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Main	message	
	
in	the	last	years	a	plethora	of	new	exciXng	ideas,		
new	potenXal	observables	and	analysis	tools	
developed!!				



Main	message	
	
Ø Anisotropies	of	the	StochasXc	GravitaXonal	Wave	Background	

is	 one	 of	 those:	 allows	 to	 probe	 early	 and	 late-Xme	 physics,	
providing	a	new	way	to	characterize	the	SGWB		

	
Ø Of	 course,	 first	 measure	 the	 SGWB	 and	 for	 sufficiently	 high	

signal	look	for	anisotropies	

Ø  Even	if	difficult	to	measure	(at	least	for	some	interferometers)	
sXll	 an	 interesXng	 problem	 to	 address,	 and	 moreover	 cross-
correlaXon	 with	 other	 cosmological	 tracers	 can	 enhance	 the	
signal-to-noise	raXo	of	some	features		



in	the	band	20-76.6	Hz	for	a	flat		
(frequency	independent)	SGWB	
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(11) CCMB⇥SGWB
`

(11) ⌦GW (⌘0, k, n̂) = ⌦GW (⌘0, k) + �⌦GW (⌘0, k, n̂)

(11) h�⌦`1m1�⌦`2m2�⌦`3m3i ⇠

(11) ⌦GW (f)  5.8⇥ 10�9 (95% C.L.)

(11) r0.05 < 0.036 (95% C.L.)
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FIG. 5. Fiducial model predictions for the GWB from BBHs, BNSs, and NSBHs, along with current and projected sensitivity
curves. In the left panel we show 90% credible bands for the GWB contributions from BNS and BBH mergers. Whereas
the BNS uncertainty band illustrates purely the statistical uncertainties in the BNS merger rate, the BBH uncertainty band
additionally includes systematic uncertainties in the binary mass distribution, as described in the main text. As no unambiguous
NSBH detections have been made, we only show an upper limit on the possible contribution from such systems. The right
panel compares the combined BBH and BNS energy density spectra, and 2� power-law integrated (PI) curves for O2, O3, and
projections for the HLV network at design sensitivity, and the A+ detectors. The solid blue line shows the median estimate
of ⌦BBH+BNS(f) as a function of frequency, while the shaded blue band illustrates 90% credible uncertainties. The dashed
line, meanwhile, marks our projected upper limit on the total GWB, including our upper limit on the contribution from NSBH
mergers.

contour can be excluded on the basis of a GWB non-
detection. Direct BBH detections, meanwhile, allow for
a measurement of �1, but are not expected to meaning-
fully constrain zpeak, which likely lies beyond the horizon
of Advanced LIGO and Virgo. The direct BBH detec-
tions in GWTC-1 only allowed for a weak upper limit on
�1: �1  13.7. The non-detection of the GWB in O2
therefore ruled out a considerable portion of otherwise
available parameter space. Improved measurements due
to GWTC-2, though, have revised estimates of �1 down-
wards to �1 = 1.3+2.1

�2.1 [75], and so present GWB searches
cannot further constrain its value. The results in Fig. 6
are therefore now dominated by direct BBH detections.

With continued data collection, however, the non-
detection (or eventual detection) of the GWB may again
o↵er informative constraints on �1 and zpeak. As addi-
tional direct BBH detections are made, our knowledge
of �1 will continue to improve, identifying an increas-
ingly narrow, nearly-vertical contour in the �1 � zpeak

plane. Continued time integration in searches for the
GWB, meanwhile, will exclude a growing fraction of this
plane, ruling out large values of both �1 and zpeak. In
Fig. 7, for example, we show projected exclusion con-
tours corresponding to one year of integration with Ad-
vanced LIGO and Virgo, at both their design sensitivity
and A+ configurations; both exclusion curves extend into
the presently allowed values of �1, where they may again
be informative and break the degeneracy between �1 and

zpeak.

VI. CONCLUSIONS

In this work, we have performed a search for an
isotropic GWB using data from Advanced LIGO’s and
Virgo’s first three observing runs. Since we did not find
evidence for a background of astrophysical origin, we
placed upper limits, improving previous bounds by about
a factor of 6.0 for a flat background.

We considered the implications of the results, and
by combining the upper limits with measurements from
GWTC-2 we have constrained the BBH merger rate as a
function of redshift. Our results can be used to constrain
additional models such as cosmic strings or phase tran-
sitions, using the cross correlation spectra we have made
publicly available [57]. Our results can also be combined
with other measurements of the GWB at other frequen-
cies [81].

Moving forward, we expect currently proposed ground-
based facilities such as A+ have the potential to probe a
large range of the model space for CBC backgrounds. In
order to make full use of the data and confidently claim
a detection, it will be important to further develop the
methods to handle correlated terrestrial noise sources,
such as the magnetic couplings described here.

The authors gratefully acknowledge the support of the
United States National Science Foundation (NSF) for
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Can	allow	to	disGnguish	primordial		
from	astrophysical	SGWB	(in	addiGon		
to	exploiGng	different	frequency	profiles)	
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Figure 5. The sensitivity (in terms of characteristic strain [296,297]) of the proposed
LISA 3-detector system with 2.5 ⇥ 106 km arms [32]. Numerous sources that
are expected to be observed by LISA are displayed. Especially important for the
search for a stochastic background will be the galactic background (see Sec. 2.7).
Thousands of galactic binaries in LISA will produce signals with SNR > 7, and will
be individually resolvable. Some of these systems are well known and have already
been studied; these will be the so-called Verification Binaries, that will produce
gravitational wave signals that will help to confirm the sensitivity and calibration
of LISA. However, countless other binary systems will contribute to a gravitational
wave background that will complicate the LISA search for a cosmologically produced
stochastic background [201,223]. This background is also displayed in this figure. Many
other predicted signals for LISA are displayed, including massive black hole binaries
(MBHBs, including GW150914), black hole binary systems that can be observed with
Advanced LIGO and Advanced Virgo (LIGO-type BHBs), and extreme mass ratio
inspirals (EMRIs). See [32] for more details on these signal sources. Figure from [32].

