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Constraints on inflation from Planck Resolution of the horizon problem through inflation

Bringing the modes inside the Hubble radius through inflation
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The physical wavelength λP ∝ a (in blue) and the Hubble radius dH = H−1 (in red) in the
inflationary scenario1. The scale factor is expressed in terms of e-folds N as a(N) ∝ eN .

1See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing Company,
New York, 1990), Fig. 8.4.
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Constraints on inflation from Planck Achieving inflation with scalar fields

A variety of inflationary potentials to choose from

A variety of scalar field potentials have been considered to drive inflation2. Often, these
potentials are classified as small field, large field and hybrid models.

2Image from W. Kinney, astro-ph/0301448.
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Constraints on inflation from Planck Constraints on the primordial power spectra

CMB angular power spectrum from Planck
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The CMB TT angular power spectrum from the Planck 2018 data (red dots with error bars)
and the best fit ΛCDM model with a power law primordial spectrum (solid blue curve)3.

3Planck Collaboration (N. Aghanim et al.), Astron. Astrophys. 641, A6 (2020).
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Constraints on inflation from Planck Constraints on the primordial power spectra

Performance of inflationary models in the ns-r plane
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Joint constraints on ns and r0.002 from Planck in combination with other data sets, com-
pared to the theoretical predictions of some of the popular inflationary models4.

4Planck Collaboration (Y. Akrami et al.), Astron. Astrophys. 641, A10 (2020).
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Constraints on inflation from Planck Does the primordial scalar power spectrum contain features?

Spectra leading to an improved fit to the CMB data
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The scalar power spectra (on the left) arising in different inflationary models (on the right)
that lead to a better fit to the CMB data than the conventional power law spectrum5.

5R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 01, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 10, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, Phys. Rev. D 87, 083526 (2013).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Potentials admitting ultra slow roll inflation

10−7

10−3

−10

0

10

10 20 30 40 50 60

N

−102

102

ǫ 3
ǫ 2

ǫ 1

−1 0 1 2 3 4 5 6
φ/MPl

−3

−2

−1

0

1

2

3

φ
N
/M

P
l

Potentials leading to ultra slow roll inflation (with x = φ/v, v being a constant)6:

USR1 : V (φ) = V0
6x2 − 4αx3 + 3x4

(1 + β x2)2
,

USR2 : V (φ) = V0

{
tanh

(
φ√

6M
Pl

)
+A sin

[
tanh

[
φ/
(√

6M
Pl

)]
fφ

]}2

.

6J. Garcia-Bellido and E. R. Morales, Phys. Dark Univ. 18, 47 (2017);
I. Dalianis, A. Kehagias and G. Tringas, JCAP 01, 037 (2019).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Potentials permitting punctuated inflation
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(
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7D. Roberts, A. R. Liddle and D. H. Lyth, Phys. Rev. D 51, 4122 (1995);
R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 01, 009 (2009);
I. Dalianis, A. Kehagias and G. Tringas, JCAP 01, 037 (2019).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Constructing scenarios of ultra slow roll and punctuated inflation
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Behavior of the first slow roll parameter ε1(N) leading to ultra slow and punctuated inflation8:

RSI : εI1(N) = [ε1a (1 + ε2aN)]

[
1− tanh

(
N −N1

∆N1

)]
+ ε1b + exp

(
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)
,

RSII : εII1 (N) = εI1(N) + cosh−2
(
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)
.

8H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Role of the intrinsic entropy perturbation
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The evolution of the amplitudes of the imaginary parts of the curvature perturbation Rk
(on the left) and the corresponding intrinsic entropy perturbation Sk (on the right) for the
wave numbers k = (1010, 1011, 1014) Mpc−1 (in light, lime and dark green) in USR29

9S. M. Leach, M. Sasaki, D. Wands, and A. R. Liddle, Phys. Rev. D 64, 023512 (2001);
R. K. Jain, P. Chingangbam, and L. Sriramkumar, JCAP 10 003 (2007).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Power spectra in the inflationary models and reconstructed scenarios
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The scalar and the tensor power spectra arising in the various inflationary models (in red
and blue on the left) and the reconstructed scenarios (in blue, green and orange, on the
right)10.

