena's calculation from 2 to N scalar fields, integrating out N-1 entropic perturbations **[LP 2020]** *soon!*

• Post-inflationary dynamics is relevant in multifields scenarios: $\dot{\zeta} = -$

Observable adiabatic perturbation evolves on super-horizon scales, fed by isocurvature perturbations

Necessary step: study the coupling of scalar fields to cosmological fluids (radiation, dark matter) during reheating, to derive reliable observable predictions!

 $\dot\sigma\eta_\perp$

 ϵM_p^2

 $rac{1}{2}\mathcal{F}+O$

 k^2

 a^2

• Post-inflationary dynamics is relevant in multifields scenarios: $\dot{\zeta} = -$

Observable adiabatic perturbation evolves on super-horizon scales, fed by isocurvature perturbations

Necessary step: study the coupling of scalar fields to cosmological fluids (radiation, dark matter) during reheating, to derive reliable observable predictions!

 \triangleright General formalism + study of isocurvature perturbations to be released soon: **[J. Martin, LP 2020]** *soon!*

 Generic single-field instability at small scales -> copious production of PBHs **[J. Martin, T. Papanikolaou, LP, V. Vennin 2020]** *JCAP 05(2020)003*

 $\dot\sigma\eta_\perp$

 ϵM_p^2

 $rac{1}{2}\mathcal{F}+O$

 k^2

 a^2

• Non-perturbative results during multifield inflation:

Standard Perturbation Theory (classical background + quantum perturbations) breaks down for very light fields

Stochastic inflation

• Non-perturbative results during multifield inflation:

Standard Perturbation Theory (classical background + quantum perturbations) breaks down for very light fields

Stochastic inflation

 \triangleright Heuristic derivation of multifield stochastic inflation with curved field space and explanations of so-called « Inflationary stochastic anomalies » due to the natures of SDEs **[LP, S. Renaux-Petel, Y. Tada 2018]** *Class. Quantum Grav.* **36** 07LT01

• Non-perturbative results during multifield inflation:

Standard Perturbation Theory (classical background + quantum perturbations) breaks down for very light fields

Stochastic inflation

 \triangleright Heuristic derivation of multifield stochastic inflation with curved field space and explanations of so-called « Inflationary stochastic anomalies » due to the natures of SDEs **[LP, S. Renaux-Petel, Y. Tada 2018]** *Class. Quantum Grav.* **36** 07LT01

 \triangleright Rigorous closed-time path integral derivation and resolution of the anomalies **[LP, S. Renaux-Petel, Y. Tada 2020]** *arXiv:2008.07497*

• Non-perturbative results during multifield inflation:

Standard Perturbation Theory (classical background + quantum perturbations) breaks down for very light fields

Stochastic inflation

- \triangleright Heuristic derivation of multifield stochastic inflation with curved field space and explanations of so-called « Inflationary stochastic anomalies » due to the natures of SDEs **[LP, S. Renaux-Petel, Y. Tada 2018]** *Class. Quantum Grav.* **36** 07LT01
- \triangleright Rigorous closed-time path integral derivation and resolution of the anomalies **[LP, S. Renaux-Petel, Y. Tada 2020]** *arXiv:2008.07497*
- \triangleright Many interesting applications to come (would require another 1hr): solving Fokker-Planck, Langevin and non-Markovian dynamics, numerical simulations, etc.

CONCLUSION

 \triangleright Slow-roll single-field inflation challenged: theory or model?

 \triangleright Multifield inflation with curved field space is more generic and motivated by UV completions (string theory compactifications, supergravity…)

 \triangleright Internal geometry plays a role already at the background level: GEOmetrical DEStabilization of Inflation (ERC working group « GEODESI » led by S. Renaux-Petel at IAP)

- \triangleright It crucially affects the physics of linear fluctuations and can shift (n_s, r) predictions by a lot
- \triangleright Non-Gaussianities can be enhanced, thus providing exotic detectable signatures
- \triangleright Step towards the general understanding of Non-Gaussianities of such models: Extending Maldacena's calculation

Single-field effective theory: explicit geometry-dependent f_{nl}

+ interesting prospects

THANKS FOR YOUR ATTENTION!

