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■ Gravity & Thermodynamics

• Distinctive feature of gravity is its universality.

• Thermodynamics has a similar universality.

• These two universal theories seem to be deeply related:

– Black holes [Carter-Bardeen-Hawking & Hawking, Bekenstein
(early 1970’s)], [Wald (1993,4)];

– Accelerated observers see a thermal bath [Unruh (1976)];

– Einstein equations from thermodynamics [Jacobson (1995)];

– Gravity as entropic force [E. Verlide (2010)];

– Holographic principle & AdS/CFT.
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■ Boundary symmetries and d.o.f.

• Presence of boundaries in spacetime brings in boundary d.o.f.

• It may be an asymptotic boundary or any arbitrary codimension one

surface in spacetime separating spacetime in two parts.

• For gauge or diffeomorphism inv. theories boundary d.o.f. may be la-

beled by surface charges associated with non-trivial gauge/diff. transf.

• We focus on the boundary instead of the usual bulk viewpoint.

• We show boundary d.o.f for gravity theories follow a local thermody-

namic description regardless of the details of the boundary dynamics.

3



Outline

• Einstein GR and equivalence principle in presence of boundaries

• Null surfaces and boundaries as models for BH horizons

• Null boundary symmetries and charges, D dimensional example

• Null Surface Thermodynamics

• Summary and Outlook
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■ Einstein GR and its local (gauge) symmetry

• Einstein GR is a generally (in/co)variant theory.

• Physical observables in the Einstein GR are all defined through local

diffeomorphism invariant quantities.

• In particular, any two metric tensors related by diffeomorphisms are

physically equivalent:

xµ → xµ + ξµ(x), gην → gµν + δgµν, δgµν = ∇µξν +∇νξµ

• We partially fix diffeomorphisms through choice of observers.

5



■ Einstein GR, generic structure of d.o.f & EoM

• In a D dimensional spacetime, metric has D(D +1)/2 components:

D(D − 3)/2 propagating gravitons,

D diffeos.

• Out of D(D +1)/2 field equations, Gµν = 8πGTµν,

D(D − 3)/2 are second order diff.eq.,

D constraints (∇µGµν = 0) and D first order equations.

• Solutions are fully specified by boundary and/or initial data and in

the most general case involve 2D functions over codimension one

boundary.
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■ Null boundaries as models of horizons

• In a stationary black hole horizon is boundary of outside observers.
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• Horizons are typically one way surfaces.
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Depiction of a null surface
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b.d.o.f. are residing on N .

bulk d.o.f. Nij & Lij.

N is boundary of locally accelerated observers.

Nothing passes through N to r > 0 region.
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• Let N be a null surface, sitting at r = 0:

ds2 = −Fdv2 +2ηdrdv + hij(dx
i + gidv)(dxj + gjdv) (1)

F, gi, hij are functions of r, v, xi, i = 1,2, · · · , D − 2 and η = η(v, xi),

grr
∣∣∣
r=0

= 0 =⇒ (Fh+ g2)
∣∣∣
r=0

= 0,

where h := dethij, g
2 := hijgigj.

• We choose r = 0 to be the boundary of our spacetime and restrict

ourselves to r ≥ 0.

• The role of the excises r < 0 region is played by the boundary theory.
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■ Solution space

• Metric (1) has 1 + 1+ (D − 2) + (D − 1)(D − 2)/2 functions in it.

• These may be decomposed into

– three scalars (F, h; η),

– one vector gi and

– one symmetric-traceless tensor Hij := hij/h
1/(D−2),

from the viewpoint of codimension two surface Nv, (constant v slice
on N ).

• These functions are subject to field equations, here, Einstein vacuum
equations, which determine their r dependence.
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• r dependence of the tensor mode Hij is determined through

γij(v, x
i) := Hij(r = 0; v, xi), Lij(v, x

i) := ∂rHij(r = 0; v, xi).

• r dependence of the vector mode obeys first order eq. in r and is

completely specified by Gi(v, xi) := gi(r = 0; v, xi).

• Raychaudhuri equation + the condition that N is null, allows for

solving F in terms of Gi, h, η.

• r dependence of the other two are determined in terms of

η := η(v, xi), Ω(v, xi) :=
√
h(r = 0; v, xi).
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• Null surface solution phase space is determined by

– “Tensor modes” (gravitons) γij, Lij,

– Vector mode Gi,

– Scalars modes Ω, η,

• These are respectively, D(D − 3), D − 2,2 functions of v, xi.