The sensitivity of the proposed LISA 3-detector system with 2.5⇥ 106 km arms is

presented in Fig. 5 [32]. The signal sources that are expected to be observed by LISA

are also presented. It is important to note the presence of the close compact binaries,

as described in Sec. 2.7. Those binaries producing gravitational waves above the LISA

sensitivity (marked with SNR> 7) will be individually resolvable, and in principle can be

removed from contaminating the LISA stochastic background search [199–201,220–223].

However, the sum of all other binaries will produce a gravitational wave background that

must be addressed in a search for a cosmologically produced stochastic background [201].



The	nature	of	the	SGWB:		
new	avenues	
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-	Chirality	
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Figure 1: Traces of early universe physics can be looked for through multiple observational windows.

and it is intriguing that a PT happening at temperatures around the weak scale or TeV scale would give a signal
in the most sensitive region of the upcoming LISA experiment [189]. Higher PT scales could be probed by
LIGO and follow-up experiments such as the Einstein Telescope and Cosmic Explorer, while PTA experiments
are sensitive to PTs at later times that could potentially happen in a hidden sector [190, 191].

2.3 Outlook and Open Problems
We are entering an age of “multi-messenger cosmology", with multiple cosmological probes (CMB, LSS and GWs)
poised to provide new tests of the physics of the early universe (see Fig. 1). In order for these observations to
fulfill their true potential, however, theoretical advances will be crucially needed. The following is a list of some
of the most important open problems for each of the topics described above.

• Inflation: Despite being a very successful phenomenological model, inflation is not yet a complete theory.
In particular, the microscopic origin of the inflationary expansion is still unknown. This challenge can be
addressed through two complementary approaches. On the one hand, it remains important to construct
explicit models of inflation and study their observational predictions, including the effects of UV comple-
tion. On the other hand, we can carve out the space of consistent inflationary correlations starting from
basic physical principles such as locality, causality and unitarity. In this way, we can hope to provide a
systematic classification of the inflationary predictions. At a more phenomenological level, future galaxy
surveys will provide interesting new constraints on non-Gaussian correlations. In order for these obser-
vations to fulfill their true potential, however, the non-Gaussianity associated to nonlinear gravitational
evolution and galaxy biasing must be characterized very accurately, so that the primordial signals can be
extracted reliably. This will require both advances in numerical simulations, as well as improvements in
the theory description of large-scale structure.

• Reheating: Some of the theoretical challenges related to the reheating era include: (1) Delineating the
model dependent vs. relatively universal predictions, both from a model-building perspective and those
resulting from nonlinear phenomena (e.g. [192–196]). (2) Numerically simulating the nonperturbative
physics of this period with increasingly more ‘realistic’ field content – scalars, fermions, Abelian and
non-Abelian fields (see [197–203]) and detailed accounting of metastable/solitonic structures, full quan-
tum and gravitational effects. (3) Performing the numerical simulations long enough to reach full (local)

175] are currently on the brink of discovering a stochastic GW background (SGWB). In 2020, NANOGrav was the first PTA
collaboration to present strong evidence for a new stochastic process affecting its 12.5-year data [176]. Joint PTA analyses based on
larger data sets in the next years, eventually leading up to PTA observations with FAST [177] and SKA [178, 179], will help clarify
whether this process really corresponds to a SGWB signal and shed more light on its origin [180]. Possible explanations include
the mergers of supermassive black-hole binaries [181] on the astrophysical side as well as an abundance of BSM scenarios on the
cosmological side, including but not limited to cosmic strings [150–152], scalar-induced GWs (SIGWs) generated at second order of
perturbation theory in conjunction with the production of primordial black holes [182–185], cosmological phase transitions [162, 186–
188], and axions [162, 163].
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A	new	messenger	that	probes	both	early	and	late	Gme	Universe			

q=(2π	a0	f/c)	>>	k=2	π/λ		

λ		

2

where aend is the value of the scale factor at the end of
inflation and ak is its value when the scale k equalled aH
during inflation.2 We will use Nhor to indicate N(a0H0).

To determine the number of e-foldings corresponding
to a scale measured in terms of the present Hubble scale,
we need a complete model for the history of the Uni-
verse. At least from nucleosynthesis onwards, this is now
well in place, but at earlier epochs there are consider-
able uncertainties. At this stage, we make the following
simple assumptions for the sequence of events after infla-
tion, considering possible alternatives in the next section.
We assume that inflation is followed by a period of re-
heating, during which the Universe expands as matter
dominated (this assumption is not true in all models —
see subsection II C). This then gives way to a period of
radiation domination, which according to the Standard
Cosmological Model lasts until a redshift of a few thou-
sand before giving way to matter domination, and then
finally at a redshift below one to a cosmological constant
or quintessence dominated era. We assume sudden tran-
sitions between these epochs, labelling the end of the re-
heating period by ‘reh’ and the matter–radiation equality
epoch by ‘eq’. This is illustrated in Figure 1.

We can therefore write

k

a0H0
=

akHk

a0H0
= e−N(k) aend

areh

areh
aeq

Hk

Heq

aeqHeq

a0H0
(2)

Some useful factors are (see e.g. Ref. [4])

aeqHeq

a0H0
= 219Ω0h ; (3)

Heq = 5.25× 106 h3 Ω2
0H0 ; (4)

H0 = 1.75× 10−61 hmPl with h ≃ 0.7 (5)

Using the slow-roll approximation during inflation to
write H2

k ≃ 8πVk/3m2
Pl, we obtain

N(k) = − ln
k

a0H0
+

1

3
ln

ρreh
ρend

+
1

4
ln

ρeq
ρreh

+ ln

√

8πVk

3m2
Pl

1

Heq
+ ln 219Ω0h . (6)

which agrees with Refs. [4, 5] while being more precise
about the prefactor. In fact ultimately the dependence
on the matter density Ω0 will cancel out, and though a
dependence on h remains this parameter is now accu-
rately determined by observations.

2 As discussed by Liddle, Parsons and Barrow [3], it makes more
logical sense to define the amount of inflation as the ratio of aH,
rather than a. More on that later; for now we follow the standard
usage.