10H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Enhancing power on small scales Generating features in two field models

The two field model of interest

It has been noticed that two scalar fields φ and χ governed by the following action:

S[φ, χ] =

∫
d4x
√−g

[
−1

2
∂µφ∂µφ−

f(φ)

2
∂µχ∂µ − V (φ, χ)

]
described by the potential

V (φ, χ) = V0
φ2

φ2
0 + φ2

+
m2
χ

2
χ2

and the non-canonical coupling functions

f1(φ) = e2 b1 φ or f2(φ) = e2 b2 φ2

can lead to features in the scalar power spectrum11.

11M. Braglia, D. K. Hazra, L. Sriramkumar and F. Finelli, JCAP 08 025 (2020).
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Enhancing power on small scales Generating features in two field models

Enhanced power on small scales in two field models
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The scalar (on top) and the tensor (at the bottom) power spectra evaluated at the end of
inflation have been plotted for a few different sets of initial conditions for the fields and a
range of values of the parameter b112.

12M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).
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Implications for PBH formation and secondary GWs
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Implications for PBH formation and secondary GWs Production of PBHs in ultra slow roll and punctuated inflation

Formation of PBHs
The fraction of PBHs, say, fPBH(M), contributing to the dark matter density today can be
expressed as13

fPBH(M) =
( γ∗

0.2

)3/2
(

β(M)

1.46× 10−8

) (
g∗,k
g∗,eq

)−1/4 ( M

M�

)−1/2

,

where g∗,k and g∗,eq are the number of effective relativistic degrees of freedom at the time
of formation of the PBHs and at matter-radiation equality.

The quantity β(M) denotes the fraction of the density fluctuations that collapse to form
PBHs and is described by the integral

β(M) =

∫ 1

δc

dδ P (δ) =
1√

2π σ2

∫ 1

δc

dδ exp

(
− δ2

2σ2(M)

)
' 1

2

[
1− erf

(
δc√

2σ2(M)

)]
,

where erf(z) denotes the error function and δc represents the critical density contrast.
13See, for instance, B. Carr and J. Silk, Mon. Not. Roy. Astron. Soc. 478, 3756 (2018);

M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, Class. Quant. Grav. 35, 063001 (2018).
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Implications for PBH formation and secondary GWs Production of PBHs in ultra slow roll and punctuated inflation

f
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(M) in ultra slow roll and punctuated inflation
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The fraction of PBHs contributing to the dark matter density today fPBH(M) has been
plotted for the various models and scenarios of interest, viz. USR2 and RS1 (on top, in
red and blue) and PI3 and RS2 (at the bottom, in red and blue)14.

14H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Implications for PBH formation and secondary GWs Secondary GWs induced by the scalar perturbations

GWs sourced by second order scalar perturbations
At the second order in the perturbations, one finds that the equation governing the tensor
modes, say, hk, can be written as15

hλk
′′

+ 2H hλk
′
+ k2 hλk = Sλk

with the source term Sλk being given by

Sλk(η) = 4

∫
d3p

(2π)3/2
eλ(k,p)

{
2 Ψp(η) Ψk−p(η)

+
4

3 (1 + w)H2

[
Ψ′p(η) +HΨp(η)

] [
Ψ′k−p(η) +HΨk−p(η)

]}
,

where Ψk represents the Fourier modes of the Bardeen potential, while H and w denote
the conformal Hubble parameter and the equation of state parameter describing the uni-
verse at the conformal time η. Also, eλ(k,p) = eλij(k) pi pj , with eλij(k) representing the
polarization of the tensor perturbations.

15K. N. Ananda, C. Clarkson and D. Wands, Phys. Rev. D 75, 123518 (2007);
D. Baumann, P. J. Steinhardt, K. Takahashi and K. Ichiki, Phys. Rev. D 76, 084019 (2007).
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Implications for PBH formation and secondary GWs Secondary GWs induced by the scalar perturbations

The spectrum of secondary GWs today
The dimensionless parameter ΩGW(k, η) describing the energy density of GWs, when eval-
uated at late times during the radiation dominated epoch, can be expressed as16

ΩGW(k, η) =
ρGW(k, η)

ρcr(η)
=

1

972

∫ ∞
0

dv

∫ 1+v

|1−v|
du

[
4 v2 − (1 + v2 − u2)2

4u v

]2

PS(k v)PS(k u)

×
[
I2
c (u, v) + I2

s (u, v)
]

where the quantities Ic(u, v) and Is(u, v) are determined by the transfer function T (k, η)
for the scalar perturbations.

