Probing Leptogenesis with the Cosmological Collider

Yanou Cui University of California, Riverside

Phys. Rev. Lett. 129 (2022) 11, 111301 ,YC w/Zhong-Zhi Xianyu

Copernicus webinar and colloquium series, Nov 9 2022

The Cosmic Puzzle of Ω_B –Dark secret of the visible matter

- **Baryon (atomic matter):** $\Omega_B \approx 4\%$
- Dark Matter: $\Omega_{DM} \approx 23\%$

Dark Matter 23%

The Cosmic Puzzle of $\Omega_{\rm B}$ -Dark secret of the visible matter

- **Baryon (atomic matter):** $\Omega_B \approx 4\%$
- Dark Matter: $\Omega_{DM} \approx 23\%$

Dark Matter 23%

$\Omega_{\rm B}$: the unknown of the known

NEUTRON Quark structure

The Cosmic Puzzle of Ω_B -Dark secret of the visible matter

- **Baryon (atomic matter):** $\Omega_B \approx 4\%$
- **Dark Matter:** $\Omega_{DM} \approx 23\%$

Dark Matter 23%

$\Omega_{\rm B}$: the unknown of the known

NEUTRON Quark structure

The Cosmic Puzzle of $\Omega_{\rm B}$ -Dark secret of the visible matter

- **Baryon (atomic matter):** $\Omega_B \approx 4\%$
- **Dark Matter:** $\Omega_{DM} \approx 23\%$

Matter 23%

Where does Ω_B come from? =Where do we come from?

$\Omega_{\rm B}$: the unknown of the known

NEUTRON Quark structure

The Cosmic Puzzle of $\Omega_{\rm B}$ -Dark secret of the visible matter

- **Baryon (atomic matter):** $\Omega_B \approx 4\%$
- **Dark Matter:** $\Omega_{DM} \approx 23\%$

Dark Matter 23%

Where does Ω_B come from? =Where do we come from?

We do not know!

$\Omega_{\rm B}$: the unknown of the known

NEUTRON Quark structure

Baryogenesis

• What is origin of the matter-antimatter asymmetry? (Baryogenesis)

- the Universe starts with B = 0 (inflation) $\xrightarrow{?} B \neq 0$

• Sakharov conditions for BG (1967): B violation, CP violation, out of equilibrium

Requires BSM new physics to explain $\Omega_{\rm R} \approx 4\%$!

B/L violation

New CP violation in scalars. quarks, leptons

CP violation in a dark sector

Examples of BSM ingredients evoked to satisfy Sakharov conditions and explain $\Omega_{\rm B}$ (arxiv: 2203.05010)

Traditional Baryogenesis

- A general summary of representative BG mechanisms developed in the past decades (Not a complete list!)
- GUT baryogenesis: decay of GUT scale massive particles; challenged by constraints on inflation scale and subsequent T_{RH} ; direct test challenging (high scale)
- Electroweak baryogenesis: EW sphaleron + bubble collisions during 1st order PT; minimal models ruled out (SM+MSSM) with LHC data (extensions being investigated)
- **★Leptogenesis**: decay of heavy RH neutrinos; intriguing connection to neutrino physics (Seesaw); direct test challenging (high scale) (this talk)
- Affleck-Dine baryogenesis: evolution/decay of the VEV of scalar condensates in SUSY models; direct test challenging (high scale)

are yet challenging to test Further pursuits are required!

- Model and Pheno

- Well-studied, well-motivated, attractive models; yet some challenged by recent data, others

New Developments on Baryogenesis

Recent progress in solving the $\Omega_{\rm R}$ puzzle, driven by:

- **Big question persists:** $\Omega_{\rm B}$ no less important than $\Omega_{\rm DM}$!
- Some of the paradigms challenged/constrained by recent data: e.g. GUT BG, minimal EWBG; new theoretical ideas beyond the known: worthy intellectual pursuit
- Traditional mechanisms typically assume high scale: BG at $T_{\rm EW}$ (100 GeV) or much higher; In reality, BG can occur as late as just before BBN (MeV)! The uncharted/under-explored low-scale BG landscape (theory and observables)!

