This talk is mainly based on Lin, Chen and Mack (2021), accepted by ApJ, arXiv: 2102.05701

UNCALIBRATED COSMIC STANDARDS (UCS) & EARLY-PHYSICS INSENSITIVE H₀ DETERMINATIONS

Weikang Lin

(Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Tsung-Dao Lee Prize Postdoctoral Fellow)

Collaborators: Xingang Chen (Harvard), Katie Mack (NC State)

Copernicus Webinar and Seminar Series 10/22/2021

OUTLINES

- Introduction
 - Why we need early-universe physics independent constraints?
 - \circ Matter density fraction Ω_m is as important as H_0 .
- Uncalibrated Cosmic Standards (UCS)
 - o Standard rulers without 'calibrated by early physics' and SNe Ia without calibration.
 - \circ Robust constraints on Ω_m .
- Pre-recombination-physics insensitive H₀ results.
 - o Results and assumption list.

Why we need early-physics independent methods?

• To verify early-time resolutions to tensions, e.g., the Hubble tension.

(Note H0 tension refers to that between Planck and Cepheid-based measurements)

To better understand the underlying assumptions of each probe/result.

Release strong assumptions; Robustness is more important than precession.

To test late-time models independent of early-time physics/systematics.

Many situations need early-time physics independent constraints.

Brief review: early-physics (pre-recombination) resolutions to H₀ tension

Baryon or photons interacting with Dark matters

(Dvorkin et al 2013, Boddy etal 2018)

Nonstandard recombination:

Chiang and Slosar (2018)
But see Liu et al (2019) arXiv:1912.00190

Increase early expansion:

- ☐ Energy injection
 - Early Dark Energy (Poulin et al 2019)
- Radiation
 - Interacting Neutrinos (Kreisch et al 2019)

A universal prediction for pre-recombination resolutions

If pre-recombination physics alone can fully resolve the Hubble tension.

All post-recombination determinations of H_0 [km/s/Mpc] using post-recombination Λ CDM are closer to \sim 73 than to \sim 68.

Probes that measure the background

Take-home message 1: Do not ignore Ω_m

- RESULTS ARE PRESENTED INDEPENDENTLY.
- EFFECTIVELY SEE THE MODEL DEPENDENCES.
- CONSISTENCY IS MORE ROBUST.

Taking out CMB and BAOs

But what about CMB and BAO?

Analyzing CMB and BAO in an early-physics insensitive way

Uncalibrated BAO is well-known:

$$\theta_d(z) = \frac{r_{\rm d}H_0}{f(z;\,\Omega_{\rm m})}$$

We add to it the Uncalibrated horizon for CMB:

$$\theta_* = \frac{r_* H_0}{f(z_*; \Omega_{\rm m})}$$

Linking the two horizon:

$$r_{\rm d}H_0 - r_*H_0 = \int_{z_d}^{z_*} \frac{c_{\rm s}(z)}{E(z)} dz$$

Also well known: uncalibrated Type Ia Supernovae measures Ω_m

$$\ln l = -2 \ln \left[(1+z) f_{\rm M}(z; \, \Omega_{\rm m}, \cdots) \right] + \ln (L H_0^2 / 4\pi)$$

Take-home message 2: a strong and robust constraint constraint on Ω_m , nearly independent of early-physics

$$\Omega_{\rm m} = 0.302 \pm 0.008$$

Compared to $0.006 \sim 0.007$ in Planck full ΛCDM analysis

Robustness of UCS to early-universe physics

Key: the fact that $r_* \sim r_d$ is insensitive to pre-recombination physics.

10% change in $\Delta r H_0$ only make 0.36% change in Ω_m

$$r_{\rm d}H_0 - r_*H_0 = \int_{z_d}^{z_*} \frac{c_{\rm s}(z)}{E(z)} dz$$

Ways to change $\Delta r H_0$	In order to change $\Delta r H_0$ by 10%
1. Change sound speed	e.g. >50% change in $\Omega_b h^2$
2. E(z)	20% change in the energy content
3. Δ <i>z</i>	10% change in Δz , different from the standard case by 6σ
4. Z _*	The required change to Z_* is too large! (>100)
5. $ heta_*$ itself?	$ heta_*$ is almost a direct measurement, using $ heta$ from Planck or ACT is consistent

UCS only provides a strong prior on Ω_m . To determine $H_{0,}$ we need other information

- Cosmic chronometer (Moresco et al. 2016; Moresco & Marulli 2017; Moresco et al. 2020)
- Y-ray optical depth (Gould & Schre'der 1966; Ackermann et al. 2012; H.E.S.S. Collaboration & others 2013; Biteau & Williams 2015; Dom'inguez et al. 2019)
- Age of the universe (Jimenez et al. 2019; Bernal et al. 2021; Boylan-Kolchin & Weisz 2021; Valcin et al. 2021)
- Large-scale-structure + BBN (Lin & Ishak 2017; Baxter & Sherwin (2020); Philcox et al. (2021); Pogosian et al. 2020; CMB LENSING + DES YEAR 1)