• We have only assumed smoothness of metric at r = 0,

• but no particular behavior (falloff condition), around r = 0.
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• The boundary r = 0 is not a special place in spacetime and can be

any given (null) D − 1 dimensional hypersurface.

• By construction all solution geometries which are smooth around r =

0, are of the form (1) and

F = η

(
Γ+

2

D − 2

DvΩ

Ω
−

Dvη

η

)
r +O(r2)

gi = Gi − r
η

Ω
J i +O(r2)

hij = Ωij +O(r)

(2)

where all the fields are functions of v, xi and

Γ is acceleration (non-affinity parameter) & Gi is the angular velocity

of null rays generating N .
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Ωij := Ω2/(D−2)γij, Ω :=
√
detΩij, det γij = 1.

Ωij and Ωij raise and lower capital Latin indices.

Dv := ∂v − LG,

where LG is the Lie derivative along Gi direction.

Θ expansion of vector field generating the null surface N :

Θ := Dv lnΩ,

Nij the news tensor associated with flux of gravitons through N :

Nij :=
1
2Ω

2/(D−2)Dvγij

Nij as defined above is a symmetric-traceless tensor.
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■ Einstein Field Equations at r = 0

DvΩ = Θ Ω, (3a)

DvP = −Γ+
2

Θ
NijN

ij, (3b)

DvJi +ΘΩ∂iP −Ω∂iΓ+ 2Ω∇̄jNij = 0. (3c)

where

P := ln
η

Θ2
,

and ∇̄i is covariant derivative w.r.t Ωij.

So the solution space may be parametrized by

Boundary modes: Ω,P,Ji and

Bulk modes: Nij, Lij.
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■ Symplectic form over the solution phase space

Ω =
∫
N

[
δΓ ∧ δΩ+ δ(ΘΩ) ∧ δP + δGi ∧ δJi + δ(ΩNij) ∧ δΩij

]
. (4)

• Lij do not appear in the symplectic form.

• Einstein equations (3) may be solved for Γ,Gi in terms of the charges.

• Ωij is canonical conjugate to Nij ∼ ∂vΩij, as in any usual field theory,

• canonical conjugates to the boundary modes Ω,P,Ji are respectively

Γ,DvΩ,Gi. We will see these consitute a thermodynamical phase

space.
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■ Residual diffeos over the null surface N

• We have partially used diffeos to fix the null surface N at r = 0.

• The measure zero subset of residual diffeos keep r = 0 intact:

v → v + T (v, xi) +O(r)

r →
(
∂vT (v, xi)−W (v, xi)

)
r +O(r2)

xi → xi + Y i(v, xi) +O(r)

(5)

T , Y i are supertranslations in v, xi and W is the superboost on N
(superscaling in r).

• Subleading terms in r may be fixed order-by-order requiring that (5)
keep the form of metric within solution space (1).

• Residual diffeos are specified by two scalar functions T (v, xi),W (v, xi)
and one vector Y i(v, xi) over r = 0 null surface.
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■ Symmetries of the solution space

• Upon (5), metric (1) keeps its form but with transformed functions:

Gi → Gi + δGi, η → η + δη, Ω → Ω+ δΩ,

Nij → Nij + δNij, Lij → Lij + δLij,
(6)

where δX are linear in residual diffeo functions T,W, Y i.

• Besides dynamical, propagating gravitons, there are 2+(D−2) bound-

ary modes in our solution space.

• There are 2 + (D − 2) functions over N in our residual diffeos.

• Residual diffeos rotate us within the solution space. They are hence

symmetry generators in the usual classic(al) Noether sense.
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■ Symmetries of the solution phase space

• One may use Covariant Phase Space Formalism (CPSF) to show

solution space is a phase space and there is a charge (Hamiltonian

generator) associated with the boundary symmetries.

• These surface charges are given by integrals over codimension-2 com-

pact spacelike surfaces, constant v slices Nv.

• Surface charges are linear in symmetry generators T (v, xi),W (v, xi)

and Y i(v, xj), but may have different field/states dependence, i.e.