New Developments on Baryogenesis

Recent progress in solving the $\Omega_{\rm B}$ puzzle, driven by:

- **Big question persists:** $\Omega_{\rm R}$ no less important than $\Omega_{\rm DM}$!
- Some of the paradigms challenged/constrained by recent data: e.g. GUT BG, minimal EWBG; new theoretical ideas beyond the known: worthy intellectual pursuit
- Traditional mechanisms typically assume high scale: BG at $T_{\rm EW}$ (100 GeV) or much higher; In reality, BG can occur as late as just before BBN (MeV)! The uncharted/under-explored low-scale BG landscape (theory and observables)!
- Traditional mechanisms generally involve very high energy physics ($\gg \Lambda_{EW}$): challenging/impossible to directly test with terrestrial probes **★** Imprints from the very early/high energy Universe? New opportunity with the era of precision cosmology/astrophysics observatories (CMB, LSS...) + gravitational wave astronomy! (*E.g. This talk*)

New Developments on Baryogenesis

Recent progress in solving the $\Omega_{\rm B}$ puzzle, driven by:

- **Big question persists:** $\Omega_{\rm B}$ no less important than $\Omega_{\rm DM}$!
- Some of the paradigms challenged/constrained by recent data: e.g. GUT BG, minimal EWBG; new theoretical ideas beyond the known: worthy intellectual pursuit
- Traditional mechanisms typically assume high scale: BG at $T_{\rm EW}$ (100 GeV) or much higher; In reality, BG can occur as late as just before BBN (MeV)! The uncharted/under-explored low-scale BG landscape (theory and observables)!
- Traditional mechanisms generally involve very high energy physics ($\gg \Lambda_{EW}$): challenging/impossible to directly test with terrestrial probes **★** Imprints from the very early/high energy Universe? New opportunity with the era of precision cosmology/astrophysics observatories (CMB, LSS...) + gravitational wave astronomy! (E.g. This talk)
- Increasing attention on the coincidence problem: $\Omega_{\rm B} \sim \Omega_{\rm DM}$ (e.g. asymmetric DM), connection/inspiration/synergy with recent developments in dark matter studies?

A Snowmass White Paper (arxiv: 2203.05010)

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Editors: Gilly Elor,¹ Julia Harz,² Seyda Ipek,³ Bibhushan Shakya.⁴

Authors: Nikita Blinov,⁵ Raymond T. Co,⁶ Yanou Cui,⁷ Arnab Dasgupta,⁸ Hooman Davoudiasl,⁹ Fatemeh Elahi,¹ Gilly Elor,¹ Kåre Fridell,² Akshay Ghalsasi,⁸ Keisuke Harigaya,¹⁰ Julia Harz,² Chandan Hati,² Peisi Huang,¹¹ Seyda Ipek,³ Azadeh Maleknejad,¹⁰ Robert McGehee,¹² David E. Morrissey,¹³ Kai Schmitz,¹⁰ Bibhushan Shakya,⁴ Michael Shamma,¹³ Brian Shuve,¹⁴ David Tucker-Smith,¹⁵ Jorinde van de Vis,⁴ Graham White.¹⁶

New ideas in BG models

 New ideas in testing traditional BG models (This talk)

New physics ingredients

keV

GeV

TeV

MeV

μeV

Early Universe Probes for High Scale Baryogenesis?

• Opportunity for probing high scale BG:

^{Correction} Imprints in cosmological observables? (CMB, LSS, 21 cm, GW...) - Timely! In light of the rich precision data in coming years

- Early universe (e.g. inflationary epoch) naturally provides a very high energy environment

Early Universe Probes for High Scale Baryogenesis?