Inflation

Rad
iat

ion
Matter

LambdaPresent horizon scale

ln a

Reheating

lnH   /a−1

FIG. 1: A plot of ln(H−1/a) versus ln a shows the different
epochs in the e-foldings calculation. The solid curve shows the
evolution from the initial horizon crossing to the present, with
the dashed lines showing likely extrapolations into the past
and future. The condition for inflation is that ln(H−1/a) be
decreasing. Lines of constant Hubble parameter (not shown)
lie at 45 degrees (running top left to bottom right). The limit
of exponential inflation gives a line at this angle, otherwise
the inflation line is shallower. During reheating and matter
domination H−1/a ∝ a1/2, while during radiation domina-
tion H−1/a ∝ a. The recent domination by dark energy has
initiated a new era of inflation. The horizontal dotted line
indicates the present horizon scale. The number of e-foldings
of inflation is the horizontal distance between the time when
H−1/a first crosses that value and the end of inflation.

A. A plausible upper limit

The evolution of the Universe as described above is a
plausible model for its entire history. Nevertheless, there
are significant uncertainties in applying Eq. (6). Vk is
a quantity we would hope to extract from the perturba-
tions, but presently only upper limits exist, as the density
perturbation amplitude depends on a combination of the
potential and its slope, being unable to constrain either
separately. Detection of primordial gravitational waves,
which so far has not been achieved, is needed to break
this degeneracy. We do not know how prolonged the re-
heating epoch might be, which is needed to determine
ρreh, nor how much lower the energy density ρend at the
end of inflation might be as compared to Vk.

Nevertheless, we can impose a plausible maximum
on the number of e-foldings by making an assumption,
namely that there is no significant drop in energy density
during these last stages of inflation, so that Vk = ρend.
Note however that this is not the correct way to maximize
Eq. (6), a topic we return to in subsection IID, and so is
a non-trivial assumption. Having made it, the inflation
line in Figure 1 lies at 45 degrees, and we can maximize
the number of e-foldings by assuming that reheating is
instantaneous, so that ρreh = ρend. Focussing now on the
current horizon scale, this gives a maximum number of

GWs	from	inflaDon		

Scalar-induced	GWs		
		

q	~	1015	–	1018	Mpc−1			

	k	~	10−4	–	10−1	Mpc−1					

Anisotropies	of	CGWB	



Ø  	Angular	anisotropies	of	the	GW	energy	density	

	
	
	
Ø Why	important?		A	new	messenger	that	probe	cosmic	perturbaEons			

ü  disentangle	cosmological	from	astrophysical	SGWB	

ü  provide	a	new	way	to	disDnguish	generaDon	mechanisms	of	primordial	SGWB		

ü  	probe	evoluDon	of	cosmological	perturbaDons		
		
ü  provide	a	new	observable	to	probe	primordial	non-Gaussianity:	NG	of	GWs!!!	
						
ü  	provide	new	paths	to	probe	fundamental	physics	(GR	tests,	parDcle	content,…)	

ü  can	cross-correlate	with	other	backgrounds	&	constrain	cosmo	parameters	
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(the bispectrum) of the GW energy density.
For brevity reasons, this Letter contains only results

under the simplest conditions. In a companion paper
[28] we shall present the details of these computations,
extend them to include the GW propagation to second
order in perturbations, as well as develop a more extended
analysis of the GW bispectrum.

Boltzmann equation for GWs. We consider a distribu-
tion f = f(⌘, xi, q, n̂i) of GWs as a function of their posi-
tion xµ and momentum pµ = dxµ/d�, where � is an a�ne
parameter along the GW trajectory. This distribution
obeys the Boltzmann equation L[f ] = C[f(�)] + I[f(�)],
where the Liouville term is L ⌘ d/d�, while C and I
account respectively for the collision of GWs along their
patch, and for their emissivity from cosmological and as-
trophysical sources [15]. The collision among GWs a↵ects
the distribution at higher orders (in an expansion series
in the gravitational strength 1/MPlanck ) with respect to
the ones we are considering, and can be disregarded. The
emissivity can be due to astrophysical processes (such as
black-holes merging) in the relatively late universe, as
well as cosmological processes, such as inflation or phase
transitions. In this work we are only interested in the
stochastic GW background of cosmological origin, so we
treat the emissivity term as an initial condition on the
GW distribution (see [29] and Refs. therein for a discus-
sion on collisional e↵ects involving gravitons). This leads
us to study the free Boltzmann equation, df/d⌘ = 0 in
the perturbed universe. Specifically, we consider scalar
(� and  ) and tensor (hij , taken to be transverse and
traceless) perturbations in the so-called Poisson gauge,
around a homogeneous and isotropic background, giving
the line element

ds2 = a2(⌘)
⇥
�e2�d⌘2 + (e�2 �ij + hij)dx

idxj
⇤
, (1)

where a(⌘) is the scale factor, and ⌘ is conformal time.
Dividing the free Boltzmann equation by p0 leads to
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where n̂ ⌘ p̂ is the direction of motion of the GWs, while
q ⌘ |~p|a is the comoving momentum, that we use (as op-
posed to the physical one, that was used in [15], follow-
ing the standard computation done for the CMB photons
propagation [30]) as it simplifies the equation (3) below.
The first two terms in (2) encode free streaming, that is
the propagation of perturbations on all scales. At higher
order this term also includes gravitational time delay ef-
fects. The third term causes the red-shifting of gravitons,
including the Sachs-Wolfe (SW), integrated Sachs-Wolfe
(ISW) and Rees-Sciama (RS) e↵ects. The fourth term
vanishes to first order and describes the e↵ect of gravita-
tional lensing. We shall refer to these terms as the free-
streaming, redshift and lensing terms, respectively in a

similar way to CMB physics. Keeping only the terms up
to first order in the perturbations, eq. (2) gives
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In analogy to the split in (1) we also assume that

the GWs distribution has a dominant, homogeneous and
isotropic contribution, with distribution function f̄ , plus
a subdominant contribution �f . The two functions are
obtained by solving eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄(q) of the comoving momentum solves (3) at
zeroth order. As a consequence, the associated number
density n /

´
d3p f̄(q) is diluted as a�3 as the universe

expands. This is also the case for CMB photons, whose
distribution function f̄CMB = (ep/T � 1)�1 is only con-
trolled by the ratio p/T / p a = q, where T is the tem-
perature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background,
and it does not rely on the distribution being thermal.