OF RELEVANT ENTROPIC MASS SCALES

 \triangleright Equation of motion for \mathcal{F} :

$$
\ddot{\mathcal{F}} + 3H\dot{\mathcal{F}} + \left(m_S^2 + \frac{k^2}{a^2}\right)\mathcal{F} = 2\dot{\sigma}\eta_{\perp}\dot{\zeta}
$$

 \triangleright Equation of motion for ζ on large scales:

$$
\dot{\zeta} = -\frac{\dot{\sigma}\eta_{\perp}}{\epsilon M_p^2} \mathcal{F} + O\left(\frac{k^2}{a^2}\right)
$$

 \triangleright Effective equation of motion for $\mathcal F$ on large scales:

$$
\ddot{\mathcal{F}} + 3H\dot{\mathcal{F}} + \left(m_s^2 + 4H^2\eta_\perp^2\right)\mathcal{F} = O\left(\frac{k^2}{a^2}\right)
$$

 $\textit{m}_{s, \text{eff}}^{2}$

Dynamics dictated by:

•
$$
m_s^2
$$

• η_{\perp} and $\dot{\zeta}$

Dynamics dictated by:

• $m_{s, \text{eff}}^2$

GAUGE FIXING

Two scalar degrees of freedom can be fixed by a choice of gauge

2 constrained parameters 4 dynamical scalar d.o.f. 2 can be removed

- > ADM formalism $ds^2 = -N^2 dt^2 + g_{ij} (dx^i + N^i dt) (dx^j + N^j dt)$ with $g_{ij}(t, \vec{x}) = a^2(t)e^{2\boldsymbol{\psi}(t, \vec{x})} \left(\delta_{ij} + \partial_i \partial_j \boldsymbol{E}(t, \vec{x}) \right)$
- \triangleright $\boldsymbol{Q}_{\boldsymbol{\sigma}}(t, \vec{x}) = e^{\sigma}_{\alpha}(t)Q^{\alpha}(t, \vec{x})$ and $\boldsymbol{Q}_{\boldsymbol{s}}(t, \vec{x}) = e^{\sigma}_{\alpha}(t)Q^{\alpha}(t, \vec{x})$, adiabatic and entropic perturbations

GAUGE FIXING

Two scalar degrees of freedom can be fixed by a choice of gauge

2 constrained parameters 4 dynamical scalar d.o.f. 2 can be removed

- > ADM formalism $ds^2 = -N^2 dt^2 + g_{ij} (dx^i + N^i dt) (dx^j + N^j dt)$ with $g_{ij}(t, \vec{x}) = a^2(t)e^{2\boldsymbol{\psi}(t, \vec{x})} \left(\delta_{ij} + \partial_i \partial_j \boldsymbol{E}(t, \vec{x}) \right)$
- \triangleright $\boldsymbol{Q}_{\boldsymbol{\sigma}}(t, \vec{x}) = e^{\sigma}_{\alpha}(t)Q^{\alpha}(t, \vec{x})$ and $\boldsymbol{Q}_{\boldsymbol{s}}(t, \vec{x}) = e^{\sigma}_{\alpha}(t)Q^{\alpha}(t, \vec{x})$, adiabatic and entropic perturbations

RECOVERING P(X) THEORY THE CUBIC EFFECTIVE ACTION

Redundancy of operators

$$
S_3^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 M_p^2 \frac{\epsilon}{c_s^2}
$$

Direct mapping with P(X):

$$
\frac{2\lambda}{\Sigma} = -\left(\frac{1}{c_s^2} - 1\right)A \quad \text{with}
$$
\n
$$
\Sigma = XP_{,X} + 2X^2P_{,XX}
$$
\n
$$
\lambda = X^2P_{,XX} + \frac{2}{3}X^3P_{,XXX}
$$

$$
\begin{pmatrix}\n\frac{g_1}{\mathcal{H}}\zeta^{\prime^3} + \\
\frac{g_2}{\mathcal{G}}\zeta^{\prime^2}\zeta + \\
g_3 c_s^2 \zeta (\partial_i \zeta)^2 + \\
\frac{\tilde{g}_3 c_s^2}{\mathcal{H}} \zeta^{\prime} (\zeta \zeta)^2 + \\
g_4 \zeta^{\prime} \partial_i \partial^{-2} \zeta^{\prime} \partial_i \zeta + \\
g_5 \partial^2 \zeta (\partial_i \partial^{-2} \zeta^{\prime})^2\n\end{pmatrix}
$$

P(X) cubic lagrangian:

 $g_1 =$ 1 c_S^2 $\frac{1}{2} - 1$ (1 + 2*A*) $g_2 =$ 1 $\frac{1}{c_s^2}$ (3($c_s^2 - 1$) + $\epsilon - \eta$ $g_3 =$ 1 c_s^2 $\frac{1}{2}(- (c_s^2 - 1) + \epsilon + \eta - 2s)$ $g_4 =$ -2ϵ $\frac{1}{c_s^2}$ $\left(1 - \frac{1}{c_s^2}\right)$ ϵ 4 $g_5 =$ ϵ^2 $4c_s^2$

Copernicus Webinar, from Paris, September 11th 2020

Lucas Pinol ⁸⁸ **[C. Burrage, R. Ribeiro, D. Seery 2011]**

[X. Chen, M. Huang, S. Kachru, G. Shiu 2008]

Copernicus Webinar, from Paris, September 11th 2020 Lucas Pinol ⁸⁹

THE GELATON CHECK

The gelaton scenario

- \triangleright 2 fields (ϕ, ψ) , curved field-space
- $\triangleright \psi$ is very heavy and adiabatically follows the min of its effective potential
- \triangleright The full field ψ can be integrated out, giving a single-field P(X) theory

Our procedure

- \triangleright Keeping $\bar{\psi}$ at the level of the background
- \triangleright Integrating out heavy entropic fluctuations
- \triangleright Get P(X)-like cubic Lagrangian

THE GELATON CHECK

The gelaton scenario

- \triangleright 2 fields (ϕ, ψ) , curved field-space
- $\triangleright \psi$ is very heavy and adiabatically follows the min of its effective potential
- \triangleright The full field ψ can be integrated out, giving a single-field P(X) theory

Our procedure

- \triangleright Keeping $\bar{\psi}$ at the level of the background
- \triangleright Integrating out heavy entropic fluctuations
- \triangleright Get P(X)-like cubic Lagrangian

Copernicus Webinar, from Paris, September 11th 2020 coperinted webmar, from Faris, September 11th 2020
Lucas Pinol 91

Same P(X) theory!

A more formal solution to $(m_s^2 - \Box) \mathcal{F} = 2 \dot{\sigma} \eta_{\perp} \dot{\zeta}$ is $\mathcal{F}_{\text{heavy}} =$ 1 $m_{\scriptscriptstyle S}^2$ $\overline{2}$ $i=0$ ∞ □ $m_{\rm s}^2$ 2 ι $2\dot{\sigma}\eta_{\perp}\dot{\zeta}$ $m_s^2 - \Box$) $\mathcal{F} = 2\dot{\sigma}\eta_\perp \dot{\zeta}$

For consistency, NLO (i=1) correction must be neglible compared to LO (i=0) in the expansion

 $\square\big(2\dot\sigma\eta_\perp\dot\zeta\big)\ll m_S^2(2\dot\sigma\eta_\perp\dot\zeta)$

 $\mathcal{F}_{\text{heavy}}^{\text{LO}} =$

 $2\dot{\sigma}\eta_{\perp}$

 $\dot{\zeta}$

 $m_{\scriptscriptstyle S}^2$ 2

A more formal solution to $(m_s^2 - \Box) \mathcal{F} = 2 \dot{\sigma} \eta_{\perp} \dot{\zeta}$ is $\mathcal{F}_{\text{heavy}} =$ 1 $m_{\scriptscriptstyle S}^2$ $\overline{2}$ $i=0$ □ m_S^2 $m_s^2 - \Box$) $\mathcal{F} = 2\dot{\sigma}\eta_{\perp}\dot{\zeta}$ is $\mathcal{F}_{\text{heavy}} = \frac{1}{m^2}\sum_{m=1}^{\infty}\left(\frac{\Box}{m^2}\right) 2\dot{\sigma}\eta_{\perp}\dot{\zeta}$

For consistency, NLO (i=1) correction must be neglible compared to LO (i=0) in the expansion

 $\square\big(2\dot\sigma\eta_\perp\dot\zeta\big)\ll m_S^2(2\dot\sigma\eta_\perp\dot\zeta)$

 \triangleright This is verified as soon as: $\frac{\hbar^2 c_s^2}{\hbar^2} \ll m_s^2 c_s^2$ and