• Opportunity for probing high scale BG:

^{Correlation} Imprints in cosmological observables? (CMB, LSS, 21 cm, GW...) - Timely! In light of the rich precision data in coming years

• A particular focus of this talk (an intriguing/inspiring example):

\Leftrightarrow Cosmological Collider as a Novel Probe for Leptogenesis \Leftrightarrow

(*CMB*, *LSS*, 21 cm)

Underlying physics: L-violating interactions, mass of massive RH Majorana neutrino, CP violating phases (essentials for LG)

- Early universe (e.g. inflationary epoch) naturally provides a very high energy environment

- Observables: detectable, distinct patterns in primordial non-Gaussianity (bispectrum)

- A brief review of leptogenesis
- Basics of cosmological (Higgs) collider physics
- Leptogenesis, neutrino masses and CP phases during inflation
- Cosmological (Higgs) collider signals of leptogenesis
- Conclusion

Outline

- ΔL generated by out-of-equilibrium decay of heavy Majorana neutrinos N_i (tree+loop) interference), couplings are L- and CP-violating (phases) Realistic models: 3 generations of N_i , $M_1 \gtrsim 10^9 \text{GeV}$ (Davidson-Ibarra bound); At least 2 generations for non-zero interference
- Conversion to ΔB via sphaleron process Close connection to Seesaw mechanism for SM neutrino masses (heavy N_i)

A Review of Leptogenesis - II

• Washout effects: potential reduction of produced ΔL

Parametrization of washout: $r = \Gamma_1 / H(T = m_1)$ m_1 : mass of the lightest RH neutrino N_1

 $r \ll 1$: weak washout; $r \gg 1$: strong washout

Prediction for baryon asymmetry:

 ϵ_1 : asymmetry from N_1 decay $\epsilon_1 \simeq -\frac{3}{8\pi} \frac{1}{(y_{\nu}y_{\nu}^{\dagger})}$

 κ : washout efficiency, relates to r by solving Boltzmann eq., e.g. $\kappa \simeq 0.3/(r \log r)^{0.6}$ in the range $10 < r < 10^6$ (moderate washout, applies to param range we consider for CC signals)

Inverse decay ($\Delta L = 1$) and $2 \rightarrow 2 \Delta L = 2$ scattering may erase the produced asymmetry

 $r = \frac{M_{\rm Pl}}{32\pi \times 1.7\sqrt{g_*}} \underbrace{(y_{\nu}y_{\nu}^{\dagger})_{11}}_{(m_1)} \qquad \text{Note: dependence on couplings} \\ (Potential tension with detectable CC)$ signal, later...)

$$Y_B = \frac{c_s}{c_s - 1} \kappa \frac{\epsilon_1}{g_*},$$

 c_s : sphaleron conversion factor $c_s = 28/79 \simeq 0.35$ for $N_f = 3$

$$\frac{1}{(y_{\nu})_{11}} \sum_{i=2,3} \operatorname{Im}\left[(y_{\nu}y_{\nu}^{\dagger})_{1i}^{2} \right] \frac{m_{1}}{m_{i}}$$

Cosmological Collider (CC) Physics 101

• CC physics (Chen, Wang 2009; Baumann, Green 2011 Arkani-Hamed; Maldacena 2015...)

Man-made, terrestrial collider physics:

2D map of energy deposition in calorimeters \rightarrow physics of high energy collision (short distance): interactions,

2D map of CMB or galaxy distribution (sourced by primordial fluctuation) \rightarrow physics of high energy inflationary Universe (new heavy particles, interactions...)

> $E = mc^2$ Hubble expansion energy (*H*) during inflation: up to $O(10^{13})$ GeV! \rightarrow production of heavy particles well beyond the reach of LHC!

Cosmological Collider (CC) Physics 101 -Primordial Fluctuations

• Inflation: era of exponential expansion after the BB, address large scale homogeneity of the Universe • Primordial quantum fluctuation of a scalar field(s) ϕ during inflation (e.g. inflaton), $\delta\phi$: seeds CMB explains how those fluctuations are generated anisotropies, structure formation (inhomogeneities)

Single field slow-roll inflation

Cosmological Collider (CC) Physics 101 - How we extract information from the CMB

- n=2: 2-point correlator repower spectrum
- n>2: Higher order correlations, bispectrum (3-pt), trispectrum (4-pt) Non-Gaussianity!

