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outline

 inflation in the very early universe
…setting the scene

standard perturbative approach
small almost Gaussian density perturbations 

from classical inflation

novel non-perturbative approach
large/rare highly non-Gaussian density 

fluctuations from stochastic inflation

open questions and conclusions so far



Standard hot big bang cosmology
• standard model particle physics, dark matter + dark energy
• smooth, isotropic, spatially-flat geometry



 slice up 4D spacetime into maximally symmetric 

3D space with uniform energy density, 

 metric: 

 Hubble expansion rate:

 Friedmann equation: 2 

FLRW cosmology



Standard hot big bang cosmology
• standard model particle physics, dark matter + dark energy
• smooth, isotropic, spatially-flat geometry

last-scattering of cosmic 
microwave background photons



primordial density fluctuations
temperature anisotropies in the cosmic microwave background radiation

© ESA



Standard hot big bang cosmology
• standard model particle physics, dark matter + dark energy
• smooth, isotropic, spatially-flat geometry

Inflation 
= accelerated expansion in the very early universe
• classical expansion smoothes, isotropises and flattens
• quantum fluctuations create inhomogeneous structure



Primordial structure on all scales

CMB anisotropies

galaxy surveys

Lyman-α forest

future 21cm HI surveys

spectral distortions?

stochastic gravitational waves?

primordial black holes?



Primordial structure on all scales

radiation era matter era dark energy

tod
ay

density waves in FLRW:



Primordial structure on all scales

radiation era matter era dark energy

tod
ay

density waves in FLRW:

 frozen-in, 𝛿�̇� → 0, on 
super-Hubble scales 
(𝑘/𝑎𝐻 → 0)

 problem of initial conditions 
in hot big bang 



Primordial structure on all scales

radiation era matter era dark energyInflation
  𝚫𝑵 ≈ 𝟔𝟎

tod
ay

density waves in FLRW :

 frozen-in, 𝛿�̇� → 0, on 
super-Hubble scales 
(𝑘/𝑎𝐻 → 0)

 problem of initial conditions 
in hot big bang

 solved by inflation



Classical slow-roll inflation:

• single scalar field, , in FLRW background
potential energy, >> kinetic energy, 

– slow roll keeps Hubble expansion rate approx constant

– time-translation invariance of maximally symmetric  
de Sitter space+time, weakly broken

• slow-roll parameter



𝑉(𝜑)



quantum fluctuations


mode functions for massless quantum field in de Sitter  

• small-scale/underdamped vacuum oscillations (k/a>H):

• large-scale/overdamped perturbations in squeezed state (k/a<H):

o extends to weakly-interacting fields in slow-roll Sasaki ‘86 & Mukhanov ‘88
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Hawking ’82, Starobinsky ’82, Guth & Pi ‘82



Primordial structure on all scales

radiation era matter era dark energyinflation

tod
ay

quantum vacuum state



Classical vs quantum inflation

 Classical slow-roll inflates universe

 Quantum field fluctuations about FLRW background lead 
to primordial metric perturbations

V j( )

jend j
N



Classical vs quantum inflation

 Classical slow-roll inflates universe

 Quantum field fluctuations about fixed FLRW background 
lead to primordial metric perturbations

V j( )

jend j
N



primordial fluctuations from inflation
ESA Planck collaboration

© ESA



 density and metric perturbations 
in an expanding spacetime

ds2 = - e2A dt2 + e2N  ij xixj

local expansion: 



Perturbative N for primordial density fluctuations

during inflation: field perturbations (x,ti) on initial spatially-flat hypersurface

after inflation: metric perturbation  on uniform-density hypersurface


final

initial
dtHN

t

x

Starobinsky ‘85; Sasaki & Stewart ‘96; Lyth & Rodriguez ‘05
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perturbative N order-by-order at Hubble exit
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sub-Hubble field interactions super-Hubble “local” evolution

N’’

N’

N’

N’ N’

N’

Byrnes, Koyama, Sasaki & DW (arXiv:0705.4096) 

e.g., <3>



Inflation in the very early universe

Perturbative approach
FLRW background + small fluctuations

primordial power spectrum from inflation, bispectra, etc

• CMB fluctuations and large-scale structure

Nonperturbative approach
Locally FLRW patches + stochastic noise

probability distribution beyond our present horizon

probability distribution within our present horizon

• large and/or rare fluctuations in primordial density field

 primordial black holes and/or gravitational waves



classical inflation

Pendrell Sound, Carol Evans



Inflation in the very early universe

Perturbative approach
FLRW background + small fluctuations

primordial power spectrum from inflation, bispectra, etc

• CMB fluctuations and large-scale structure

Nonperturbative approach
Locally FLRW patches + stochastic noise

probability distribution beyond our present horizon

probability distribution within our present horizon

• large and/or rare fluctuations in primordial density field
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Primordial Black Holes
• formed by collapse of large density perturbations, 

