Large $|\eta|$ approach to single-field inflation

Gianmassimo Tasinato

University of Bologna and Swansea University

Introduction

- ▶ Inflation is a short period of superluminal, accelerated expansion, occurred within the first second of our universe life.
- ▶ It solves problems of big bang cosmology: horizon, flatness, entropy problems
- ► Moreover, inflation provides an **elegant mechanism** for generating the **primordial** seeds for the CMB and the LSS

Introduction

► Moreover, inflation provides an **elegant mechanism** for generating the **primordial** seeds for the CMB and the LSS

- Cosmological fluctuations are produced by quantum effects at short distances,
- Their wavelength stretched beyond the horizon by the superluminal expansion.
- Then re-enter the horizon after inflation ends

Dark matter and inflation

What about dark matter? Can inflationary fluctuations source it?

Yes if they increase in size at small scales

> Primordial black holes

The spectrum of curvature fluctuation ζ increases towards small scales thanks to non-standard inflationary dynamics. When re-entering the horizon during RD, curvature fluctuations source overdensities producing PBH

Dark matter and inflation

What about dark matter? Can inflationary fluctuations source it?

Yes if they increase in size at small scales

> Vector dark matter [Graham, Mardon, Rajendran]

Distinctive dynamics of longitudinal component of Proca vector field during inflation enhances isocurvature fluctuations \Rightarrow they increase at small scales.

Slow-roll inflation

The predictions of single-field inflation are very successful at CMB scales:

Fluctuations of ϕ and metric \Rightarrow Curvature perturbation ζ

$$\Delta_{\zeta} = \frac{H^2}{8\pi^2 \epsilon}$$

$$n_{\zeta} - 1 = -2\epsilon - \eta$$

Slow-roll parameters

$$\epsilon = -\frac{\dot{H}}{H^2} = \frac{\dot{\phi}^2}{2H^2} \ll 1$$

$$\eta = \frac{\dot{\epsilon}}{\epsilon H} = 2\epsilon + \frac{2\ddot{\phi}}{\dot{\phi}H} \ll 1$$

Slow-roll inflation

The predictions of single-field inflation are very successful at CMB scales:

Fluctuations of ϕ and metric \Rightarrow Curvature perturbation ζ

$$\Delta_{\zeta} = \frac{H^2}{8\pi^2 \epsilon}$$

$$n_{\zeta} - 1 = -2\epsilon - \eta$$

Slow-roll parameters

$$\epsilon = -\frac{\dot{H}}{H^2} = \frac{\dot{\phi}^2}{2H^2} \ll 1$$

$$\eta = \frac{\dot{\epsilon}}{\epsilon H} = 2\epsilon + \frac{2\ddot{\phi}}{\dot{\phi} H} \ll 1$$

- > This is **bad** because the many existing models are degenerate.
- ➤ This is very good being a manifestation of EFT of inflation: the slow-roll parameters control the spontaneous breaking of time-reparametrization invariance.

$$t \mapsto t - \pi(\boldsymbol{x}, t)$$

This framework allows to make further testable predictions

- running of spectral index
- higher order correlation functions and non-Gaussianities

$$\lim_{\mathbf{q}\to\mathbf{0}}\langle\zeta_{\mathbf{q}}\zeta_{\mathbf{k}}\zeta_{-\mathbf{k}}\rangle = -(n_{\zeta}-1)|\zeta_{\mathbf{q}}|^{2}|\zeta_{\mathbf{k}}|^{2}$$

that might break degeneracies.

We need to abandon slow-roll regime

The parameter ϵ changes by several orders of magnitude in few e-folds

$$\Delta_{\zeta} = \frac{H^2}{8\pi^2 \epsilon}$$

We need to abandon slow-roll regime

The parameter ϵ changes by several orders of magnitude in few e-folds

$$\Delta_{\zeta} = \frac{H^2}{8\pi^2 \epsilon}$$

 η must become large and negative

$$\eta = \frac{\dot{\epsilon}}{\epsilon H} = 2\epsilon + \frac{2\phi}{\dot{\phi} H}$$

Might be the totality of DM?