The subdominant anisotropic component �f can be
present as an initial condition. However, even if it is
initially absent, eq. (3) shows that this anisotropy is pro-
duced by the propagation of the isotropic component f̄
in the perturbed background. Assuming that @f̄/@q 6= 0
(otherwise also the solution of �f becomes trivial) it is
convenient to rescale the perturbed part of the distribu-
tion function as
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In this variable and in Fourier space eq. (3) gives

�0 + i k µ� = S(⌘,~k, n̂) , (5)

where from now on prime denotes a derivative with re-
spect to conformal time, µ is the cosine of the angle
between ~k and n̂, while the source function is S =
 0 � ik µ�� 1
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ij . As we now show, the quantity �
can be immediately related to the anisotropic component
of the GWs energy density, ⇢GW ⌘

´
d3p p f . It is cus-

tomary to parametrize the GW energy density measured
at the time ⌘ at the location ~x in terms of its fractional
contribution ⌦GW through

⇢GW (⌘, ~x) ⌘ ⇢crit

ˆ
d ln q⌦GW (⌘, ~x, q) , (6)

where ⇢crit = 3H2M2
p is the critical energy density of the

universe, and H is the Hubble rate. Nearly all studies
assume ⌦GW to be homogeneous. Since we are interested
in its inhomogeneous and anisotropic component, we have
allowed ⌦GW to depend on space. We account for the
anisotropic dependence by defining !GW through ⌦GW =´
d2n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density
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under the simplest conditions. In a companion paper
[28] we shall present the details of these computations,
extend them to include the GW propagation to second
order in perturbations, as well as develop a more extended
analysis of the GW bispectrum.
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where the Liouville term is L ⌘ d/d�, while C and I
account respectively for the collision of GWs along their
patch, and for their emissivity from cosmological and as-
trophysical sources [15]. The collision among GWs a↵ects
the distribution at higher orders (in an expansion series
in the gravitational strength 1/MPlanck ) with respect to
the ones we are considering, and can be disregarded. The
emissivity can be due to astrophysical processes (such as
black-holes merging) in the relatively late universe, as
well as cosmological processes, such as inflation or phase
transitions. In this work we are only interested in the
stochastic GW background of cosmological origin, so we
treat the emissivity term as an initial condition on the
GW distribution (see [29] and Refs. therein for a discus-
sion on collisional e↵ects involving gravitons). This leads
us to study the free Boltzmann equation, df/d⌘ = 0 in
the perturbed universe. Specifically, we consider scalar
(� and  ) and tensor (hij , taken to be transverse and
traceless) perturbations in the so-called Poisson gauge,
around a homogeneous and isotropic background, giving
the line element
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where n̂ ⌘ p̂ is the direction of motion of the GWs, while
q ⌘ |~p|a is the comoving momentum, that we use (as op-
posed to the physical one, that was used in [15], follow-
ing the standard computation done for the CMB photons
propagation [30]) as it simplifies the equation (3) below.
The first two terms in (2) encode free streaming, that is
the propagation of perturbations on all scales. At higher
order this term also includes gravitational time delay ef-
fects. The third term causes the red-shifting of gravitons,
including the Sachs-Wolfe (SW), integrated Sachs-Wolfe
(ISW) and Rees-Sciama (RS) e↵ects. The fourth term
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In analogy to the split in (1) we also assume that

the GWs distribution has a dominant, homogeneous and
isotropic contribution, with distribution function f̄ , plus
a subdominant contribution �f . The two functions are
obtained by solving eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄(q) of the comoving momentum solves (3) at
zeroth order. As a consequence, the associated number
density n /

´
d3p f̄(q) is diluted as a�3 as the universe

expands. This is also the case for CMB photons, whose
distribution function f̄CMB = (ep/T � 1)�1 is only con-
trolled by the ratio p/T / p a = q, where T is the tem-
perature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background,
and it does not rely on the distribution being thermal.

The subdominant anisotropic component �f can be
present as an initial condition. However, even if it is
initially absent, eq. (3) shows that this anisotropy is pro-
duced by the propagation of the isotropic component f̄
in the perturbed background. Assuming that @f̄/@q 6= 0
(otherwise also the solution of �f becomes trivial) it is
convenient to rescale the perturbed part of the distribu-
tion function as
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In this variable and in Fourier space eq. (3) gives

�0 + i k µ� = S(⌘,~k, n̂) , (5)

where from now on prime denotes a derivative with re-
spect to conformal time, µ is the cosine of the angle
between ~k and n̂, while the source function is S =
 0 � ik µ�� 1
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ij . As we now show, the quantity �
can be immediately related to the anisotropic component
of the GWs energy density, ⇢GW ⌘

´
d3p p f . It is cus-

tomary to parametrize the GW energy density measured
at the time ⌘ at the location ~x in terms of its fractional
contribution ⌦GW through

⇢GW (⌘, ~x) ⌘ ⇢crit

ˆ
d ln q⌦GW (⌘, ~x, q) , (6)

where ⇢crit = 3H2M2
p is the critical energy density of the

universe, and H is the Hubble rate. Nearly all studies
assume ⌦GW to be homogeneous. Since we are interested
in its inhomogeneous and anisotropic component, we have
allowed ⌦GW to depend on space. We account for the
anisotropic dependence by defining !GW through ⌦GW =´
d2n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density

It is useful to introduce a dimensionless quantity !GW that accounts for the contribution of
GWs propagating at a given time, location, frequency and direction to the critical density:

!GW (⌘, ~x, q, n̂) =
4⇡

⇢crit(⌘)

q4

a4(⌘)
fGW (⌘, ~x, q, n̂) , (2.5)

where ⇢crit = 3H2M2
Pl and H the Hubble rate. The monopole of !GW is denoted as

⌦GW (⌘, ~x, q) =

Z

d2n̂

4⇡
!GW (⌘, ~x, q, n̂) , (2.6)

and the average value of this monopole as

⌦̄GW (⌘, q) = h⌦GW (⌘, ~x, q)i~x . (2.7)