We can express ΩGW(k) today in terms of the above ΩGW(k, η) as follows:

h2 ΩGW(k) ' 1.38× 10−5
( g∗,k

106.75

)−1/3
(

Ωr h
2

4.16× 10−5

)
ΩGW(k, η),

where Ωr denotes the dimensionless energy density of radiation today, while g∗,k and g∗,0
represent the number of relativistic degrees of freedom at reentry and today, respectively.

16K. Kohri and T. Terada, Phys. Rev. D 97, 123532 (2018);
J. R. Espinosa, D. Racco and A. Riotto, JCAP 09, 012 (2018).
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Implications for PBH formation and secondary GWs Secondary GWs induced by the scalar perturbations

Ω
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(f) in ultra slow roll and punctuated inflation
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The dimensionless density parameter ΩGW arising in the models and reconstructed sce-
narios of USR2 and RS1 (in red and blue, on top) as well as PI3 and RS2 (in red and blue,
at the bottom) have been plotted as a function of the frequency f17.

17H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Implications for PBH formation and secondary GWs Secondary GWs induced by the scalar perturbations

Ω
GW

(f) in the two field model
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The dimensionless density parameter ΩGW arising in the two field model has been plotted
as function of frequency for a set of initial conditions for the background fields as well as a
range of values of the parameter b118.

18M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation

Plan of the talk

1 Constraints on inflation from Planck

2 Enhancing power on small scales

3 Implications for PBH formation and secondary GWs

4 Non-Gaussianities generated in ultra slow roll and punctuated inflation

5 Can enhanced power be generated from squeezed initial states?

6 Observational signatures of the epoch of reheating

7 Summary

L. Sriramkumar (IIT Madras, Chennai) Small scale signatures of non-trivial dynamics August 31, 2021 25 / 48



Non-Gaussianities generated in ultra slow roll and punctuated inflation Constraints on non-Gaussianities from the CMB

Constraints on the scalar non-Gaussianity parameters
The constraints on the primordial values of the non-Gaussianity parameters from the
Planck data are as follows19:

f loc
NL

= −0.9± 5.1,

f eq
NL

= −26± 47,

fortho
NL

= −38± 24.

These constraints imply that slowly rolling single field models involving the canonical scalar
field which are favored by the data at the level of power spectra are also consistent with
the data at the level of non-Gaussianities.

19Planck Collaboration (Y. Akrami et al.), Astron. Astrophys. 641, A9 (2020).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Computing the scalar bispectrum

The cubic order action governing the perturbations
At the third order, the action describing the curvature perturbation R can be obtained to be20

δS3[R] = M2
Pl

∫ ηe

ηi

dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2 − 2 a ε1R′ (∂R) (∂χ)

+
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂R) (∂χ) ∂2χ+

ε1
4
∂2R (∂χ)2 + 2F(R)

δL2

δR

]
,

where L2 denotes the Lagrangian density at the second order, while ∂2χ = a ε1R′, and these bulk
terms are supplemented by the following temporal boundary terms21:

δSB
3 [R] = M2

Pl

∫ ηe

ηi

dη

∫
d3x

d

dη

{
−9 a3HR3 +

a

H
(1− ε1)R (∂R)2 − 1

4 aH3
(∂R)2 ∂2R

−a ε1
H
RR′2 − a ε2

2
R2 ∂2χ+

1

2 aH2
R
(
∂i∂jR ∂i∂jχ− ∂2R ∂2χ

)
− 1

2 aH
R
[
∂i∂jχ∂i∂jχ− (∂2χ)2

]}
.

20J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 06, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 01, 002 (2007).

21F. Arroja and T. Tanaka, JCAP 05, 005 (2011).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Computing the scalar bispectrum

The shape of the slow roll bispectrum

The non-Gaussianity parameter fNL , evaluated in the slow roll approximation (analytically
on the left and numerically on the right), has been plotted as a function of k3/k1 and k2/k1

for the case of the popular quadratic potential22. Note that the non-Gaussianity parameter
peaks in the equilateral limit wherein k1 = k2 = k3. In slow roll scenarios involving the
canonical scalar field, the largest value of fNL is found to be of the order of the first slow
roll parameter ε1.

22D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026, (2013).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Non-Gaussianities in ultra slow roll and punctuated inflation

The scalar bispectrum in ultra slow roll and punctuated inflation
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The amplitude of the dimensionless scalar bispectra has been plotted in the equilateral (on
top) and squeezed limits (at the bottom) for the models USR2 (in red) and PI3 (in blue).
The bispectra have approximately the same shape as the corresponding power spectra23.