★ Reveal info about **interactions** of the field(s) contributing to primordial fluctuation (*inflaton*+...)

3-pt correlation function:

$$\langle \gamma_{\mathbf{k_1}}^{\lambda_1} \gamma_{\mathbf{k_2}}^{\lambda_2} \gamma_{\mathbf{k_3}}^{\lambda_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_1} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} + \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} + \mathbf{k_4} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_4} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_4} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_4} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_4} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_4} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_4} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_$$

3-pt correlation function:

$$\langle \gamma_{\mathbf{k_1}}^{\lambda_1} \gamma_{\mathbf{k_2}}^{\lambda_2} \gamma_{\mathbf{k_3}}^{\lambda_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_1} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_1} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} + \mathbf{k_3} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_3} + \mathbf{k_3}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_3} + \mathbf{k_4} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_4} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_4} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_4} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_4} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_4} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_4} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_1 \lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_5} + \mathbf{k_5} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k_5} + \mathbf{k_5}) B_{\gamma}^{\lambda_2 \lambda_3} \langle \mathbf{k_5} + \mathbf{k_$$

3-pt correlation function:

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle' \equiv (2\pi)^4 P_{\zeta}^2 \frac{1}{(k_1 k_2 k_3)^2} S(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$

★Amplitude of non-
$$G = f_{NL} \frac{H}{\widehat{\phi}_0} \left\{ \Phi(\mathbf{k}, \mathbf{k}^2, \mathbf{k}^2) \right\}_{an}^{1/2}$$

$$f_{\rm NL} \sim (2\pi P_{\zeta}^{1/2})^{-1} \langle \delta \phi^3 \rangle \qquad \text{sh}$$
$$\sim 3.6 \times 10^3$$

 $f_{\rm NL} \simeq |S(\mathbf{k}_1, \mathbf{k}_3)|$ Observational prospect for $f_{\rm NI}$:

Cosmological Collider (CC) Physics 101 $f_{\rm NL} \simeq |S(\mathbf{k}_1, \mathbf{k}_3)|$ - How we discover new heavy particles with CC

Primordial non-Gaussianity, $f_{\rm NL}$

• $S(k_1, k_2, k_3)$: more information beyond f_{NL} !

Squeezed limit of bispectrum: $k_1 \simeq k_2 \gg k_3$ we key for revealing new heavy particles

Small-momentum mode exits horizon earlier during inflation

 k_1/k_3 : measures time difference

• $S(k_1, k_2, k_3)$: more information beyond f_{NL} !

Squeezed limit of bispectrum: $k_1 \simeq k_2 \gg k_3$ key for revealing new heavy particles

> Small-momentum mode exits horizon earlier during inflation

> k_1/k_3 : measures time difference

Propagating, real intermediate particle!

 $S(k_1, k_3) \propto e^{-\pi m/H} e^{im \Delta t}$ Boltmann factor $(T_{dS} \sim H)$

Cosmological Collider (CC) Physics 101 - Alternatives: Cosmological Higgs Collider

- Original CC: an inflaton collider
 inflaton fully responsible for both homogeneity (exponential expansion) and inhomogeneity
- Beyond the minimal (yet motivated!): Separate the tasks
 vacuum energy from inflaton, fluctuations from a different source (*partially*)
 Modulated reheating (*Dvali, Gruzinov, Zaldarriaga 2003*), application in CC (fewer params, larger f_{NL}):
 - Cosmological Higgs Collider (CHC): Lu, Wang and Xianyu 2019 (relevant to this talk)
 - Curvaton collider: Kumar, Sundrum 2019

Cosmological Collider (CC) Physics 101 - Apply it for probing high scale leptogenesis?

