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Introduction

» Inflation is a short period of superluminal, accelerated expansion, occurred
within the first second of our universe life.

It solves problems of big bang cosmology: horizon, flatness, entropy problems

Moreover, inflation provides an elegant mechanism for generating the primordia
seeds for the CMB and the LSS




Introduction

» Moreover, inflation provides an elegant mechanism for generating the primordial
seeds for the CMB and the LSS
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- Cosmological fluctuations are produced by quantum effects at short distances,

n

- Their wavelength stretched beyond the horizon by the superluminal expansion.

- Then re-enter the horizon after inflation ends



Dark matter and inflation

What about dark matter? Can inflationary fluctuations source it?

Yes if they increase in size at small scales

> Primordial black holes
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The spectrum of curvature fluctuation ¢ increases towards small scales thanks to non-

standard inflationary dynamics. When re-entering the horizon during RD, curvature

fluctuations source overdensities producing PBH

>In(a)



Dark matter and inflation

What about dark matter? Can inflationary fluctuations source it”

Yes if they increase in size at small scales

> Vector dark matter |[Graham, Mardon, Rajendran]
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Distinctive dynamics of longitudinal component of Proca vector field during inflation
enhances isocurvature fluctuations = they increase at small scales.




Slow-roll inflation

The predictions of single-field inflation are
very successful at CMB scales:
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Slow-roll inflation

The predictions of Single—ﬁeld inflation are > This is bad because the many existing models are degenerate.
very successful at CMB scales:

L >4

: . . This 1 d bei 1f t f EF'T of inflation:
Fluctuations of ¢ and metric = Curvature perturbation ¢ > This is very good being a manifestation o O Inflation

the slow-roll parameters control the spontaneous breaking
of time-reparametrization invariance.
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This framework allows to make further testable predictions
Slow-roll parameters

- running of spectral index

H ;2 - higher order correlation functions and non-Gaussianities
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Inflation and PBH
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Inflation and PBH

We need to abandon slow-roll regime

The parameter € changes
by several orders of magnitude in few e-folds

n must become large and negative
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feeu = QpBu/ DM

Inflation and PBH
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n must become large and negative
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Inflation and PBH

n must become large and negative
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> Ultra slow-roll inflation: V/ =0

d+3Ho+V' =0 = ¢ =

(this implies ¢ ~ a™° = decaying mode controls the dynamics)
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Feature for PBH formation



Inflation and PBH

n must become large and negative
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Scalar climbs a hill overshooting local minimum
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Inflation and PBH

n must become large and negative = We get a rapid enhancement of the spectrum
—9 B I
0 — Pr(k)
> We wake up the decaying mode Pr o< kA
which participates to the dynamics 1074 ===+ Pg oc kit

> Interesting phenomena: 10-6|

— Dip in the spectrum, due to 108}
distruptive interference

growing /decaying modes 10-10L \ _

— Limit k?* in the slope |7 T e TIE e

of the growing spectrum ko [Mpe ]

(for recent review see e.g. [Ozsoy, GT])



Inflation and PBH
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Inflation and PBH

Calculations can be carried on
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Phase III

with the help of numerics

e Analytic control is possible
for n = —6 and for a model of Starobinsky

e Or by designing piecewise models with constant slopes for € and 7
Karam et al, Franciolini-Urbano]
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Inflation and PBH

Calculations can be carried on
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with the help of numerics

1072¢F

e Analytic control is possible
1074F

for n = —6 and for a model of Starobinsky

e Subtleties associated with decaying mode,
1078} ¢

— Inl and connections between slow-roll and non-slow-roll phases.
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> (Good thing Observables sensitive on details of the model.

> Bad things Degeneracies likely to occurr, and we lack
an analytical understanding of what is going on Alsry (k)




Idea: take |n| large, and use 1/|7| as expansion parameter

This might lead to a reliable analytical framework!



Idea: take || large, and use 1/|n| as expansion parameter

This might lead to a reliable analytical framework!

> At the same time, take ANy < 1, and the product |n| ANy = fixed = 211

> Straightforward to solve for mode functions, and compute correlators in an expansion

in 1/|n| and e. E.g. for the power spectrum (take € < 1):

= 1 — 4k 1l cosk ji1 (k) + 45 H(Q) j%(/f) +0O(1/Inl)

Sin K COS K

with £ = k/k, and  ji(k) = —
K K

> Practically, what do we do? Whenever meeting AN, substitute with 2I1y/|n|. At
the end, take limit |n| — oo



Idea: take || large, and use 1/|n| as expansion parameter

This might lead to a reliable analytical framework!