 η must become large and negative

$$\eta = \frac{\dot{\epsilon}}{\epsilon H} = 2\epsilon + \frac{2\dot{\phi}}{\dot{\phi}H}$$

η must become large and negative

$$\eta = \frac{\dot{\epsilon}}{\epsilon H} = 2\epsilon + \frac{2\ddot{\phi}}{\dot{\phi}H}$$

\triangleright Ultra slow-roll inflation: V'=0

$$\ddot{\phi} + 3H\dot{\phi} + V' = 0 \Rightarrow \ddot{\phi} = -3H\dot{\phi} \Rightarrow \eta \simeq -6$$

(this implies $\phi \sim a^{-3} \Rightarrow$ decaying mode controls the dynamics)

 η must become large and negative

$$\eta = \frac{\dot{\epsilon}}{\epsilon H} = 2\epsilon + \frac{2\dot{\phi}}{\dot{\phi}H}$$

\triangleright Constant roll inflation: V' < 0

Scalar climbs a hill overshooting local minimum

$$\eta = 2\epsilon - 6 + \frac{2V'}{|\dot{\phi}|H} < -6$$

η must become large and negative

- > We wake up the decaying mode which participates to the dynamics
- > Interesting phenomena:
 - Dip in the spectrum, due to distruptive interference
 growing/decaying modes
 - Limit k^4 in the slope of the growing spectrum

⇒ We get a rapid enhancement of the spectrum

(for recent review see e.g. [Özsoy, GT])

The non-slow-roll phase should be brief to avoid excessive effects of quantum diffusion

$$\frac{d\phi}{dN} = -\frac{V'}{3H^2} + \frac{H}{2\pi}\xi(N)$$

[Vennin et al]

Calculations can be carried on with the help of numerics

- Analytic control is possible for $\eta = -6$ and for a model of Starobinsky
- Or by designing piecewise models with constant slopes for ϵ and η [Karam et al, Franciolini-Urbano]

Calculations can be carried on with the help of numerics

- Analytic control is possible for $\eta = -6$ and for a model of Starobinsky
- Subtleties associated with decaying mode, and connections between slow-roll and non-slow-roll phases.

- > Good thing Observables sensitive on details of the model.
- ▶ Bad things Degeneracies likely to occurr, and we lack an analytical understanding of what is going on

This might lead to a reliable analytical framework!

This might lead to a reliable analytical framework!

 \triangleright At the same time, take $\Delta N_{\rm nsr} \ll 1$, and the product $|\eta| \Delta N_{\rm nsr} = {\rm fixed} \equiv 2 \Pi_0$

 \triangleright Straightforward to solve for mode functions, and compute correlators in an expansion in $1/|\eta|$ and ϵ . E.g. for the power spectrum (take $\epsilon \ll 1$):

$$\frac{\Delta_{\zeta}(\kappa)}{\Delta_{\zeta}(0)} = 1 - 4\kappa \Pi_0 \cos \kappa j_1(\kappa) + 4\kappa^2 \Pi_0^2 j_1^2(\kappa) + \mathcal{O}(1/|\eta|)$$

with
$$\kappa = k/k_{\star}$$
 and $j_1(\kappa) = \frac{\sin \kappa}{\kappa^2} - \frac{\cos \kappa}{\kappa}$

 \triangleright Practically, what do we do? Whenever meeting $\Delta N_{\rm nsr}$, substitute with $2\Pi_0/|\eta|$. At the end, take limit $|\eta| \to \infty$

This might lead to a reliable analytical framework!

 \triangleright At the same time, take $\Delta N_{\rm nsr} \ll 1$, and the product $|\eta| \Delta N_{\rm nsr} = {\rm fixed} \equiv 2 \Pi_0$

 \triangleright Straightforward to solve for mode functions, and compute correlators in an expansion in $1/|\eta|$ and ϵ . E.g. for the power spectrum (take $\epsilon \ll 1$):

$$\frac{\Delta_{\zeta}(\kappa)}{\Delta_{\zeta}(0)} = 1 - 4\kappa \Pi_0 \cos \kappa j_1(\kappa) + 4\kappa^2 \Pi_0^2 j_1^2(\kappa)$$

with
$$\kappa = k/k_{\star}$$
 and $j_1(\kappa) = \frac{\sin \kappa}{\kappa^2} - \frac{\cos \kappa}{\kappa}$

$$\lim_{\kappa \to \infty} \frac{\Delta_{\zeta}(\kappa)}{\Delta_{\zeta}(0)} = \left(1 + \Pi_{0}\right)^{2}$$