With such definitions, the anisotropy of the CGWB density at the detector’s time ⌘0, location
~x0 and momentum/frequency q can be simply defined as:

�GW(⌘0, ~x0, q, n̂) ⌘
!GW(⌘0, ~x0, q, n̂)� ⌦GW(⌘0, ~x0, q)

⌦GW(⌘0, ~x0, q)
. (2.8)

In very good approximation, we can assume that the detector occupies a typical position in
the universe where ⌦GW(⌘0, ~x0, q) = ⌦̄GW(⌘0, q) and redefine the anisotropy as

�GW(⌘0, ~x0, q, n̂) ⌘
!GW(⌘0, ~x0, q, n̂)� ⌦̄GW(⌘0, q)

⌦̄GW(⌘0, q)
. (2.9)

Given that [⌦GW(~x) � ⌦̄GW] is a linear perturbation – with random values at each ~x much
smaller than ⌦̄GW, typically by five orders of magnitude – the definitions given in (2.8) and
(2.9) only di↵er by a stochastic multiplicative factor very peaked near one and a stochastic
monopole term very peaked near zero, none of which are detectable. Thus, we can rely on
the second definition, for which making theoretical predictions is more straightforward.3

At this point, as shown in [31–33], it is useful to re-define the perturbed graviton
distribution function in terms of the phase-space relative perturbation �,

�fGW = fGW � f̄GW ⌘ �q
@f̄GW

@q
� (⌘, ~x, q, n̂) , (2.10)

such that the first order Boltzmann equation reads in Fourier space

�0 + i k µ� = �0 � ik µ � 1

2
ninj h0ij , (2.11)

where the terms on the rhs define the so-called source function S(⌘, ~k, n̂). A prime denotes a
derivative with respect to conformal time, and µ is the cosine of the angle between ~k and n̂.
~k and k are the wave vector and wave number of the (large-scale) cosmological perturbations

3The same approximation is always implicitly performed in the case of CMB anisotropies. For instance,
the temperature anisotropy map �T/T̄ should in principle be defined with respect the temperature monopole
T
CMB

= hT (~x
0

, n̂)i
n̂

at the detector’s location. However, for the purpose of making theoretical predictions, the
map is always implicitly assumed to be defined with respect to the spatially averaged temperature monopole
T̄ = hT (~x, n̂)i

~x,n̂

.
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(the bispectrum) of the GW energy density.
For brevity reasons, this Letter contains only results

under the simplest conditions. In a companion paper
[28] we shall present the details of these computations,
extend them to include the GW propagation to second
order in perturbations, as well as develop a more extended
analysis of the GW bispectrum.

Boltzmann equation for GWs. We consider a distribu-
tion f = f(⌘, xi, q, n̂i) of GWs as a function of their posi-
tion xµ and momentum pµ = dxµ/d�, where � is an a�ne
parameter along the GW trajectory. This distribution
obeys the Boltzmann equation L[f ] = C[f(�)] + I[f(�)],
where the Liouville term is L ⌘ d/d�, while C and I
account respectively for the collision of GWs along their
patch, and for their emissivity from cosmological and as-
trophysical sources [15]. The collision among GWs a↵ects
the distribution at higher orders (in an expansion series
in the gravitational strength 1/MPlanck ) with respect to
the ones we are considering, and can be disregarded. The
emissivity can be due to astrophysical processes (such as
black-holes merging) in the relatively late universe, as
well as cosmological processes, such as inflation or phase
transitions. In this work we are only interested in the
stochastic GW background of cosmological origin, so we
treat the emissivity term as an initial condition on the
GW distribution (see [29] and Refs. therein for a discus-
sion on collisional e↵ects involving gravitons). This leads
us to study the free Boltzmann equation, df/d⌘ = 0 in
the perturbed universe. Specifically, we consider scalar
(� and  ) and tensor (hij , taken to be transverse and
traceless) perturbations in the so-called Poisson gauge,
around a homogeneous and isotropic background, giving
the line element

ds2 = a2(⌘)
⇥
�e2�d⌘2 + (e�2 �ij + hij)dx

idxj
⇤
, (1)

where a(⌘) is the scale factor, and ⌘ is conformal time.
Dividing the free Boltzmann equation by p0 leads to
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where n̂ ⌘ p̂ is the direction of motion of the GWs, while
q ⌘ |~p|a is the comoving momentum, that we use (as op-
posed to the physical one, that was used in [15], follow-
ing the standard computation done for the CMB photons
propagation [30]) as it simplifies the equation (3) below.
The first two terms in (2) encode free streaming, that is
the propagation of perturbations on all scales. At higher
order this term also includes gravitational time delay ef-
fects. The third term causes the red-shifting of gravitons,
including the Sachs-Wolfe (SW), integrated Sachs-Wolfe
(ISW) and Rees-Sciama (RS) e↵ects. The fourth term
vanishes to first order and describes the e↵ect of gravita-
tional lensing. We shall refer to these terms as the free-
streaming, redshift and lensing terms, respectively in a

similar way to CMB physics. Keeping only the terms up
to first order in the perturbations, eq. (2) gives
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In analogy to the split in (1) we also assume that

the GWs distribution has a dominant, homogeneous and
isotropic contribution, with distribution function f̄ , plus
a subdominant contribution �f . The two functions are
obtained by solving eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄(q) of the comoving momentum solves (3) at
zeroth order. As a consequence, the associated number
density n /

´
d3p f̄(q) is diluted as a�3 as the universe

expands. This is also the case for CMB photons, whose
distribution function f̄CMB = (ep/T � 1)�1 is only con-
trolled by the ratio p/T / p a = q, where T is the tem-
perature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background,
and it does not rely on the distribution being thermal.