Methods	H ₀ (km/s/Mpc)		n - σ from R21	
UCS+individual non-local observation	Without $ heta_{ m cmb}$	With $ heta_{ m cmb}$	Without $ heta_{ m cmb}$	With $ heta_{ m cmb}$
Cosmic Chronometers				
Current public data	69.1 ± 1.7	68.8 ± 1.6	1.9σ	2.1σ
Extra systematic	69.4 ± 2.3	$\boldsymbol{69.2 \pm 2.1}$	1.4σ	1.6σ
Extra systematic, conservative	69.3 ± 3.4	$\textbf{68.9} \pm \textbf{3.3}$	1.1σ	1.2σ
γ -ray optical depth	66.2 ± 3.5	66.1 ± 3.4	1.9σ	2.0σ
Cosmic Age				
$t_{ m U}=13.5\pm0.27{ m Gyr}\dots$	70.2 ± 1.7	69.8 ± 1.5	1.4σ	1.7σ
$t_{ m U}=13.5\pm0.33{ m Gyr}\dots$	70.3 ± 2.1	$\boldsymbol{69.8 \pm 1.9}$	1.2σ	1.5σ
CMBlens+DES+BBN	68.8 ± 2.4	68.6 ± 2.0	1.6σ	1.9σ
UCS+joint non-local observations ^a				
All non-local observations	69.1 ± 1.5	$\textbf{68.8} \pm \textbf{1.3}$	2.0σ	$\boldsymbol{2.4\sigma}$
Non-local observations without cosmic age	68.3 ± 1.9	$\textbf{68.1} \pm \textbf{1.6}$	2.1σ	2.5σ
Non-local observations without LSS	69.1 ± 1.6	68.8 ± 1.5	2.0σ	2.2σ
Time-delay strong-lensing b				
TDCOSMO (Millon et al. 2020)		74.2 ± 1.6		
TDCOSMO+SLACS (Birrer, S. et al. 2020)		$67.4_{-3.2}^{+4.1}$		
Local measurements ^c (distance ladder)				
Cepheid+SN Ia (Riess et al. 2021)		73.2 ± 1.3		
TRGB+SN Ia (a) (Freedman et al. 2020)		69.8 ± 1.9		
TRGB+SN Ia (b) (Yuan et al. 2019)		72.4 ± 2.0		
TRGB+SN Ia (c) (Soltis et al. 2021)		72.1 ± 2.0		
Mira+SN Ia (Huang et al. 2020)		73.3 ± 3.9		
Cepheid+SBF+SN Ia (Khetan et al. 2021)		70.5 ± 4.1		
Cepheid/TRGB+SBF (Blakeslee et al. 2021)		73.3 ± 2.5		
Cepheid/TRGB+TFR (Kourkchi et al. 2020; Schombert et al. 2020)		76.0 ± 2.5		
Cepheid/TRGB+SN II (de Jaeger et al. 2020)		$75.8^{+5.2}_{-4.9}$		
Local measurements (non-distance ladder)				
Megamaser Cosmology Project (Pesce et al. 2020)		73.9 ± 3.0		
Standard siren multi-messenger (The LIGO Scientific Collaboration et al. 2021)		69^{+16}_{-8}		

Several results with reduced sensitivity to early physics consistently favor lower value of H_{0} .

There appears to be a tension between nonlocal versus local H₀ determinations

Take-home message 3: Several H₀ results with reduced sensitivity to early physics still favor lower value.

A universal prediction for pre-recombination resolutions

If pre-recombination physics alone can fully resolve the Hubble tension.

All post-recombination determinations of H_0 [km/s/Mpc] using post-recombination Λ CDM are closer to ~73 than to ~68.

Disfavored

Disfavored

The analysis here is complementary to and agree with Jedamzik, Pogosian and Zhao (2021): Early-universe resolutions tend to worsen the σ_8 tension.

Underlying assumptions of our results

Results	Assumptions
Ω_m	1. Post-recombination ΛCDM
	2. Standard rulers/candles have some time-independent features
	3. Physics during the small redshift gap (z_* to z_d) not too different from the standard
H _o	(a) All above
Type 1 (UCS+Astro)	(b1) The treatments of the corresponding astrophysical effects
Type 2 (UCS+LSS)	Raised sensitivity to early physics (but still reduced to a large extent and not relying on sound horizon)
	(c1) The dependence of the matter power on $\Omega_m h$; horizon scale at radiation-matter equality
	(c2) BBN constraint on $\Omega_b h^2$ (but weak dependence)

See 2102.05701 and references wherein for detailed discussions

Use UCS as test to late-time models

ADVANTAGES:

 Free from biases due to possible early-time nonstandard physics or systematic errors in the CMB;

Minimal assumptions with remained constraining power.

Beyond the Hubble tension

- There are many situations that require to know Ω_m , e.g., large scale structure and the σ_8 tension;
 - -- Recall that cosmology was called "a search of two numbers".

• Whenever you need an early-universe-physics insensitive prior of Ω_m using UCS!

Now
$$\Omega_m = 0.302 \pm 0.008$$

SUMMARY

• Take-home 1-- Don't ignore Ω_m : Important to look at Ω_m and ${\rm H_0}$ simultaneously.

• Take-home 2 – UCS robustly tells us Ω_m : Releases $r_{\!\scriptscriptstyle S}$ and use UCS in data, $\Omega_m=0.302\pm0.008$.

Take-home 3 -- Early-time physics cannot fully resolve H₀ tension:
 The tension appears to be between nonlocal versus local, instead of the often quoted pre-recombination vs post-recombination.