, in early radiation-dominated universe 
Zel’dovich and Novikov (1967); Hawking (1971)

• mass related to the horizon mass at formation:

time
Villanueva-Domingo et al (2021)



PBH abundance constraints

Green & Kavanagh, arXiv:2007.10722

potential
dark matter
candidate

note: mass fraction at formation: 
⨀



primordial black holes form in radiation era 
from smoothed density contrast (Young et al 2014, Musco 2018)

that exceeds critical value, 

standard calculations assume Gaussian pdf, 
P(ζ), good for typical, small fluctuations 

but not well-suited to describe the extreme 
tail of the distribution



Classical vs quantum inflation

 Classical slow-roll inflates universe

 Quantum field fluctuations about fixed FLRW background 
lead to primordial metric perturbations

V j( )

jend j
N

if PBHs form when ζ ~ 1, then δφquantum ~ δφclassical,
i.e., stochastic diffusion non-negligible



non-perturbative approach to calculate probability 
of large excursions in the primordial density field



stochastic inflation

apply IR/UV split to field fluctuations during inflation
– coarse-graining scale, kcg ≈ aH, Hubble scale 

– UV: small-scale quantum vacuum fluctuations
– IR: large-scale squeezed state, effectively classical

• modes crossing coarse-graining scale, from UV to IR,     
give Gaussian noise proportional to 

Starobinsky (1986); Goncharov, Linde & Mukhanov (1987)



separate universe approach
Starobinsky (1985); Salopek & Bond (1990); Wands, Malik, Lyth, Liddle (2001)

in an inhomogeneous universe the coarse-grained fields 

on sufficiently large scales (neglecting spatial gradients) 

follow the same equations of motion locally

as in an unperturbed FLRW universe

local expansion rate, 2  , proportional to local density



Stochastic inflation:

• Langevin equations long-wavelength field + momentum, (φ,π), 
with respect to e-folds, N, 

• stochastic kicks from small-scale quantum fluctuations:

Grain & Vennin (2017)



V()



Stochastic inflation:

• Langevin equations long-wavelength field + momentum, (φ,π), 
with respect to e-folds, N:

• validity of stochastic Langevin equations requires
– quantum-classical transition

• squeezed quantum state on super-Hubble scales

– separate universe approach
• spatial gradients and anisotropy neglected on super-horizon scales 

– field evolution in uniform-N gauge (same as spatially-flat gauge in slow-roll)
• describe distribution of field values at given “time”, N

Pattison, Vennin, Assadullahi & Wands (2019)



V()



Stochastic slow-roll:

• Langevin equations long-wavelength field + momentum, (φ,π), 
with respect to e-folds, N, 

• slow roll, massless field in super-Hubble limit (kcg<<aH):



V()



• Langevin equation describes stochastic evolution of long-
wavelength field, φ, with respect to e-folds, N:

Stochastic slow-roll:

classical drift (slow-roll) quantum diffusion, <ξ(N)ξ(N’)> = δ(N-N’)

V j( )

N

jjend



• Langevin equation describes stochastic evolution of long-
wavelength field, φ, with respect to e-folds, N:

• can be cast as Fokker-Planck equation for probability 
distribution for field values, , at given N :

Stochastic slow-roll:


V()

classical drift (slow-roll) quantum diffusion, <ξ(N)ξ(N’)> = δ(N-N’)

classical drift (slow-roll)quantum diffusion



• Number of e-folds, , becomes a stochastic variable:
– invert problem to find probability distribution, φ , for number 

of e-folds to the end of inflation, , from given field value, φ
– first-passage time problem
– non-perturbative density fluctuation

Stochastic δN:

V j( )

j

Enqvist, Nurmi, Podolsky & Rigopoulos (2008) 
Fujita, Kawasaki, Tada & Takesako (2013, 2014)

Vennin & Starobinsky (2015)

𝜑end



Vennin & Starobinsky (2015)

figure from Vincent Vennin

• integration domain covers the entire field space
• infinite infla on, <N> → infinity, possible for 

plateau potential or multiple fields 
• require UV cut-off at v+ ~ MPl

• Vennin et al (2016)

Stochastic :



