This talk is mainly based on Lin, Chen and Mack (2021), accepted by ApJ, arXiv: 2102.05701 # UNCALIBRATED COSMIC STANDARDS (UCS) & EARLY-PHYSICS INSENSITIVE H₀ DETERMINATIONS Weikang Lin (Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Tsung-Dao Lee Prize Postdoctoral Fellow) Collaborators: Xingang Chen (Harvard), Katie Mack (NC State) Copernicus Webinar and Seminar Series 10/22/2021 #### **OUTLINES** - Introduction - Why we need early-universe physics independent constraints? - \circ Matter density fraction Ω_m is as important as H_0 . - Uncalibrated Cosmic Standards (UCS) - o Standard rulers without 'calibrated by early physics' and SNe Ia without calibration. - \circ Robust constraints on Ω_m . - Pre-recombination-physics insensitive H₀ results. - o Results and assumption list. ### Why we need early-physics independent methods? • To verify early-time resolutions to tensions, e.g., the Hubble tension. (Note H0 tension refers to that between Planck and Cepheid-based measurements) To better understand the underlying assumptions of each probe/result. Release strong assumptions; Robustness is more important than precession. To test late-time models independent of early-time physics/systematics. Many situations need early-time physics independent constraints. ### Brief review: early-physics (pre-recombination) resolutions to H₀ tension Baryon or photons interacting with Dark matters (Dvorkin et al 2013, Boddy etal 2018) Nonstandard recombination: Chiang and Slosar (2018) But see Liu et al (2019) arXiv:1912.00190 #### Increase early expansion: - ☐ Energy injection - Early Dark Energy (Poulin et al 2019) - Radiation - Interacting Neutrinos (Kreisch et al 2019) ### A universal prediction for pre-recombination resolutions If pre-recombination physics alone can fully resolve the Hubble tension. All post-recombination determinations of H_0 [km/s/Mpc] using post-recombination Λ CDM are closer to \sim 73 than to \sim 68. #### Probes that measure the background # Take-home message 1: Do not ignore Ω_m - RESULTS ARE PRESENTED INDEPENDENTLY. - EFFECTIVELY SEE THE MODEL DEPENDENCES. - CONSISTENCY IS MORE ROBUST. #### Taking out CMB and BAOs But what about CMB and BAO? #### Analyzing CMB and BAO in an early-physics insensitive way Uncalibrated BAO is well-known: $$\theta_d(z) = \frac{r_{\rm d}H_0}{f(z;\,\Omega_{\rm m})}$$ We add to it the Uncalibrated horizon for CMB: $$\theta_* = \frac{r_* H_0}{f(z_*; \Omega_{\rm m})}$$ Linking the two horizon: $$r_{\rm d}H_0 - r_*H_0 = \int_{z_d}^{z_*} \frac{c_{\rm s}(z)}{E(z)} dz$$ # Also well known: uncalibrated Type Ia Supernovae measures Ω_m $$\ln l = -2 \ln \left[(1+z) f_{\rm M}(z; \, \Omega_{\rm m}, \cdots) \right] + \ln (L H_0^2 / 4\pi)$$ Take-home message 2: a strong and robust constraint constraint on Ω_m , nearly independent of early-physics $$\Omega_{\rm m} = 0.302 \pm 0.008$$ Compared to $0.006 \sim 0.007$ in Planck full ΛCDM analysis # Robustness of UCS to early-universe physics Key: the fact that $r_* \sim r_d$ is insensitive to pre-recombination physics. 10% change in $\Delta r H_0$ only make 0.36% change in Ω_m $$r_{\rm d}H_0 - r_*H_0 = \int_{z_d}^{z_*} \frac{c_{\rm s}(z)}{E(z)} dz$$ | Ways to change $\Delta r H_0$ | In order to change $\Delta r H_0$ by 10% | |-------------------------------|--| | 1. Change sound speed | e.g. >50% change in $\Omega_b h^2$ | | 2. E(z) | 20% change in the energy content | | 3. Δ <i>z</i> | 10% change in Δz , different from the standard case by 6σ | | 4. Z _* | The required change to Z_* is too large! (>100) | | 5. $ heta_*$ itself? | $ heta_*$ is almost a direct measurement, using $ heta$ from Planck or ACT is consistent | # UCS only provides a strong prior on Ω_m . To determine $H_{0,}$ we need other information - Cosmic chronometer (Moresco et al. 2016; Moresco & Marulli 2017; Moresco et al. 2020) - Y-ray optical depth (Gould & Schre'der 1966; Ackermann et al. 2012; H.E.S.S. Collaboration & others 2013; Biteau & Williams 2015; Dom'inguez et al. 2019) - Age of the universe (Jimenez et al. 2019; Bernal et al. 2021; Boylan-Kolchin & Weisz 2021; Valcin et al. 2021) - Large-scale-structure + BBN (Lin & Ishak 2017; Baxter & Sherwin (2020); Philcox et al. (2021); Pogosian et al. 2020; CMB LENSING + DES YEAR 1) | Methods | H ₀ (km/s/Mpc) | | n - σ from R21 | | |--|---------------------------|----------------------------------|--------------------------|--------------------------| | UCS+individual non-local observation | Without $ heta_{ m