• integrands of the surface charge integrals may have different func-

tional dependence on Ω,P,Ji as well as Nij.
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■ Surface charges and their algebra

• Standard computations yields the following surface charge variations
associated with the symmetry generators ξ

/δQξ =
1

16πG

∫
Nv

dD−2x

[
(W +ΓT ) δΩ+ (Y i + GiT )δJi

+ TΩΘδP − TΩΩijδNij

]
,

(7)

• Charge variation is an integral over
∑4

A=1 CA δQA,

• QA ∈ {Ω,Ji,P;Nij} parameterize the solution phase space.

• CA are linear combination of symmetry generators W,T , Y i and the
canonical conjugate variables Γ,Gi,Ωij.
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• Charge variation may be split into integrable part QN and the ‘flux’
part F , using the Barnich-Troessaert method:

/δQξ = δQN
ξ + Fξ(δg; g).

• One may show that the integrable part may be equated with the
Noether charge, using the W -freedom/ambiguity. [see also recent
papers of Freidel et al & Leigh et al].

• QN may be computed for the Einstein-Hilbert action using the standard
Noether procedure, yielding

QN
ξ =

1

16πG

∫
Nv

dD−2x
[
W Ω+ Y iJi + T

(
ΓΩ+ GiJi

)]
(8)

Fξ(δg; g) =
1

16πG

∫
Nv

dD−2xT
(
−ΩδΓ− JiδGi +ΩΘδP−ΩΩijδNij

)
(9)

21



• Symmetry generators T,W, Y i are assumed to be field-independent,
i.e. δT = δW = 0 = δY i.

• P and Nij only appear in the flux and not in the Noether charges.

• The zero mode Noether charges,

QN
−r∂r =

1

16πG

∫
Nv

dD−2x Ω

QN
∂i =

1

16πG

∫
Nv

dD−2x Ji

QN
∂v := E =

1

16πG

∫
Nv

dD−2x (ΓΩ+ GiJi)

(10)

• Note that the charge variation associated with ∂v is

/δQ∂v := /δH =
1

16πG

∫
Nv

dD−2x
(
ΓδΩ+ GiδJi +ΩΘδP −ΩΩijδNij

)
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• Balance equation

d

dv
QN

ξ ≈ −F∂v(δξg; g) (11)

where ≈ denotes on-shell equality.

• The abov Eq. is

– a manifestation of the EoM projected at the boundary written in

terms of charges;

– a generalized charge conservation equation relating time depen-

dence, or non-conservation, of the charge (as viewed by the null

boundary observer) to the flux passing through the boundary;

– and shows how passage of flux through the null boundary is ‘bal-

anced’ by the rearrangements in the charges.
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■ Review of Thermodynamics

• Consider a thermodynamical system with

– chemical potentials µa (a = 1,2, · · · , N) and temperature T ,

– charges Qa, the entropy S and the energy E;

• There are N +2 charges and N +1 chemical potentials.

• In microcanonical ensemble (which we assume), the first law takes
the form

dE = T dS +
N∑
i=a

µa dQa. (12)

• The LHS is an exact one-form over the thermodynamic space.
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• Chemical potentials and charges are related by the Gibbs-Duhem re-

lation

S dT +
N∑
i=a

Qa dµa = 0. (13)

• Together with the first law, this yields E = TS +
∑

a µaQa.

• This equation relates E to the other charges and chemical potentials,

e.g. E = E(S,Qa).

• N +1 number of chemical potentials and/or charges may be taken to

be ‘independent’ variables parameterizing the thermodynamical con-

figuration space and the rest of N + 1 of them as functions of the

former N +1 variables.
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■ Null Boundary Thermodynamical Phase Space

I. Null boundary thermodynamics consists of three parts:

I.1) (D−1) dimensional ‘thermodynamic sector’ parametrized by (Γ,Gi)
and conjugate charges (Ω,Ji);

I.2) P, only appears in the flux and not in the Noether charge and its
conjugate chemical potential is ΩΘ;

I.3) bulk modes parameterized by determinant free part of Ωij and its
‘conjugate charge’ Nij appear in the flux.

II. Nij take the boundary system out-of-thermal-equilibrium (OTE)

whereas P parameterizes OTE within the boundary dynamics.

Put differently, OTE may come from inner boundary dynamics and/or
from the gravity-waves passing through the null boundary.
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III. Expansion parameter Θ is a measure of OTE, from both bulk and

boundary viewpoints. When Θ = 0 the system is completely specified

by the D − 1 dimensional thermodynamic phase space.