Saddle Point Approximation

Classical result First order correction

slide from Vincent Vennin Vennin & Starobinsky (2016)-



• moments obey an iterative relation (Vennin & Starobinsky 2015)

where LFP
† is adjoint Fokker-Planck operator

Higher-order moments of stochastic δN



 reproduce perturbative result in classical (drift-dominated) limit
 stochastic diffusion can regularise classical divergence as → 0

Stochastic power spectrum:

𝜙end

stochastic

Pattison, Vennin, Assadullahi & Wands (2017)



• moments obey an iterative relation (Vennin & Starobinsky 2015)

• define characteristic function (includes all the moments)

• obeys differential equation

• inverse Fourier transform gives full probability distribution

Full probability distribution function
Pattison, Vennin, Assadullahi & Wands (2017)



Stochastic diffusion leads to highly non-Gaussian pdf, P(N):

probability distribution has an exponential tail

𝜙end 𝜙end + Δ𝜙well

exponential
tail

exp(-ΛN)

Full probability distribution function
Pattison, Vennin, Assadullahi & Wands (2017)



• general form of characteristic function for slow-roll potentials
Ezquiaga, Garcia-Bellido & Vennin (2019) 

– integrate in complex plane to invert Fourier transform, recover, P(N)

– probability distribution has highly non-Gaussian tail

exponential tail of inflationary fluctuations 

poles on imaginary axis regular function



• analytic solutions for limited to simplest cases
• use direct numerical simulations of Langevin equation to 

reconstruct probability distribution for 

( , ∆ )

 

numerical investigations of the tail
Jackson, Assadullahi, Koyama, Vennin & DW, arXiv:2206:11234
*PyFPT available on github*



• analytic solutions for limited to simplest cases
• use 2x105 numerical simulations of Langevin equation to 

reconstruct probability distribution for 

numerical investigations of the tail
Jackson, Assadullahi, Koyama, Vennin & DW, arXiv:2206:11234
*PyFPT available on github*

( , ∆ )

 



• analytic solutions for limited to simplest cases
• use 200000 direct simulations of Langevin equation

• reconstruct probability distribution for down to 

( , ∆ )

 

numerical investigations of the tail
Jackson, Assadullahi, Koyama, Vennin & DW, arXiv:2206:11234
*PyFPT available on github*



• importance sampling techniques allow us to explore tail
• use biased simulations - include artificial drift

• weight* the biased (sample) simulations to reconstruct the 
true (target) distribution

*weight calculated according to the probability for each step as a Gaussian random 
walk in the true target distribution

(need to consider distribution of weights when estimating mean and variance in bins)

numerical investigations of the tail
Jackson, Assadullahi, Koyama, Vennin & DW, arXiv:2206:11234
*PyFPT available on github*



• importance sampling techniques allow us to explore tail
• use 200000 biased simulations - include artificial drift

• reconstruct probability distribution for down to 

w 

numerical investigations of the tail
Jackson, Assadullahi, Koyama, Vennin & DW, arXiv:2206:11234
*PyFPT available on github*



• importance sampling techniques allow us to explore tail
• use 200000 biased simulations - include artificial drift

• optimise bias to correlate with (see also Tomberg 2210.17441)

optimise bias to 
correlate with 

numerical investigations of the tail
Jackson, Assadullahi, Koyama, Vennin & DW, arXiv:2206:11234
*PyFPT available on github*



• Gaussian approximation remains very good for small masses

numerical investigations of the tail
Jackson, Assadullahi, Koyama, Vennin & DW, arXiv:2206:11234
*PyFPT available on github*



still work in progress

 calculate correlators in real space
 Langevin equation gives stochastic from field value 

 relate perturbations on scale to field values during inflation to 
construct from numerical - Tada & Vennin 2111.15280

 loop corrections on large scales due to small-scale fluctuations

 characterise nature of non-Gaussianity and relation to Maldacena 
consistency condition in single-field models

 apply to realistic inflation models
 non-Gaussian tail in slow-roll potentials compatible with CMB?

 extend to ultra-slow-roll inflation (PBH) models - Tomberg 2022

 apply to PBH abundance calculations
 PBH abundance from exponential tail - Biagetti et al, Kitajima et al, Gow et al 2022

 relevance to other astrophysical abundances?
 e.g., massive clusters at high redshift? dark matter ultra-compact mini-halos?