23H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Non-Gaussianities in ultra slow roll and punctuated inflation

f
NL

in ultra slow roll and punctuated inflation
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The scalar non-Gaussianity parameter fNL has been plotted in the equilateral (on top) and
the squeezed (at the bottom) limits for the models of USR2 and PI3 (in red, on the left and
the right) and the reconstructed scenarios RS1 and RS2 (in blue and green, on the left
and the right).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Non-Gaussianities in ultra slow roll and punctuated inflation

A closer examination of the consistency relation
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The non-Gaussianity parameter fNL in the squeezed limit (in blue) and the consistency
condition fCR

NL
(in red) have been plotted for the model PI3 over wave numbers around the

peak in the scalar power spectrum. We have set the squeezed mode to be k1 = 10−1 k
(on the left), k1 = 10−3 k (in the middle) and k1 = 10−5 k (on the right) in plotting these
figures. We have also indicated the 5% uncertainty in our numerical estimate as bands (in
blue).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Non-Gaussianities in ultra slow roll and punctuated inflation

Modifications to the scalar power spectrum due to non-Gaussianities
The scalar non-Gaussianity parameter fNL is usually introduced through the relation24

R(η,x) = RG(η,x)− 3

5
fNL [RG(η,x)]2 ,

where RG denotes the Gaussian contribution. Upon using this expression and evaluating
the corresponding two-point correlation function in Fourier space, one obtains that

〈R̂k R̂k′〉 =
2π2

k3
δ(3)(k + k′)

[
PS(k) +

(
3

5

)2 k3

2π
f2
NL

∫
d3p
PS(p)

p3

PS (|k − p|)
|k − p|3

]
,

where PS(k) is the original scalar power spectrum defined in the Gaussian limit, while the
second term represents the leading non-Gaussian correction. The non-Gaussian correc-
tion to the scalar power spectrum, say, PC(k), can be expressed as follows25:

PC(k) =

(
12

5

)2

f2
NL

∫ ∞
0

ds

∫ 1

0

dd

(s2 − d2)2
PS [k (s+ d)/2]PS [k (s− d)/2].

24E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
25R.-g. Cai, S. Pi and M. Sasaki, Phys. Rev. Lett. 122, 201101 (2019);

C. Unal, Phys. Rev. D 99, 041301 (2019).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Non-Gaussianities in ultra slow roll and punctuated inflation

The modified scalar power spectrum
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The original scalar power spectrum PS(k) (in solid red) and the modified spectrum PS(k)+
PC(k) (in dashed blue) arrived at upon including the non-Gaussian corrections, have been
plotted for the models of USR2 (on top) and PI3 (at the bottom)26.

26H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Non-Gaussianities in ultra slow roll and punctuated inflation

Accounting for the complete scale dependence of f
NL

To account for a scale dependent fNL , one can write

Rk(η) = RG

k (η)− 3

5

∫
d3k1

(2π)3/2
RG

k1
(η)RG

k−k1
(η) fNL [k, (k1 − k),−k1],

where Rk is the mode function corresponding to the curvature perturbation R and RG

k

denotes the Gaussian part of Rk
27. In real space, this corresponds to the relation

R(η,x) = RG (η,x)− 3

5

∫
d3k

(2π)3

∫
d3k1RG

k1
(η)RG

k−k1
(η) fNL [k, (k1 − k),−k1] eik·x.

In such a case, the correction PC(k) to the original spectrum is given by28

PC(k) =
9

50π
k3

∫
d3k1

PG

S
(k1)

k3
1

PG

S
(|k − k1|)
|k − k1|3

f2
NL

[k, |k1 − k|, k1].

27F. Schmidt and M. Kamionkowski, Phys. Rev. D 82, 103002 (2010);
I. Agullo, D. Kranas and V. Sreenath, arXiv:2105.12993 [gr-qc].

28H. V. Ragavendra, arXiv:2108.04193 [astro-ph.CO].
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Can enhanced power be generated from squeezed initial states?
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Can enhanced power be generated from squeezed initial states?

Reconstructing power spectra from squeezed initial states
In slow roll inflation, the modes fk(η) describing the scalar perturbations that emerge from
initial conditions corresponding to squeezed states can be expressed as

fk(η) =
iHI

2M
Pl

√
k3 ε1

[
α(k) (1 + i k η) e−i k η − β(k) (1− i k η) ei k η

]
,

where α(k) and β(k) are the so-called Bogoliubov coefficients.