∞

 ι

 $\mathcal{F}_{\text{heavy}}^{\text{LO}} =$

 $2\dot{\sigma}\eta_{\perp}$

 $\dot{\zeta}$

 $m_{\scriptscriptstyle S}^2$ 2

[D. Baumann, D. Green 2011] $\omega_{\rm new}^2$

 $k^2 c_s^2$

 $rac{c_S}{a^2} \ll m_S^2 c_S^2$

A more formal solution to $(m_s^2 - \Box) \mathcal{F} = 2 \dot{\sigma} \eta_{\perp} \dot{\zeta}$ is $\mathcal{F}_{\text{heavy}} =$ 1 $m_{\scriptscriptstyle S}^2$ $\overline{2}$ $i=0$ ∞ □ m_S^2 $m_s^2 - \Box$) $\mathcal{F} = 2\dot{\sigma}\eta_{\perp}\dot{\zeta}$ is $\mathcal{F}_{\text{heavy}} = \frac{1}{m^2}\sum_{m=1}^{\infty}\left(\frac{\Box}{m^2}\right) 2\dot{\sigma}\eta_{\perp}\dot{\zeta}$

For consistency, NLO (i=1) correction must be neglible compared to LO (i=0) in the expansion

 ι

 $\mathcal{F}_{\text{heavy}}^{\text{LO}} =$

 $2\dot{\sigma}\eta_{\perp}$

 $\frac{1}{m_s^2}\dot{\zeta}$

A more formal solution to $(m_s^2 - \Box) \mathcal{F} = 2 \dot{\sigma} \eta_{\perp} \dot{\zeta}$ is $\mathcal{F}_{\text{heavy}} =$ 1 $m_{\scriptscriptstyle S}^2$ $\overline{2}$ $i=0$ ∞ □ m_S^2 $m_s^2 - \Box$) $\mathcal{F} = 2\dot{\sigma}\eta_{\perp}\dot{\zeta}$ is $\mathcal{F}_{\text{heavy}} = \frac{1}{m^2}\sum_{m=1}^{\infty}\left(\frac{\Box}{m^2}\right) 2\dot{\sigma}\eta_{\perp}\dot{\zeta}$

For consistency, NLO (i=1) correction must be neglible compared to LO (i=0) in the expansion

 $\square\big(2\dot\sigma\eta_\perp\dot\zeta\big)\ll m_S^2(2\dot\sigma\eta_\perp\dot\zeta)$ \triangleright This is verified as soon as: $\frac{\hbar^2 c_s^2}{\hbar^2} \ll m_s^2 c_s^2$ and \triangleright The EFT is useful only if it is well valid at sound horizon crossing: H^2 $m_S^2c_S^2$ $\frac{1}{2}$ ≪ 1 Adiabaticy conditions $\dot{\eta_{\perp}}$ $\eta_\perp m_{_S}$ 2 ≪ 1 ; $\dot{c_S}$ $c_s m_s$ 2 ≪ 1 $\dot{\eta_{\perp}}$ $\eta_\perp m_S^2$ $\frac{1}{2}$ \lt 1 ; $\ddot{c_S}$ $c_s m_s^2$ $\frac{1}{2}$ ≪ 1 **[S. Céspedes, V. Atal, G. Palma 2012]** $k^2 c_s^2$ $rac{c_S}{a^2} \ll m_S^2 c_S^2$ [D. Baumann, D. Green 2011] $\omega_{\rm new}^2$

 ι

 $\mathcal{F}_{\text{heavy}}^{\text{LO}} =$

 $2\dot{\sigma}\eta_{\perp}$

 $\frac{1}{m_s^2}\dot{\zeta}$

V. HYPERINFLATION

MULTIFIELD INSTABILITY AND SINGLE-FIELD EFFECTIVE THEORY

[Fumagalli, Garcia-Saenz, Pinol, Renaux-Petel, Ronayne 2019] *Phys. Rev. Lett. 123, 201302*

 \Box Embedding of the hyperbolic plane in 3D Radial trajectory **Hyperinflation trajectory**

HYPERINFLATION BACKGROUND ANALYSIS

Angular momentum $J = a^3 M^2 \sinh^2 \left(\frac{\phi}{M} \right)$ \overline{M} $\dot{\chi}$

 \geq $J = 0$ radial trajectory: geodesic, effectively single-field

Potentially unstable: $m_{s,eff}^2 \simeq$ h^2 V' $9MH²$ V' $\frac{1}{M H^2} - 9$

With steep potentials,

 \Box Embedding of the hyperbolic plane in 3D Radial trajectory **Hyperinflation trajectory**

HYPERINFLATION BACKGROUND ANALYSIS

Angular momentum $J = a^3 M^2 \sinh^2 \left(\frac{\phi}{M} \right)$ \overline{M} $\dot{\chi}$