• Attempts of probing BSM particle physics with CC physics:

- SM particles (Chen, Wang, Xianyu 2016)
- ► GUT physics (*Kumar, Sundrum 2018*)
- Higgs potential at high energy (Hook, Huang, Racco 2019)

-Cosmological collider: probe the impossibles for terrestrial colliders!

•••

Opportunities for high scale baryognesis? A benchmark: Leptogenesis

Naturally suitable for CHC: heavy RH neutrino, coupling to SM Higgs

Structure of Leptogenesis Model During Inflation — Masses, Couplings

• Model for leptogenesis (Type-I Seesaw): heavy RH Majorana neutrino *N*, SM lepton doublet $L = (\nu, e^{-})^{T}$, couple to the SM Higgs **H**.

Recall: essential interactions/processes (post-inflationary)

Generate ΔL

 ΔL transferred to ΔB before EWPT

Structure of Leptogenesis Model During Inflation —Masses, Couplings

- Distinct story when applying to CHC:
 - During inflation Higgs gets a large VEV $v \sim H \gg v_{\text{EW}}$! quantum fluctuation (*e.g. Bunch, Davies 1978*), *H*: Hubble during inflation \rightarrow Distinct pattern of neutrino mass/mixing - different from both leptogenesis era (v = 0) and today—after EWPT ($v = v_{\text{EW}}$)

Structure of Leptogenesis Model During Inflation -Masses, Couplings

• Distinct story when applying to CHC: During inflation Higgs gets a large VEV $v \sim H \gg v_{\rm EW}$! quantum fluctuation (e.g. Bunch, Davies 1978), *H*: Hubble during inflation → Distinct pattern of neutrino mass/mixing - different from both leptogenesis era (v = 0) and today—after EWPT ($v = v_{EW}$)

Take 1 generation of N as a toy example first: parametrize the Higgs as $\mathbf{H} = (0, (v+h)/\sqrt{2})^T$

 $\Rightarrow \quad \Delta \mathscr{L} = \nu^{\dagger} \mathrm{i} \bar{\sigma}^{\mu} \partial_{\mu} \nu + N^{\dagger} \mathrm{i} \bar{\sigma}^{\mu} \partial_{\mu} N + \Big[m_D \Big(1 + \frac{h}{v} \Big) \nu I \Big]$ Rotate to mass eigenstates ψ_{\pm} : $\mathscr{L} \supset \frac{m_D h}{v_N / m_M^2 + 4m_D^2}$

$$N - \frac{1}{2}m_N NN + \text{c.c.} \qquad m_D \equiv yv/\sqrt{2}$$

= $\left[m_D(\psi_-^2 - \psi_+^2) + m_N\psi_-\psi_+\right] \qquad m_{\pm} = \frac{1}{2}(m_N \pm \sqrt{m_N^2 + 4r})$

Structure of Leptogenesis Model During Inflation -Masses, Couplings

• Distinct story when applying to CHC: During inflation Higgs gets a large VEV $v \sim H \gg v_{EW}$! quantum fluctuation (e.g. Bunch, Davies 1978), *H*: Hubble during inflation \rightarrow Distinct pattern of neutrino mass/mixing - different from both leptogenesis era (v = 0) and today—after EWPT ($v = v_{EW}$)

Take 1 generation of N as a toy example first: parametrize the Higgs as $\mathbf{H} = (0, (v+h)/\sqrt{2})^{T}$

 $\Rightarrow \quad \Delta \mathscr{L} = \nu^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} \nu + N^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} N + \left[m_D \left(1 + \frac{h}{v} \right) \nu N - \frac{1}{2} m_N N N + \text{c.c.} \right] \qquad \qquad m_D \equiv y v / \sqrt{2}$

 $\star m_D \sim m_N \sim H \text{ during inflation} - \text{ no Seesaw}! \Rightarrow m_+ \sim m_-$ ★ Mass matrix and Higgs Yukawa couplings cannot be simultaneously diagonalized