Consider a power spectrum with a localized feature over a certain range of wave numbers,
say, g(k), so that PS(k) is given by

PS(k) = P0
S
(k) [1 + g(k)] ,

where P0
S
(k) represents the standard power spectrum arising in slow roll inflation.

Such a power spectrum can be generated with the following choice of the Bogoliubov
coefficients29:

α(k) =
2 + g(k)

2
√

1 + g(k)
, β(k) =

−g(k)

2
√

1 + g(k)
.

29See, for example, L. Sriramkumar and T. Padmanabhan, Phys. Rev. D 71, 103512 (2005).
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Can enhanced power be generated from squeezed initial states?

The non-Gaussianity parameter f
NL

in squeezed initial states
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The non-Gaussianity parameter log |fNL | has been plotted as a density plot in the k1/k3–
k2/k3 plane for

g(k) =

(
γ/
√

2π∆2
k

)
exp

[
−ln2 (k/kf) /

(
2 ∆2

k

)]
with γ = 4.5, kf = 105 Mpc−1 and ∆k = 1. We have set k3 = kf and have varied k1/k3

over the range [5× 10−4, 1] in arriving at this figure30.
30H. V. Ragavendra, L. Sriramkumar and J. Silk, JCAP 05, 010 (2021).
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Can enhanced power be generated from squeezed initial states?

Are large non-Gaussian corrections to power spectrum possible?
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The original (in red) and the modified (in blue) scalar power spectra corresponding to our
choice of g(k).
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Can enhanced power be generated from squeezed initial states?

The issue of backreaction
It can be shown that the energy density associated with the curvature perturbation can be
expressed as follows:

ρR '
1

2π2 a4

∫ ∞
−η−1

dk k3 |β(k)|2,

where β(k) is the Bogoliubov coefficient which indicates the extent of deviation from the
Bunch-Davies vacuum.

For the backreaction due to the non-vacuum initial state to be negligible, we require that
ρR � ρI = 3H2

I
M2

Pl
, which leads to the condition31

γ2 e4 ∆2
k

∆k

(
kf

aHI

)4

� 48π5/2

(
M

Pl

HI

)2

.

If we choose kf = 105 Mpc−1, this condition leads to γ � 10−16.5/
√
r, where r denotes the

inflationary tensor-to-scalar ratio. In other words, for r ' 10−3, we require γ < 10−15.

31H. V. Ragavendra, L. Sriramkumar and J. Silk, JCAP 05, 010 (2021).
L. Sriramkumar (IIT Madras, Chennai) Small scale signatures of non-trivial dynamics August 31, 2021 39 / 48



Observational signatures of the epoch of reheating

Plan of the talk

1 Constraints on inflation from Planck

2 Enhancing power on small scales

3 Implications for PBH formation and secondary GWs

4 Non-Gaussianities generated in ultra slow roll and punctuated inflation

5 Can enhanced power be generated from squeezed initial states?

6 Observational signatures of the epoch of reheating

7 Summary

L. Sriramkumar (IIT Madras, Chennai) Small scale signatures of non-trivial dynamics August 31, 2021 40 / 48



Observational signatures of the epoch of reheating Describing the epoch of reheating

Evolution of the scalar field in an inflationary potential
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The evolution of the scalar field in the so-called Starobinsky model has been indicated (as
circles, in blue and red) at regular intervals of time. Inflation is terminated as the field
approaches the bottom of the potential (near the light blue dot). Thereafter, the field
oscillates at the bottom of the potential (indicated by the red dots).

L. Sriramkumar (IIT Madras, Chennai) Small scale signatures of non-trivial dynamics August 31, 2021 41 / 48



Observational signatures of the epoch of reheating Describing the epoch of reheating

Behavior of the comoving wave number and Hubble radius

Behavior of the comoving wave number k (horizontal lines in different colors) and the
comoving Hubble radius dH/a = (aH)−1 (in green) across different epochs32.