 \geq $J = 0$ radial trajectory: geodesic, effectively single-field

Potentially unstable: $m_{s,eff}^2 \simeq V'$ $9MH²$ V' $\frac{1}{M H^2} - 9$

 $\geq 1 \neq 0$ spiraling (sidetracked) tajectory: hyperinflation

With steep potentials, the sidetracked phase is the attractor

 \Box Embedding of the hyperbolic plane in 3D Radial trajectory **Hyperinflation trajectory**

HYPERINFLATION BACKGROUND ANALYSIS

Angular momentum $J = a^3 M^2 \sinh^2 \left(\frac{\phi}{M} \right)$ \overline{M} $\dot{\chi}$

 $\geq 1 = 0$ radial trajectory: geodesic, effectively single-field

Potentially unstable: $m_{s,eff}^2 \simeq V'$ $9MH²$ V' $\frac{1}{M H^2} - 9$

 $\geq 1 \neq 0$ spiraling (sidetracked) tajectory: hyperinflation

swampland conjectures, naturalness, eta problem

 $M|V''$

 $\frac{1}{V'} \ll 1$

$$
\epsilon, \eta \ll 1 \Rightarrow \frac{3M^2}{M_p^2} < \frac{MV'}{V} \ll 1
$$
 and

Exercise Embedding of the hyperbolic plane in 3D Radial trajectory **Hyperinflation trajectory**

X
Destabi- lization
Hyperbolic field space
$R_{fs} = -\frac{4}{M^2}, \quad M \ll M_p$

We compute $\eta_{\perp}^2 \approx h^2$ $\epsilon R_{fs} M_p^2 \approx -h^2$ $V_{;SS}/H^2 \ll 1$

 m_S^2 $\frac{m_S}{H^2} \approx -2h^2 < 0$ $m_{\mathsf{s,eff}}^2$ $\frac{c_{\rm S,eff}}{H^2} \approx 2h^2 > 0$ $\begin{cases} \epsilon R_{fs} M_p^2 \approx -h^2 \qquad \Rightarrow \qquad \frac{m_{s,eff}^2}{H^2} \approx 2h^2 > 0 \qquad \qquad \text{Stable, decaying} \text{super-Hubble perturbations} \end{cases}$

Unstable, growing sub-Hubble perturbations

Stable, decaying

Copernicus Webinar, from Paris, September 11th 2020 coperinted webmar, from Faris, September 11th 2020
Lucas Pinol 101

Copernicus Webinar, from Paris, September 11th 2020 Lucas Pinol 1993, September 11th 2020
Lucas Pinol 102

HYPERINFLATION SINGLE-FIELD EFFECTIVE THEORY

 \triangleright Equation of motion for \mathcal{F} :

and tachyonic

$$
\ddot{\mathbf{X}} + 3\mathbf{X}\dot{\mathbf{X}} + \left(m_s^2 + \frac{\mathbf{Y}}{a\mathbf{X}}\right)\mathbf{F} = 2\dot{\sigma}\eta_{\perp}\dot{\zeta}
$$
\n***F** is 'heavy'
\nand tachyonic
\n
$$
\mathbf{F}_{\text{heavy}} = -\frac{2\dot{\sigma}\eta_{\perp}}{|m_s^2|}\dot{\zeta} \qquad \omega^2, \omega H, \frac{k^2}{a^2} \ll |m_s^2|
$$*

Effective single-field action for the curvature perturbation

$$
S_2^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 \epsilon \left(\frac{\zeta'^2}{c_s^2} - (\partial_i \zeta)^2\right)
$$

Integrate out the heavy perturbation

Like in the Fermi theory: Integrate out the heavy W, Z bosons and consider contact interactions for fermions

HYPERINFLATION SINGLE-FIELD EFFECTIVE THEORY

 \triangleright Equation of motion for \mathcal{F} :

 \mathbf{F} i

and tachyonic

$$
\ddot{\mathbf{x}} + 3\mathbf{x}\dot{\mathbf{r}} + \left(m_s^2 + \frac{\dot{\mathbf{x}}^2}{\alpha \dot{\mathbf{x}}}\right)\mathbf{F} = 2\dot{\sigma}\eta_{\perp}\dot{\zeta}
$$