IV. The rest of the in-falling graviton modes parameterized as Lij, do not

enter in the boundary/thermo dynamics, recalling usual causality and

that the boundary is a null surface.

Below we give local first law, then local Gibbs-Duhem equation and come

to local zeroth law, specifying the subsectors which can be brought to a

(local) equilibrium.

Notation: X we will denote the density of the quantity X,

X :=
∫
Nv

dD−2x X .
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b.d.o.f. parametrized by Ω,P,Ji are residing on N .

b.d.o.f. interact with themselves and with infalling flux Nij.

Interactions of b.d.o.f with infalling flux are fixed by diff invariance,

governed by the balance equation.

Interactions among b.d.o.f themselves are still free to be chosen.
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■ Local First Law at Null Boundary

• Defining P := P/(16πG) and N ij := (16πG)−1Nij,

/δH = TN δS + Gi δJ i +ΩΘδP −ΩΩij δN ij, TN :=
Γ

4π

• The above is true at each v, xi over the null surface and represents the
local null boundary first law, unlike its usual thermodynamic counter-
part or as in black hole thermodynamics.

• LHS, unlike the usual first law, is not a complete variation; the system
is describing an open thermodynamic system due to the existence of
the expansion and the flux.

• The above reduces to a usual first law for closed systems when Nij = 0
or in the non-expanding Θ = 0 case.
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■ Local Extended Gibbs-Duhem Equation at Null Boundary

• For the Noether charge densities in our notation, we have

E = TNS + GiJ i

an analogue of the Gibbs-Duhem equation if E is viewed as energy,

S as entropy and J i as other conserved charges and Γ,Gi as the

respective chemical potentials.

• It is a local equation at the null boundary, unlike its usual thermody-

namic counterpart.

• This equation also holds for non-stationary/non-adiabatic cases when

the system is out-of-thermal-equilibrium (OTE) it is ‘local extended

Gibbs-Duhem’ (LEGD) equation at the null boundary.
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• LEGD equation, like the local first law, is a manifestation of diffeo-
morphism invariance of the theory.

• We expect them to be universally true for any diff-invariant theory of
gravity in any dimension.

• This equation is on par with the first law of thermodynamics but
extends it in two important ways:

it is a local equation in v, xi and holds also for OTE.

• The integrable parts of the charge are (by definition) independent of
the bulk flux Nij & P, so the LEGD also do not involve P and Nij.

• Chemical potentials Γ and Gi implicitly depend on Nij and P through
Raychaudhuri and Damour equations.
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■ Local Zeroth Law

• Zeroth law is a statement of thermal equilibrium: as a consequence

of the zeroth law, two (sub)systems with the same temperature and

chemical potentials are in thermal equilibrium.

• Flow of charges is proportional to the gradient of associated chemical

potentials and hence the absence of such fluxes can be taken as a

statement of the zeroth law.

• Here the system is parameterized by chemical potentials Γ,Gi and γij

which are functions of charges QA ∈ {Ω,P,Ji, Nij}.

• This system is not in general in equilibrium but there could be special

subsectors which are. The zeroth law is to specify such subsectors.
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• Zeroth law requires existence of G = G(Ω,P,Ji, Nij) such that,

δG = −S (δTN − 4GΘδP)−J i δGi +ΩN ijδΩ
ij (14)

admits non-zero solutions.

• The zeroth law as mentioned above is closely related to the notion of

charge integrability & variational principle.

• Integrability condition for the zeroth law is δ(δG) = 0, yielding an

equation like ∑
AB

CABδQA ∧ δQB = 0,

where QA are generic charges and CAB is skew-symmetric. This equa-

tion is satisfied only for CAB = 0.
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• One can immediately see Nij = 0 = δNij is a necessary (but not

sufficient) condition for the zeroth law to have non-trivial solutions.

• When zeroth law is fulfilled the charge H, which appears in the LHS

of the local first law, becomes integrable and we obtain

H = G + TNS + GiJ i

• Besides Nij = 0, in terms of H = H(S,J i,P) local zeroth law implies,

TN =
δH
δS

, Gi =
δH
δJ i

, DvS = SΘ =
1

4G

δH
δP

• For Θ = 0 case, one simply deduces that H does not depend on P.
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Generic Θ ̸= 0 case.