This might lead to a reliable analytical framework!

it catches pretty well the large-scale behaviour, up to the peak

 $(\mathcal{O}(1/|\eta|))$ corrections can be included, and improve the small-scale behaviour)

Also spectral index can be computed analytically, at leading order in $1/|\eta|$:

$$n_{\zeta} - 1 = \frac{2\kappa \Pi_0 \left[(1 - 2\kappa^2) \sin(2\kappa) - 2\kappa \cos(2\kappa) \right]}{\kappa^2 + 4\kappa \Pi_0 \cos \kappa \left(\kappa \cos \kappa - \sin \kappa \right) + 4\Pi_0^2 \left(\kappa \cos \kappa - \sin \kappa \right)^2} - \frac{\Pi_0^2 \left[4 - (4 - 8\kappa^2) \cos(2\kappa) + 4\kappa (\kappa^2 - 2) \sin(2\kappa) \right]}{\kappa^2 + 4\kappa \Pi_0 \cos \kappa \left(\kappa \cos \kappa - \sin \kappa \right) + 4\Pi_0^2 \left(\kappa \cos \kappa - \sin \kappa \right)^2}$$

Analogy: Large-N limit of SU(N) QCD

 \triangleright Model studied by 't Hooft: computations simplify taking number N of colors large, and expand in 1/N. Call g the QCD coupling constant, consider limits

$$g \to 0$$
 , $N \to \infty$, $g^2 N \equiv g_0^2 = \text{fixed}$

> Analogy with PBH inflationary models

$$\Delta N_{\rm nsr} \to 0$$
 , $|\eta| \to \infty$, $|\eta| \Delta N_{\rm nsr} = {\rm fixed}$

Higher-order correlation functions

➤ Non-Gaussian effects around the peak of the spectrum plays an important role for PBH formation. Analytic control of non-Gaussianity would be welcome!

$$\langle \zeta_{\mathbf{k_1}} \zeta_{\mathbf{k_2}} \zeta_{s\mathbf{k_3}} \rangle = (2\pi)^3 \delta(\vec{k_1} + \vec{k_2} + \vec{k_3}) B_{\zeta}(k_1, k_2, k_3)$$

We can reduce the required amplitude of P_{ζ} for producing PBH at small scales:

[Byrnes et al, Atal-Germani, Passaglia et al,..., Taoso-Urbano]

Higher-order correlation functions and the large- $|\eta|$ approach

➤ A single dominant term in the third order Hamiltonian of single-field inflation
 [Maldacena, Kristiano-Yokoyama]

$$\mathcal{H}_{\text{int}} = -\frac{1}{2} \int d^3x \, a^2(\tau) \epsilon(\tau) \, \eta'(\tau) \, \zeta^2(\tau, \vec{x}) \, \zeta'(\tau, \vec{x})$$

$$\eta'(\tau) = \Delta \eta \left[-\delta(\tau - \tau_1) + \delta(\tau - \tau_2) \right]$$

 \triangleright Plug mode functions and compute large- η limit of bispectrum. At leading order in $1/|\eta|$ one gets an analytic expression

$$B_{\zeta}(k_1, k_2, k_3) = \text{too long to fit in the slide}$$

Higher-order correlation functions and the large- $|\eta|$ approach

Squeezed limit satisfies

Maldacena consistency relation

Equilateral limit has a growth towards small scales

$$\langle \operatorname{in} \left| \overline{T} e^{-i \int \mathcal{H}_{\operatorname{int}}(\tau') d\tau'} \, \mathcal{O}(\tau) \, T e^{i \int \mathcal{H}_{\operatorname{int}}(\tau') d\tau'} \left| \operatorname{in} \right\rangle \right|$$

$$\left| \zeta_{\mathbf{p}}^{"} + \frac{(a^2 \epsilon)'}{a^2 \epsilon} \zeta_{\mathbf{p}}^{"} + \frac{(a^2 \epsilon \eta')'}{4a^2 \epsilon} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \zeta_{\mathbf{k}} \zeta_{\mathbf{p} - \mathbf{k}} = 0 \right|$$

- ▷ In single-field slow-roll inflation, loop corrections are small [..., Weinberg,...]
- ▶ In PBH forming scenarios, the same mechanism that enhances the spectrum can also amplify loop corrections at large scales.