Structure of Leptogenesis Model During Inflation -Masses, Couplings

• Generalize to realistic <u>3 generation N's</u>: mixed Yukawa couplings persist, plus CP phases

$$\Delta \mathscr{L} = \nu_i^{\dagger} \mathrm{i}\bar{\sigma}^{\mu}\partial_{\mu}\nu_i + N_i^{\dagger} \mathrm{i}\bar{\sigma}^{\mu}\partial_{\mu}N_i + \left[m_{Dij}\left(1 + \frac{h}{v}\right)\nu_i N_j - \frac{1}{2}m_{Nij}N_i N_j + \mathrm{c.c.}\right]$$

Rotate to mass eigenstates:

$$\mathscr{L} \supset \frac{h}{2v} \left(\psi_1, \cdots, \psi_6 \right) \begin{pmatrix} M_1 - C^T m_N C & -C \\ -D^T m_N C & M_2 - 0 \end{pmatrix}$$

$$\begin{array}{c} -C^T m_N D \\ -D^T m_N D \end{array} \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_6 \end{pmatrix}$$

• Central task for finding CHC signal: calculate the 3-pt correlator of δh

$$\left\langle \mathcal{O}_{1}(x)\mathcal{O}_{2}(y)\right\rangle = -\frac{4g_{12}}{\Lambda} \left[\cos\left(\varphi_{12} + \varphi_{5}\right)g_{m_{1}}(x,y)g_{m_{2}}(x,y) + \cos\left(\varphi_{12} - \varphi_{5}\right)f_{m_{1}}(x,y)f_{m_{2}}(x,y)\right]$$

 \square How the CHC signal depends on m_1, m_2 , CP phases

$$\varphi_1 \equiv y_{12}(e^{i\varphi_{12}}\psi_1\psi_2 + \text{c.c.})$$
 φ_{12}, φ_5 : CP phases

$$\mathcal{O}_2 \equiv \frac{1}{\Lambda} (e^{i\varphi_5} \psi_1 \psi_2 + \text{c.c.}) \qquad 1/\Lambda \sim y_{12} (y_{11}/m_1 + y_{22}/m_2)$$

$$\langle \mathcal{O}_{1}(x)\mathcal{O}_{2}(y)\rangle = -\frac{4y_{12}}{\Lambda} \Big[\cos(\varphi_{12}+\varphi_{5})g_{m_{1}}(x,y)g_{m_{2}}(x,y) + \cos(\varphi_{12}-\varphi_{5})f_{m_{1}}(x,y)f_{m_{2}}(x,y) \Big] \\ = 2\operatorname{Re} \Big\{ \frac{\Gamma(2-\mathrm{i}\widetilde{m})\Gamma(\frac{1}{2}+\mathrm{i}\widetilde{m})}{4\pi^{5/2}} \Big(\frac{\tau_{1}\tau_{2}}{X^{2}}\Big)^{3/2-\mathrm{i}\widetilde{m}} g_{m}(x,y) = 2\operatorname{Re} \Big\{ \frac{\Gamma(2-\mathrm{i}\widetilde{m})\Gamma(\frac{1}{2}+\tau_{2})}{4\pi^{5/2}} \Big(\frac$$

$$\langle \mathcal{O}_{1}(x)\mathcal{O}_{2}(y)\rangle = -\frac{4y_{12}}{\Lambda} \left[\cos(\varphi_{12} + \varphi_{5})g_{m_{1}}(x,y)g_{m_{2}}(x,y) + \cos(\varphi_{12} - \varphi_{5})f_{m_{1}}(x,y)f_{m_{2}}(x,y) \right] \\ if_{m}(x,y) = 2\operatorname{Re} \left\{ \frac{\Gamma(2 - i\widetilde{m})\Gamma(\frac{1}{2} + i\widetilde{m})}{4\pi^{5/2}} \left(\frac{\tau_{1}\tau_{2}}{X^{2}}\right)^{3/2 - i\widetilde{m}} g_{m}(x,y) = 2\operatorname{Re} \left\{ \frac{\Gamma(2 - i\widetilde{m})\Gamma(\frac{1}{2} + i\widetilde{m})}{4\pi^{5/2}} \left(\frac{\tau_{1}\tau_{2}}{X^{2}}\right)^{3/2 - i\widetilde{m}} \widetilde{m} = m/H \right\} \\ \times \left[1 + \frac{\left(3 - 4\widetilde{m}(2i + \widetilde{m})\right)(\tau_{1}^{2} + \tau_{2}^{2}) - 6\tau_{1}\tau_{2}}{2(1 - 2i\widetilde{m})X^{2}} \right] \right\}, \qquad \times \left[1 + \frac{\left(3 - 4\widetilde{m}(2i + \widetilde{m})\right)(\tau_{1}^{2} + \tau_{2}^{2}) + 6\tau_{1}\tau_{2}}{2(1 - 2i\widetilde{m})X^{2}} \right] \right\}.$$