Zeroth law requires Nij = 0 and we have Einstein boundary field equations

TN = −4GDvP, Dv
[
J i +4G∇̄i(SP)

]
= 0.

Zeroth law is satisfied for any H = H(S,P,J i), when S,P and J i have
the following basic Poisson brackets:

{S(x, v),P(y, v)} =
1

4G
δD−2(x− y),

{S(x, v),S(y, v)} = {P(x, v),P(y, v)} = 0,

{S(x, v),J i(y, v)} = S(y, v)
∂

∂xi
δD−2(x− y),

{P(x, v),J i(y, v)} =

(
P(y, v)

∂

∂xi
+P(x, v)

∂

∂yi

)
δD−2(x− y),

{J i(x, v),J j(y, v)} =
1

16πG

(
J i(y, v)

∂

∂xj
−J j(x, v)

∂

∂yi

)
δD−2(x− y)
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• The above Poisson brackets imply

∂vX = {H,X}.

• Therefore, H is the Hamiltonian over the thermodynamic phase space.

• Θ = 0 case. may be worked out similarly

– in this case P = 0 = Nij and the thermodynamic phase space is

described by S,Ji and their chemical potentials.

– Local zeroth law is satisfied by any scalar Hamiltonian H = H(S,J i),

together with basic Poisson brackets given above, but with P
dropped and again with ∂vX = {H,X}.
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• Zeroth law is just defining the Poisson bracket structure over the

thermodynamic phase space and existence of Hamiltonian dynamics,

but it does not specify the boundary Hamiltonian H.

• Choice of Hamiltonian H fixes a boundary Lagrangian and boundary

dynamical equations and hence local dynamics of charges on the null

boundary N .

• In analogy with isolated horizon of black holes, if the zeroth law holds

the null surface may be called an ‘isolated null surface’.

• Our zeroth law is a weaker condition than stationarity as ∂v of the

chemical potentials need not vanish.
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Discussion, Concluding Remarks and Outlook
——————————–

⊛ Presence of boundaries brings in new ‘boundary d.o.f.’.

• b.d.o.f. may be classified and labelled by surface charges associated
with nontrivial diffeos.

• CPSF can be used to construct the boundary phase space which
govern b.d.o.f.

• Motivated by identification and formulation of BH microstates we
studied spacetimes with a null boundary N .

• N ∼ Rv ⋉Nv, where Nv is a codim. two compact surface.

• N may be viewed as the null limit of the stretched horizon.
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• Physics in the outside horizon region is then described by

boundary d.o.f ⊕ bulk d.o.f.

• Hilbert space of b.d.o.f, Hbdof may be labeled by surface charges

associated with nontrivial diffeos.

• Poisson bracket of charges is v independent; Hbdof is defined at Nv.

• Boundary d.o.f interact with bulk d.o.f through the Bondi news, the

energy and angular momentum flux through the horizon.

• Balance equation equates time derivative of boundary charges to the

flux through the boundary. It tells us how b.d.o.f should rearrange

themselves as a consequence of passage of the flux.
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• We identified null surface thermodynamic phase space, which in gen-
eral describes an open system.

• Thermodynamics phase space is described by D − 1 charges and as-
sociated chemical potentials as well as the flux.

• Local laws of thermodynamics govern thermodynamic phase space.

• Local zeroth law ensures we have a phase space by specifying the
Poisson bracket structure, which is v independent.

• Our local laws of thermodynamics

– manifest diffeomorphism invariance of the theory at the boundary.

– account for the dynamics of the part of spacetime ‘behind the
boundary’ which is excised from our spacetime.
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• Einstein field equations appear as boundary Hamilton equations, but

boundary Hamiltonian is still free to be chosen.

• Second law of thermodynamics and how it can be realized in our

setting is an important problem that should be tackled. Focusing

theorem may be of use.

• Our analysis provides a new framework to formulate a general memory

effect, especially a horizon memory effect.

• The analysis so far is classical and we should quantize the system.

• It should be possible to perform a semiclassical analysis in which the

boundary d.o.f are quantized while the bulk is classical.
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Focusing on the boundary instead of the bulk and

formulating quantum dynamics of the boundary thermodynamic phase

space will hopefully shed light on

BH micorstate & information puzzle

and more generally on the

very nature of gravity itself.

Thank You For Your Attention
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