The subdominant anisotropic component �f can be
present as an initial condition. However, even if it is
initially absent, eq. (3) shows that this anisotropy is pro-
duced by the propagation of the isotropic component f̄
in the perturbed background. Assuming that @f̄/@q 6= 0
(otherwise also the solution of �f becomes trivial) it is
convenient to rescale the perturbed part of the distribu-
tion function as

�f ⌘ �q
@f̄

@q
� (⌘, ~x, q, n̂) . (4)

In this variable and in Fourier space eq. (3) gives

�0 + i k µ� = S(⌘,~k, n̂) , (5)

where from now on prime denotes a derivative with re-
spect to conformal time, µ is the cosine of the angle
between ~k and n̂, while the source function is S =
 0 � ik µ�� 1

2n
inj h0

ij . As we now show, the quantity �
can be immediately related to the anisotropic component
of the GWs energy density, ⇢GW ⌘

´
d3p p f . It is cus-

tomary to parametrize the GW energy density measured
at the time ⌘ at the location ~x in terms of its fractional
contribution ⌦GW through

⇢GW (⌘, ~x) ⌘ ⇢crit

ˆ
d ln q⌦GW (⌘, ~x, q) , (6)

where ⇢crit = 3H2M2
p is the critical energy density of the

universe, and H is the Hubble rate. Nearly all studies
assume ⌦GW to be homogeneous. Since we are interested
in its inhomogeneous and anisotropic component, we have
allowed ⌦GW to depend on space. We account for the
anisotropic dependence by defining !GW through ⌦GW =´
d2n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density
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For brevity reasons, this Letter contains only results

under the simplest conditions. In a companion paper
[28] we shall present the details of these computations,
extend them to include the GW propagation to second
order in perturbations, as well as develop a more extended
analysis of the GW bispectrum.

Boltzmann equation for GWs. We consider a distribu-
tion f = f(⌘, xi, q, n̂i) of GWs as a function of their posi-
tion xµ and momentum pµ = dxµ/d�, where � is an a�ne
parameter along the GW trajectory. This distribution
obeys the Boltzmann equation L[f ] = C[f(�)] + I[f(�)],
where the Liouville term is L ⌘ d/d�, while C and I
account respectively for the collision of GWs along their
patch, and for their emissivity from cosmological and as-
trophysical sources [15]. The collision among GWs a↵ects
the distribution at higher orders (in an expansion series
in the gravitational strength 1/MPlanck ) with respect to
the ones we are considering, and can be disregarded. The
emissivity can be due to astrophysical processes (such as
black-holes merging) in the relatively late universe, as
well as cosmological processes, such as inflation or phase
transitions. In this work we are only interested in the
stochastic GW background of cosmological origin, so we
treat the emissivity term as an initial condition on the
GW distribution (see [29] and Refs. therein for a discus-
sion on collisional e↵ects involving gravitons). This leads
us to study the free Boltzmann equation, df/d⌘ = 0 in
the perturbed universe. Specifically, we consider scalar
(� and  ) and tensor (hij , taken to be transverse and
traceless) perturbations in the so-called Poisson gauge,
around a homogeneous and isotropic background, giving
the line element

ds2 = a2(⌘)
⇥
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where a(⌘) is the scale factor, and ⌘ is conformal time.
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where n̂ ⌘ p̂ is the direction of motion of the GWs, while
q ⌘ |~p|a is the comoving momentum, that we use (as op-
posed to the physical one, that was used in [15], follow-
ing the standard computation done for the CMB photons
propagation [30]) as it simplifies the equation (3) below.
The first two terms in (2) encode free streaming, that is
the propagation of perturbations on all scales. At higher
order this term also includes gravitational time delay ef-
fects. The third term causes the red-shifting of gravitons,
including the Sachs-Wolfe (SW), integrated Sachs-Wolfe
(ISW) and Rees-Sciama (RS) e↵ects. The fourth term
vanishes to first order and describes the e↵ect of gravita-
tional lensing. We shall refer to these terms as the free-
streaming, redshift and lensing terms, respectively in a

similar way to CMB physics. Keeping only the terms up
to first order in the perturbations, eq. (2) gives
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In analogy to the split in (1) we also assume that

the GWs distribution has a dominant, homogeneous and
isotropic contribution, with distribution function f̄ , plus
a subdominant contribution �f . The two functions are
obtained by solving eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄(q) of the comoving momentum solves (3) at
zeroth order. As a consequence, the associated number
density n /

´
d3p f̄(q) is diluted as a�3 as the universe

expands. This is also the case for CMB photons, whose
distribution function f̄CMB = (ep/T � 1)�1 is only con-
trolled by the ratio p/T / p a = q, where T is the tem-
perature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background,
and it does not rely on the distribution being thermal.

The subdominant anisotropic component �f can be
present as an initial condition. However, even if it is
initially absent, eq. (3) shows that this anisotropy is pro-
duced by the propagation of the isotropic component f̄
in the perturbed background. Assuming that @f̄/@q 6= 0
(otherwise also the solution of �f becomes trivial) it is
convenient to rescale the perturbed part of the distribu-
tion function as
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In this variable and in Fourier space eq. (3) gives

�0 + i k µ� = S(⌘,~k, n̂) , (5)

where from now on prime denotes a derivative with re-
spect to conformal time, µ is the cosine of the angle
between ~k and n̂, while the source function is S =
 0 � ik µ�� 1
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inj h0

ij . As we now show, the quantity �
can be immediately related to the anisotropic component
of the GWs energy density, ⇢GW ⌘
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d3p p f . It is cus-

tomary to parametrize the GW energy density measured
at the time ⌘ at the location ~x in terms of its fractional
contribution ⌦GW through

⇢GW (⌘, ~x) ⌘ ⇢crit

ˆ
d ln q⌦GW (⌘, ~x, q) , (6)

where ⇢crit = 3H2M2
p is the critical energy density of the

universe, and H is the Hubble rate. Nearly all studies
assume ⌦GW to be homogeneous. Since we are interested
in its inhomogeneous and anisotropic component, we have
allowed ⌦GW to depend on space. We account for the
anisotropic dependence by defining !GW through ⌦GW =´
d2n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density

3

contrast �GW ⌘ �!GW(⌘, ~x, q, n̂)/!̄GW(⌘, q). Using eq.
(4), one then finds

�GW =


4� @ ln ⌦̄GW (⌘, q)

@ ln q

�
� (⌘, ~x, q, n̂) , (7)

with ⌦̄GW the homogeneous, isotropic component of ⌦GW.