Three cases:

• <u>Pure Dirac mass</u>: $m_N \rightarrow 0$, $\varphi \rightarrow 0$, Yukawa coupling is diagonalizable with real eigenvalues $\langle \mathcal{O}_1 \mathcal{O}_2 \rangle \propto f_{m_i}^2 + g_{m_i}^2$, vanishes at LO \Rightarrow signal decays faster than naively expected - restores result known in literature (e.g. Chen, Wang, Xianyu 2018), applies to Dirac ν /Dirac LG

- · Majorana mass induced mixed Yukawa but no CP \Rightarrow at LO oscillating signal with a single frequency \hat{n}
- Majorana mass plus CP phase (realistic LG): (0 \Rightarrow at LO oscillating signal with two distinct frequer

phase:
$$\langle \mathcal{O}_1 \mathcal{O}_2 \rangle \propto f_{m_1} f_{m_2} + g_{m_1} g_{m_2}$$
,
 $\tilde{m}_1 - \tilde{m}_2 - \text{new to literature!}$
 $\tilde{\mathcal{O}}_1 \mathcal{O}_2 \rangle \propto \cos(\varphi_{12} + \varphi_5) f_{m_1} f_{m_2} + \cos(\varphi_{12} - \varphi_5) g_{m_1} g_{m_2}$
ncies $\tilde{m}_1 - \tilde{m}_2$ and $\tilde{m}_1 + \tilde{m}_2$ - distinct signature of LG

 ψ_2 Ъ

Result-1: Shape function of the primordial bispectrum:

 $\langle \mathcal{O}_1 \mathcal{O}_2 \rangle \to S(k_1, k_3)$

Three cases:

- Pure Dirac mass: known case, signal dies fast
- Majorana mass w/o CP phases: single mode oscillation
- Majorana mass w/ CP phases (leptogenesis): two distinct modes of lasting oscillation Information about heavy RH neutrino mass!

With 3 generations, more oscillation modes possible, but generally expect one pair of mass eigenstates dominate the signal

Scan over perturbative Yukawa couplings, mass range

Result-2: CHC signal strength $f_{\rm NL}$ **VS.** Y_B **predicted by leptogenesis**

Result-2: CHC signal strength $f_{\rm NL}$ **VS.** Y_{R} **predicted by leptogenesis**

Scan over perturbative Yukawa couplings, mass range

 $\log_{10} f_{\rm NL}^{\rm (signal)}$

0

-1

-2

-3

² Solution Viable leptogenesis models can lead to signals detectable by future CMB/LSS/21 cm experiments!

Conclusion

- Matter-antimatter asymmetry remains a profound puzzle
- Cosmological Collider Physics: probe new physics with super-high energy collider—the cosmos during inflation!
- A new method for probing high-scale leptogenesis with CHC
 - Signal strength ($f_{\rm NL}$) from realistic LG models within reach of upcoming experiments
 - Signal shape (oscillation pattern) distinct from known CC signals
- Information about *K* couplings, CP phases and heavy RH neutrino masses!

Unraveling matter-antimatter asymmetry puzzle by dedicated measurements of primordial non-Gaussianity?

3

15

Thank you!