32Md. R. Haque, D. Maity, T. Paul and L. Sriramkumar, arXiv:2105.09242 [astro-ph.CO].
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Observational signatures of the epoch of reheating Describing the epoch of reheating

Duration of reheating and the reheating temperature

The duration of the epoch of reheating Nre and the reheating temperature Tre can be
expressed in terms of the equation of state parameter wφ during reheating and the infla-
tionary parameters as follows33:

Nre =
4

(3wφ − 1)

[
N∗ +

1

4
ln

(
30

π2 g∗,re

)
+

1

3
ln

(
11 gs,re

43

)
+ ln

(
k∗
a0 T0

)
+ ln

(
ρ

1/4
f

HI

)]
,

Tre =

(
43

11 gs,re

)1/3(a0HI

k∗

)
e−(N∗+Nre) T0,

whereHI is the Hubble parameter during inflation, T0 = 2.725 K is the present temperature
of the CMB, and H0 denotes the current value of the Hubble parameter.

Note that k∗/a0 ' 0.05 Mpc−1 represents the CMB pivot scale and N∗ denotes the number
of e-folds prior to the end of inflation when the pivot scale leaves the Hubble radius.

33J. Martin and C. Ringeval, Phys. Rev. D 82, 023511 (2010);
L. Dai, M. Kamionkowski and J. Wang, Phys. Rev. Lett. 113, 041302 (2014);
J. L. Cook, E. Dimastrogiovanni, D. A. Easson and L. M. Krauss, JCAP 04, 047 (2015).
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Observational signatures of the epoch of reheating Imprints of reheating on primary GWs

Effects on Ω
GW

due to reheating

Tre = 101
0 GeV

Tre = 106 GeV
Tre = 2TeV
Tre = 3GeV

α- attractor model
α = 1, n = 3, wϕ = 0.5

EPTA

NANOGrav

SKA

LISA

MAGIS ET

DECIGO BB
0

LI
GO BBN

10-9 10-5 0.1 1000.0 107
10-23

10-19

10-15

10-11

10-7

f(Hz)

Ω
GW

h
2

The behavior of the dimensionless spectral energy density of primordial GWs today, viz.
ΩGW(f) has been plotted over a wide range of frequencies (in red, green, brown and black)
for different reheating temperatures34.

34Md. R. Haque, D. Maity, T. Paul and L. Sriramkumar, arXiv:2105.09242 [astro-ph.CO].
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Observational signatures of the epoch of reheating Imprints of reheating on primary GWs

Effects on Ω
GW

due to late time entropy production

EPTA
NanoGrav

LISA

MAGIS ET

DE
CI
GO

B
B
O

LI
GOBBN

SK
A

Tre = 103 GeV, ns = 0.96293
Tre = 102 GeV, ns = 0.96240
Tre = 10 GeV, ns = 0.96185

} F = 10-7, wσ = 0.99

Tre = 1011 GeV, ns = 0.96240
Tre = 1012 GeV, ns = 0.96293} F = 102, wσ = 0

wϕ = 0, Tσr = 1GeV

10-14 10-9 10-4 10 106
10-26

10-21

10-16

10-11

10-6

f(Hz)

Ω
GW

h
2

The dimensionless spectral energy density of primordial GWs observed today ΩGW(f) has
been plotted in a scenario involving late time production of entropy.
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Summary

Summary
F Models of ultra slow roll and punctuated inflation lead to enhanced power on small scales

resulting in significant production of PBHs and increased strength of secondary GWs, possibly
of detectable amplitudes.

F Despite the significant levels of deviation from slow roll, the non-Gaussianities generated in
such single field models are relatively small with f

NL
' O(1) near the peaks in the power

spectrum. These non-Gaussianities lead to insignificant corrections to ΩGW today.
F The two field models require less amount of fine tuning to generate features in the primordial

spectrum and hence seem better motivated35.
F The backreaction due to squeezed initial states severely limits significant deviations from the

Bunch-Davies vacuum and therefore the possibility of generating features at small scales from
such non-vacuum initial states.

F A secondary phase of reheating with a suitable equation of state parameter leads to primary
GWs with significantly high amplitudes that could be detected by the ongoing or forthcoming
GW observatories36.

35G. A. Palma, S. Sypsas, C. Zenteno, Phys. Rev. Lett. 125, 121301, (2020);
J. Fumagalli, S. Renaux-Petel, J. W. Ronayne, L. T. Witkowski, arXiv:2004.08369 [hep-th].

36Y. Gouttenoire, G. Servant, and P. Simakachorn, arXiv:2108.10328 [hep-ph];
R. T. Co, D. Dunsky, N. Fernandez, A. Ghalsasi, L. J. Hall, K. Harigaya and J. Shelton, arXiv:2108.09299 [hep-ph].
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Thank you for your attention
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