cmb}$ | With $ heta_{ m cmb}$ | Without $ heta_{ m cmb}$ | With $ heta_{ m cmb}$ | | Cosmic Chronometers | | | | | | Current public data | 69.1 ± 1.7 | 68.8 ± 1.6 | 1.9σ | 2.1σ | | Extra systematic | 69.4 ± 2.3 | $\boldsymbol{69.2 \pm 2.1}$ | 1.4σ | 1.6σ | | Extra systematic, conservative | 69.3 ± 3.4 | $\textbf{68.9} \pm \textbf{3.3}$ | 1.1σ | 1.2σ | | γ -ray optical depth | 66.2 ± 3.5 | 66.1 ± 3.4 | 1.9σ | 2.0σ | | Cosmic Age | | | | | | $t_{ m U}=13.5\pm0.27{ m Gyr}\dots$ | 70.2 ± 1.7 | 69.8 ± 1.5 | 1.4σ | 1.7σ | | $t_{ m U}=13.5\pm0.33{ m Gyr}\dots$ | 70.3 ± 2.1 | $\boldsymbol{69.8 \pm 1.9}$ | 1.2σ | 1.5σ | | CMBlens+DES+BBN | 68.8 ± 2.4 | 68.6 ± 2.0 | 1.6σ | 1.9σ | | UCS+joint non-local observations ^a | | | | | | All non-local observations | 69.1 ± 1.5 | $\textbf{68.8} \pm \textbf{1.3}$ | 2.0σ | $\boldsymbol{2.4\sigma}$ | | Non-local observations without cosmic age | 68.3 ± 1.9 | $\textbf{68.1} \pm \textbf{1.6}$ | 2.1σ | 2.5σ | | Non-local observations without LSS | 69.1 ± 1.6 | 68.8 ± 1.5 | 2.0σ | 2.2σ | | Time-delay strong-lensing b | | | | | | TDCOSMO (Millon et al. 2020) | | 74.2 ± 1.6 | | | | TDCOSMO+SLACS (Birrer, S. et al. 2020) | | $67.4_{-3.2}^{+4.1}$ | | | | Local measurements ^c (distance ladder) | | | | | | Cepheid+SN Ia (Riess et al. 2021) | | 73.2 ± 1.3 | | | | TRGB+SN Ia (a) (Freedman et al. 2020) | | 69.8 ± 1.9 | | | | TRGB+SN Ia (b) (Yuan et al. 2019) | | 72.4 ± 2.0 | | | | TRGB+SN Ia (c) (Soltis et al. 2021) | | 72.1 ± 2.0 | | | | Mira+SN Ia (Huang et al. 2020) | | 73.3 ± 3.9 | | | | Cepheid+SBF+SN Ia (Khetan et al. 2021) | | 70.5 ± 4.1 | | | | Cepheid/TRGB+SBF (Blakeslee et al. 2021) | | 73.3 ± 2.5 | | | | Cepheid/TRGB+TFR (Kourkchi et al. 2020; Schombert et al. 2020) | | 76.0 ± 2.5 | | | | Cepheid/TRGB+SN II (de Jaeger et al. 2020) | | $75.8^{+5.2}_{-4.9}$ | | | | Local measurements (non-distance ladder) | | | | | | Megamaser Cosmology Project (Pesce et al. 2020) | | 73.9 ± 3.0 | | | | Standard siren multi-messenger (The LIGO Scientific Collaboration et al. 2021) | | 69^{+16}_{-8} | | | Several results with reduced sensitivity to early physics consistently favor lower value of H_{0} . There appears to be a tension between nonlocal versus local H₀ determinations Take-home message 3: Several H₀ results with reduced sensitivity to early physics still favor lower value. ### A universal prediction for pre-recombination resolutions If pre-recombination physics alone can fully resolve the Hubble tension. All post-recombination determinations of H_0 [km/s/Mpc] using post-recombination Λ CDM are closer to ~73 than to ~68. Disfavored Disfavored The analysis here is complementary to and agree with Jedamzik, Pogosian and Zhao (2021): Early-universe resolutions tend to worsen the σ_8 tension. # Underlying assumptions of our results | Results | Assumptions | |-----------------------|--| | Ω_m | 1. Post-recombination ΛCDM | | | 2. Standard rulers/candles have some time-independent features | | | 3. Physics during the small redshift gap (z_* to z_d) not too different from the standard | | | | | H _o | (a) All above | | Type 1
(UCS+Astro) | (b1) The treatments of the corresponding astrophysical effects | | Type 2
(UCS+LSS) | Raised sensitivity to early physics (but still reduced to a large extent and not relying on sound horizon) | | | (c1) The dependence of the matter power on $\Omega_m h$; horizon scale at radiation-matter equality | | | (c2) BBN constraint on $\Omega_b h^2$ (but weak dependence) | See 2102.05701 and references wherein for detailed discussions #### Use UCS as test to late-time models #### **ADVANTAGES:** Free from biases due to possible early-time nonstandard physics or systematic errors in the CMB; Minimal assumptions with remained constraining power. # Beyond the Hubble tension - There are many situations that require to know Ω_m , e.g., large scale structure and the σ_8 tension; - -- Recall that cosmology was called "a search of two numbers". • Whenever you need an early-universe-physics insensitive prior of Ω_m using UCS! Now $$\Omega_m = 0.302 \pm 0.008$$ #### **SUMMARY** • Take-home 1-- Don't ignore Ω_m : Important to look at Ω_m and ${\rm H_0}$ simultaneously. • Take-home 2 – UCS robustly tells us Ω_m : Releases $r_{\!\scriptscriptstyle S}$ and use UCS in data, $\Omega_m=0.302\pm0.008$. Take-home 3 -- Early-time physics cannot fully resolve H₀ tension: The tension appears to be between nonlocal versus local, instead of the often quoted pre-recombination vs post-recombination.