\n**s'heavy'**
\n
$$
\mathbf{fcaryonic}
$$
\n
$$
\mathbf{F}_{\text{heavy}} = -\frac{2\dot{\sigma}\eta_{\perp}}{|m_s^2|}\dot{\zeta}
$$
\n
$$
\omega^2, \omega H, \frac{k^2}{\alpha^2} \ll |m_s^2|
$$
\n
$$
\text{Effective single field action for the curvature partition.}
$$

Effective single-field action for the curvature perturbation

$$
S_2^{\text{EFT}}[\zeta] = \int d\tau d^3x a^2 \epsilon \left(\frac{\zeta'^2}{c_s^2} - (\partial_i \zeta)^2\right)
$$

$$
\frac{1}{c_s^2} = 1 - \frac{4H^2\eta_{\perp}^2}{|m_s^2|} \simeq -1 \qquad \qquad \frac{\zeta_{\text{growing}}(\tau) \sim \alpha e^{k|c_s|\tau + x}}{\zeta_{\text{decaying}}(\tau) \sim i\alpha e^{-(k|c_s|\tau + x)}}
$$

History of scales

\nE

\n
$$
\begin{array}{c}\n \mathbf{E} \\
 \hline\n M_p \\
 \mathbf{m}_s\n \end{array}
$$
\ntime

\nH

\nEnergy of the "experiment" $H \ll m_s$

Integrate out the heavy perturbation

Like in the Fermi theory: Integrate out the heavy W, Z bosons and consider contact interactions for fermions

HYPERINFLATION BISPECTRUM USING EFT

Effective single-field cubic action

$$
S_{(3)}^{EFT}[\zeta] = \int d\tau d^3x \ a \frac{\epsilon}{H} M_p^2 \left(\frac{1}{c_s^2} - 1\right) \left(\zeta'(\partial_i \zeta)^2 + \frac{A}{c_s^2} {\zeta'}^3\right)
$$

No exponential enhancement of
$$
f_{NL} \sim \frac{<\zeta^3>}{<\zeta^2>^2}
$$

$$
f_{\rm NL}^{\rm flat} = \frac{5}{576} \left(\frac{1}{|c_s^2|} + 1 \right) (39(A - 1) + 12x^2 + 4(A + 1)x^3)
$$

$$
\zeta_{\rm grown} \sim \alpha e^x
$$

$$
+\longrightarrow +\frac{1}{\mathcal{H}^{(3)}} + \infty \alpha^4 e^{4x}
$$

Need to contract one decaying mode

Growing modes are purely real

$$
f_{\text{NL}}^{\text{flat}} \sim 0(50)
$$
 \leftarrow Cubic polynomial in *x* with
if $A \sim 1$ $x \sim 10$ in hyperinflation **S**.

[S. Garcia-Saenz, S. Renaux-Petel 2018]

HYPERINFLATION OTHER PHENOMENOLOGICAL ASPECTS

 \triangleright Estimation of higher n-point functions with the EFT of inflation

We find enhanced flattened configurations: $\frac{<\zeta^n>}{\zeta^n}$ $< \zeta^2 >^{n-1}$ ∝ 1 c_{S} $\frac{1}{2} + 1 x^3$

 $n-2$

HYPERINFLATION OTHER PHENOMENOLOGICAL ASPECTS

 \triangleright Estimation of higher n-point functions with the EFT of inflation

We find enhanced flattened configurations: $\langle \zeta^n \rangle$ $< \zeta^2 >^{n-1}$ ∝ 1 c_{S} $\frac{1}{2} + 1 x^3$ $n-2$

Primordial gravitational waves are strongly suppressed *at tree level*

Scalar loops could induce large corrections at small scales probed by LISA (Work in progress)

HYPERINFLATION OTHER PHENOMENOLOGICAL ASPECTS

 \triangleright Estimation of higher n-point functions with the EFT of inflation

We find enhanced flattened configurations: $\langle \zeta^n \rangle$ $< \zeta^2 >^{n-1}$ ∝ 1 c_{S} $\frac{1}{2} + 1 x^3$ $n-2$

Primordial gravitational waves are strongly suppressed *at tree level*

Scalar loops could induce large corrections at small scales probed by LISA (Work in progress)

 If the large bending is only transient, then only scales in the instability band *at that time* are enhanced

If that happens after CMB scales have exited horizon, could produce PBHs without affecting CMB

[Fumagalli, Renaux-Petel, Ronayne, Witkowski 2020]

Copernicus Webinar, from Paris, September 11th 2020 coperinted webmar, from Faris, September 11th 2020
Lucas Pinol 110