[Kristiano-Yokoyama, Riotto, Firouzjahi, Franciolini et al, Fumagalli,...]

$$\langle \ln \left| \bar{T} e^{-i \int \mathcal{H}_{int}(\tau') d\tau'} \mathcal{O}(\tau) T e^{i \int \mathcal{H}_{int}(\tau') d\tau'} \right| in \rangle$$

- $\eta = -6$ and sudden transition between SR and USR: loops are dangerously large, and UV quadratic divergences should be renormalized [Kristiano-Yokoyama]
- Smooth transition between SR and USR: loops can be placed under control [Riotto, Firouzjahi, Franciolini et al,...]; model dependent issue

[Franciolini et al]

$$\langle \ln \left| \bar{T} e^{-i \int \mathcal{H}_{int}(\tau') d\tau'} \mathcal{O}(\tau) T e^{i \int \mathcal{H}_{int}(\tau') d\tau'} \right| in \rangle$$

large- $|\eta|$ approach simplifies considerably formulas in the case of a sudden transition

$$\Delta^{\text{loop}}(\kappa) = \Delta^{\text{tree}}(\kappa) \left[1 + L_{\text{UV}}(\kappa) + L_{\text{IR}}(\kappa) \right]$$

$$L_{\rm UV}(\kappa) = -\Delta_0 \frac{\Pi_0 \Lambda_{\rm UV}^2}{1 + \Pi_0} \left(\frac{5}{6} + \frac{3j_1(\kappa) - \kappa}{3\kappa} \right) \quad \Rightarrow at \ large \ scales \ it \ can \ be \ renormalized$$

$$L_{\rm IR}(\kappa) = -\frac{\Delta_0 \Pi_0}{6} \, \kappa^2 \, \ln\left(\mu/\Lambda_{\rm IR}\right) \quad \Rightarrow due \ to \ secular \ effects \ of \ superhorizon \ modes$$

$$\langle \ln \left| \bar{T} e^{-i \int \mathcal{H}_{int}(\tau') d\tau'} \mathcal{O}(\tau) T e^{i \int \mathcal{H}_{int}(\tau') d\tau'} \right| in \rangle$$

large- $|\eta|$ approach

$$\Delta^{(\text{loop})}(\kappa) = \Delta_0 - \frac{4\Delta_0 \Pi_0}{3} \left[1 + \frac{\Delta_0}{8} \ln (\mu/\Lambda_{\text{IR}}) \right] \kappa^2 + \mathcal{O}(\kappa^4)$$

very small contribution $\Rightarrow \kappa^2$ -suppressed

$$\langle \ln \left| \bar{T} e^{-i \int \mathcal{H}_{int}(\tau') d\tau'} \mathcal{O}(\tau) T e^{i \int \mathcal{H}_{int}(\tau') d\tau'} \right| in \rangle$$

... but recently [Fumagalli] found that we were all missing boundary terms in the interaction Hamiltonian, that once included further reduce the size of loops to κ^3 -suppressed corrections.

Conclusions

- Single-field models of inflation able to strongly enhance fluctuations at small scales can lead to interesting dark matter candidates (PBH, vector DM)
 - > To properly understand their consequences, an analytical understanding of their features would be helpful.
- Since the slow-roll parameter $|\eta|$ is larger than one for a fraction of the inflationary phase, I considered the case $|\eta|$ large, and promoted $1/|\eta|$ to an expansion parameter.
- Formulas simplify, and obtain analytical expressions for the two and three point functions in agreement with previous studies and with expectactions.

• It will be interesting to further apply these methods and analytical formulas to study PBH formation, including the effects of non-Gaussianities, and to the analysis of loop corrections in these scenarios.