summary

 stochastic inflation enables us to calculate rare 
excursions in primordial density field, 
 e.g., primordial black hole abundance and other extreme objects

 invert usual Fokker-Planck equation for to obtain 

 obtain full probability distribution function 
 solve for characteristic function, then Fourier transform (Pattison et al 2017)

 tail of the pdf is highly non-Gaussian
 exponential tail characterized by poles in the characteristic function (Ezquiaga et al 2019)

 importance sampling needed for numerical exploration of rare fluctuations (Jackson et al)

 stochastic δN beyond slow roll necessary for 
inflationary models of PBH production
 stochastic ultra slow-roll inflation has 2D phase-space (Grain&Vennin 2017)

 full stochastic analysis also has to deal with transient regimes…



additional slides



beyond slow-roll

• many inflation models for PBH production involve a 
non-slow-roll phase
e.g., inflection point inflation 

Garcia-Bellido & Ruiz
Germani & Prokopec,
Motohashi & Hu 2017

• stochastic inflation in ultra-slow-roll
Biagetti, Francolini, Kehagias & Riotto, arXiv:1804.07124
Ezquiaga & Garcia-Bellido, arXiv:1805.06731
Firouzjahi, Nassiri-Rad & Noorbala, arXiv:1811.02175, 2009.04680
Pattison, Vennin, Assadullahi & Wands, arXiv:2101.0574
Rigopoulos & Wilkins, aXiv:2107.05317
Figueroa, et al arXiv:2111.07437; Tomberg, arXiv:2210.17441
Mishra, Copeland & Green, arXiv:2303.17375



• classical background solution for field and momentum, 

– ,   

–

• perturbative Namjoo, Firouzjahi & Sasaki, arXiv:1210.3692

• but this is not the full non-perturbative stochastic 
Firouzjahi, Nassiri-Rad & Noorbala, arXiv:1811.02175

Ultra-slow-roll inflation:


V()



Ultra-slow-roll inflation:


V()

diffusion
dominated

Assadullahi, Pattison, Vennin & Wands, 2101.05741



• piecewise linear potential
– USR regime after abrupt 

change in potential gradient

• probability distribution, P(ζ)
– Gaussian in classical limit 

(drift dominated)
– exponential tail in diffusion-

dominated limit

Starobinsky USR model
Pattison, Vennin, Wands, Assadullahi (2021)



still work in progress

 models compatible with CMB on large scales and enhanced 
fluctuations on small scales (potentially producing PBHs), 
include abrupt transitions between phases

 idealised ultra-slow-roll phase not sufficient
 recent discussion of one-loop corrections to large-scale power spectrum

 Kristiano and Yokoyama; Riotto; Firouzjahi; Firouzjahi & Riotto

 frozen noise approximation in attractor regimes only (not during USR)
 Tomberg, arXiv:2210.17441

 full numerical approach through transient regimes
 Mishra, Copeland and Green, arXiv:2303

 Jackson et al… in preparation



• general form of characteristic function for slow-roll and USR

– integrate in complex plane to invert Fourier transform, recover, P(N)

– USR introduces additional higher poles
– leading pole remains same as slow-roll, but residue changes

exponential tail of inflationary fluctuations 
Pattison, Vennin, Wands, Assadullahi (2021)

poles on imaginary axis regular function



PBH abundance from exponential tail
Gow, Assadullahi, Koyama, Vennin & Wands, arXiv:2211.08348

• two examples:
– drift-dominated ultra-slow roll solution (Kitajima et al 2021, Biagetti et al 2021)

𝑃 𝜁 =
1

2𝜋𝜎
exp −

1 − 𝑒

18𝜎
− 3𝜁

– piecewise Gaussian + exponential tail

𝑃 𝜁 =

A exp −
𝜁

2𝜎
                                   for 𝜁 < 𝜁  

𝐴 exp −
𝜁

2𝜎
exp −𝛼 𝜁 − 𝜁   for 𝜁 > 𝜁
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PBH abundance from exponential tail
Gow, Assadullahi, Koyama, Vennin & Wands, arXiv:2211.08348

• PBHs form with mass given by critical collapse ( , )

• density at spherical peaks (“compaction function”) 

related to curvature perturbation smoothed on scale 

• generalize to arbitrary local-type non-Gaussianity, 
– relate field with non-Gaussian pdf 

– to Gaussian field with Gaussian pdf 

– assume lognormal power spectrum, , peaked on scale ∗ 61
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PBH abundance from exponential tail
Gow, Assadullahi, Koyama, Vennin & Wands, arXiv:2211.08348

𝛿

𝑃
𝛿
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varying piecewise transition, varying exponent, 

PBH abundance from exponential tail
Gow, Assadullahi, Koyama, Vennin & Wands, arXiv:2211.08348