> At the same time, take ANy < 1, and the product |n| ANy = fixed = 211

> Straightforward to solve for mode functions, and compute correlators in an expansion

in 1/|n| and e. E.g. for the power spectrum (take € < 1):

= 1 — 4k 1l cosk ji(k) + 4115 j7 (K)
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Idea: take |n| large, and use 1/|7| as expansion parameter

This might lead to a reliable analytical framework!
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it catches pretty well the large-scale behaviour, up to the peak

(O(1/|n]) corrections can be included, and improve the small-scale behaviour)



Idea: take |n| large, and use 1/|7| as expansion parameter
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Also spectral index can be computed analytically, at leading order in 1/|n|:

2 k1o [(1 — 2k%) sin (2k) — 2k cos (2k)]
k2 4 4kl cos k (K cos k — sin k) + 4112 (k cos k — sin k)’
I12 [4 — (4 — 8k?) cos (2K) + 4k (k% — 2) sin (2k)]

k2 4 4kl cos k (k cos k — sin k) + 4112 (k cos k — sin k)°

n<—1:




Analogy: Large-N limit of SU(/N) QCD

> Model studied by ‘t Hooft: computations simplify taking number /N of colors large,
and expand in 1/N. Call g the QCD coupling constant, consider limits

g—0 , N—=oo , ¢°N=gj = fixed

> Analogy with PBH inflationary models
ANpsr -0 , |n| =00 , |n| ANy = fixed



Higher-order correlation functions

> Non-Gaussian effects around the peak of the spectrum plays an important role for
PBH formation. Analytic control of non-Gaussianity would be welcome!

(Ciey Gy Coka) = (2m)20 (k1 + ko + k3) B¢ (k1, ka2, k3)

We can reduce the required amplitude of P, for producing PBH at small scales:

Byrnes et al, Atal-Germani, Passaglia et al,. .., Taoso-Urbano
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Higher-order correlation functions
and the large-|n| approach

> A single dominant term in the third order Hamiltonian of single-field inflation
‘Maldacena, Kristiano-Yokoyamal

Hn = =5 [ 2@/ () (.

n' (1) = An[—0(T — 1) + (7 — 72)]

> Plug mode functions and compute large-n limit of bispectrum. At leading order in
1/|n| one gets an analytic expression

B¢ (k1, ko, k3) = too long to fit in the slide



Higher-order correlation functions

and the large-|n| approach

Squeezed limit satisties
Maldacena consistency relation
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Subtle i1ssues: Loop corrections and PBH




Subtle 1ssues: Loop corrections and PBH

(in|Te ") Hime(™)dT" O (1) Tt J Hint(T)dr i)

> In single-field slow-roll inflation, loop corrections are small

..., Weinberg,. .. |

> In PBH forming scenarios, the same mechanism that enhances
the spectrum can also amplify loop corrections at large scales.

Kristiano-Yokoyama, Riotto, Firouzjahi, Franciolini et al, Fumagalli,. . . ]
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Subtle 1ssues: Loop corrections and PBH

(in|Te= ") Hime(™)dT" O(7) Tt ) Hint(T)dr i)

e 7 = —6 and sudden transition between SR and USR: loops are dangerously large,
and UV quadratic divergences should be renormalized |Kristiano-Yokoyamal]

e Smooth transition between SR and USR: loops can be placed under control
Riotto, Firouzjahi, Franciolini et al,...|; model dependent issue
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Subtle 1ssues: Loop corrections and PBH

(in

Te—iinnt(T/)dT/ O(T) Teiinnt(T/)dT/ 1ﬂ>

large-|n| approach simplifies considerably formulas

in the case of a sudden transition

AP (k) = A"°(k) [1 + Lyv(k) + Lir(x)]

A [Ty Afry, (5 - 3j1(k) — K

! 1+ 1l
Aglly 5
K

0 3K

6

| ) = at large scales 1t can be renormalized

In ( 7 / AIR) = due to secular effects of superhorizon modes

(Ag is the spectrum
at large scales)



Subtle 1ssues: Loop corrections and PBH

<in Te—iinnt(T/)dT/ O(T) Teiinnt(T/)dT’ .

large-|n| approach
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very small contribution —

k2-suppressed



Subtle 1ssues: Loop corrections and PBH

(in|Te=t) PP O (1) Tet ) Hint(T)dr" i)

... but recently [Fumagalli] found that we were all missing boundary terms in the
interaction Hamiltonian, that once included further reduce the size ot loops to
k3-suppressed corrections.



Conclusions

e Single-field models of inflation able to strongly enhance fluctuations at small scales
can lead to interesting dark matter candidates (PBH, vector DM)

> To properly understand their consequences, an analytical understanding of their

features would be helpful.

e Since the slow-roll parameter |n| is larger than one for a fraction of the inflationary
phase, I considered the case |n| large, and promoted 1/|n| to an expansion parameter.

e Formulas simplify, and obtain analytical expressions for the two and three point
functions in agreement with previous studies and with expectactions.

o It will be interesting to further apply these methods and analytical formulas to study
PBH formation, including the effects of non-Gaussianities, and to the analysis of loop

corrections 1n these scenarios.