In the CMB case, by inserting the definition (4) in the
Planck distribution, and expanding to first order, one
finds �CMB = �T/T . The main di↵erence between the
CMB and the GW case is that, before recombination, the
collision term between photons and baryons suppresses
any existing temperature anisotropy, thus removing any
memory of the initial state. The observed temperature
anisotropies �T/T arise since recombination, following an
equation analogous to (5), with a source that, to first or-
der, is independent from the energy of the CMB photons.
While in the CMB this dependence arises only to second
order in perturbations, a significantly greater dependence
can be present in the GWs distribution, as an initial con-
dition. In the following, we first compute and discuss
the cosmological correlators of the GW anisotropies, and
we then show through a concrete example that they can
indeed have a significant dependence on frequency.

Correlators of GW anisotropies and non-Gaussianity.

As it is standard [30], we express each of the sources
appearing in eq. (5) as a mode function times an ini-
tial variable that is constant at large scales, assuming
for simplicity adiabatic scalar perturbations, and whose
statistical properties have been set well before the propa-
gation stage that we are considering (for instance dur-
ing inflation, or during some early phase transition).
Therefore, the scalar modes are (disregarding anisotropic
stresses as for example those due to the relic neutrinos)

 = � ⌘ T�(⌘, k) ⇣̂(~k); we then decompose the tensor
modes as hij ⌘

P
�=±2 eij,�(k̂)h(⌘, k)⇠̂�(k

i), where the
sum is over right and left-handed (respectively � = ±2)
circular polarizations, and the polarization operators are
constructed as in [25]. We insert these expressions in
the source function in (5), and solve for �. We then
follow the treatment done for CMB perturbations, and
we expand the solution in spherical harmonics, �(n̂) =P

`

P`
m=�` �`m Y`m(n̂), where we recall that n̂ is the di-

rection of motion of the GWs, and so the direction at
which the GWs arrive on our sky. The multipoles �`m
are the sum of three contributions. The first contribution
arises from the initial conditions,

�`m,I (q)

4⇡ (�i)`
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d3k
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⇥
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,

(8)
where ⌘0 denotes the present time, and we set our location
to ~x0 = 0. We also remark that this term in general
depends on q. The second contribution is due to the

scalar sources in eq. (5)
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where the scalar transfer function T (0)
` is the sum of

a term analogous to the SW e↵ect for CMB photons,
T�(⌘in, k) j`[k(⌘0 � ⌘in)], plus the analog of the ISW
term,

´ ⌘0

⌘in
d⌘0 [T 0

 (⌘, k) + T 0
�(⌘, k)] j`[k(⌘ � ⌘in)]. Finally,

the third contribution �`m,T is due to the tensor modes
in eq. (5), and it is formally analog to eq. (9),
with the product ⇣̂Y ⇤

`m replaced by the combinationP
�=±2 ⇠̂�(

~k)��Y
⇤
`m(⌦k), involving the spin-2 spherical

harmonics, and with the scalar transfer function replaced

by the tensor one T (±2)
` (k, ⌘0, ⌘in), given by
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We are interested in statistical correlators of the
anisotropies. Under the assumption of statistical homo-
geneity and isotropy, the 2-point and 3-point correlators
of ⇣̂ are expressed in terms of, respectively, the scalar
power spectrum and bispectrum through h⇣(~k)⇣⇤(~k0)i0 =
(2⇡2/k3)P (0)(k) and h⇣3(~ki)i0 = B(0)(ki) (we use the
standard notation of the prime to eliminate the mo-
mentum conservation Dirac delta and the (2⇡)3 coef-
ficient). Analogously, correlators P (�) and B(�) can
also be defined for the two tensor polarizations. More-
over, we impose correlators of the same structure for the
initial conditions, namely h�(⌘in, ~k, q)�⇤(⌘in, ~k0, q)i0 =
(2⇡2/k3)P (I)(k) and for the bispectrum B(I). In this
work, we assume that the di↵erent contributions are
uncorrelated. Under these assumptions, one obtains
h�`m�⇤`0m0i ⌘ �``0 �mm0 eC` = �``0 �mm0 [ eC`,I(q) + eC`,S +
eC`,T ], where we denote the correlators with a tilde to
distinguish them from the CMB case. The contribution
from the initial condition reads,

eC`,I (q)

4⇡
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ˆ
dk

k
P (I) (q, k) j2` [k (⌘0 � ⌘in)] , (11)

where again we stress the possible frequency dependence.
The other two terms are

eC`,S + eC`,T
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k
P (↵) (k) T (↵) 2

` (k, ⌘0, ⌘in) .

(12)
At large scales, this contribution is dominated by the

term proportional to the initial value of � in T (0)
` (the

analog of the SW contribution for the CMB). For modes
that re-enter the horizon during matter domination (as it
is the case for those that give the large-scale anisotropies
that we are considering), T� = 3/5 at early times [30].
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with ⌦̄GW the homogeneous, isotropic component of ⌦GW.
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We are interested in statistical correlators of the
anisotropies. Under the assumption of statistical homo-
geneity and isotropy, the 2-point and 3-point correlators
of ⇣̂ are expressed in terms of, respectively, the scalar
power spectrum and bispectrum through h⇣(~k)⇣⇤(~k0)i0 =
(2⇡2/k3)P (0)(k) and h⇣3(~ki)i0 = B(0)(ki) (we use the
standard notation of the prime to eliminate the mo-
mentum conservation Dirac delta and the (2⇡)3 coef-
ficient). Analogously, correlators P (�) and B(�) can
also be defined for the two tensor polarizations. More-
over, we impose correlators of the same structure for the
initial conditions, namely h�(⌘in, ~k, q)�⇤(⌘in, ~k0, q)i0 =
(2⇡2/k3)P (I)(k) and for the bispectrum B(I). In this
work, we assume that the di↵erent contributions are
uncorrelated. Under these assumptions, one obtains
h�`m�⇤`0m0i ⌘ �``0 �mm0 eC` = �``0 �mm0 [ eC`,I(q) + eC`,S +
eC`,T ], where we denote the correlators with a tilde to
distinguish them from the CMB case. The contribution
from the initial condition reads,

eC`,I (q)

4⇡
=

ˆ
dk

k
P (I) (q, k) j2` [k (⌘0 � ⌘in)] , (11)

where again we stress the possible frequency dependence.
The other two terms are
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=
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↵=0,±2

ˆ
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k
P (↵) (k) T (↵) 2

` (k, ⌘0, ⌘in) .
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At large scales, this contribution is dominated by the

term proportional to the initial value of � in T (0)
` (the

analog of the SW contribution for the CMB). For modes
that re-enter the horizon during matter domination (as it
is the case for those that give the large-scale anisotropies
that we are considering), T� = 3/5 at early times [30].

by the GW production mechanism before the free propagation of the waves. The scalar and
tensor terms correspond to additional anisotropies induced by the propagation of GWs in
a background with large-scale perturbations of scalar type (sourced by �0 � ik µ ) and/or
tensor type (sourced by �1

2n
inj h0ij). The scalar and tensor source terms are independent of

the GW momentum/frequency q, and so are the contributions �S , �T . On the other hand,
as stressed in [32, 33] the initial anisotropies can have a large (order unity) dependence on
the frequency (contrary to what happens for CMB photons at linear order)4.

The GW energy density contrast �GW of Eq. (2.9) is related to the phase-space relative
perturbation � and to the fractional background energy density contribution ⌦̄GW [32, 33]
through

�GW (⌘0, ~x0, q, n̂) =

✓

4� @ ln ⌦̄GW (⌘0, q)

@ ln q

◆

� (⌘0, ~x0, q, n̂) ⌘ (4� ngwb)� , (2.13)

where we define the Gravitational Wave Background (GWB) spectral index

ngwb(q) ⌘
@ ln ⌦̄GW (⌘0, q)

@ ln q
. (2.14)

In this relation, ngwb(q) should be evaluated at the detector momentum/frequency q at which
�GW is measured. Many cosmological GW production mechanisms (see Sec. 3.2) have a GW
frequency spectrum well described by a simple power law (i.e., ⌦̄GW / qnGWB) such that
ngwb is independent of the considered frequency.

Like in the case of the CMB temperature anisotropies, we can expand the GW density
contrast in spherical harmonics Y`m(n̂),

�GW(⌘0, ~x0, q, n̂) =
X

`

X̀

m=�`

�GW, `m(⌘0, ~x0, q)Y`m(n̂) . (2.15)

As we will see in the next sections, the scalar and tensor contributions are ubiquitous for
all cosmological production mechanisms, since they are generated by the propagation itself,
while the initial contribution should depend on each specific scenario. Following [32, 33],
in harmonic space, the three contributions to the solution of the linear Boltzmann equation
read

�GW, `m, I (q) = 4⇡ (�i)` (4� ngwb)

Z

d3k

(2⇡)3
ei
~k·~x

0 Y ⇤
`m(k̂)�(⌘in, ~k, q) j` [k (⌘0 � ⌘in]) ,

�GW, `m,S = 4⇡ (�i)` (4� ngwb)

Z

d3k

(2⇡)3
ei
~k·~x

0 Y ⇤
`m(k̂)R(~k) �S

` (k, ⌘0, ⌘in) ,

�GW, `m,T = 4⇡ (�i)` (4� ngwb)

Z

d3k

(2⇡)3
ei
~k·~x

0

X

�=±2

��Y
⇤
`m(k̂)h�(~k) �

T
` (k, ⌘0, ⌘in) ,

(2.16)

where ⌘in is an initial time after which the GWs propagate freely (defined in the next sub-
section) and j`(x) are the spherical Bessel functions. For concision, on the left-hand side, we
omitted the detector’s time and location (⌘0, ~x0) in the argument of the multipoles.

4The initial anisotropies could be sourced by both scalar and tensor perturbations, depending on the
mechanism considered.
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where we have defined the three components
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Anisotropies	at	producDon:	
model	dependent	(inflaDon,		
phase-transiDons,	PBHS,	etc)		
O(1)-dependence	on	frequency	q			

Anisotropies	from	propagaDon	through		
scalar	perturbaDons		

Anisotropies	from	propagaDon	through		
tensor	perturbaDons	
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d3kX T (X)
` (k, ⌘0, ⌘in)

(13) �GW
`m ⇠

Z
d3kX T (X)

` (k, ⌘0, ⌘in)

(13) �GW (⌘,~k, q, n̂) /

(13) h�`1m1�`2m2�`3m3i ⇠

(13) �GW (⌘0, ~x, q, n̂) =
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@ ln q

�
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GW	energy	density	fluctuaEons		

tion, and its anisotropies retain precious information about the primordial cosmological

evolution.

The Boltzmann equation for the graviton distribution function f(xµ, pµ), with xµ the

graviton position and pµ = dxµ/d� its momentum, is given by

L[f ] = C[f(�)] + I[f(�)] , (2.2)

where L ⌘ d/d� is the Liouville operator, while C and I account, respectively, for the colli-

sion of GWs along their path, and for their emissivity from cosmological and astrophysical

sources [15]. In the case of a cosmological SGWB, the emissivity term can be treated as

an initial condition on the GW distribution, while, as we will see in section 3, in the case

of an astrophysical background it is related to the astrophysical process that generate the

GW signal at various redshifts, such as the black hole merging. On the other hand, we

disregard the GW collision term since it a↵ects the distribution at higher orders in an

expansion series in the gravitational strength 1/MPl, where MPl is the Planck mass. We

assume that our universe is well described by a perturbed FLRW metric

ds2 = a2(⌘)
⇥
�e2�d⌘2 + (e�2 �ij + hij)dxidxj

⇤
, (2.3)

where a(⌘) is the scale factor as a function of the conformal time ⌘, � and  scalar

fluctuations, and hij the transverse-traceless tensor fluctuations. We can then solve the

Boltzmann equation (2.2), at background and linear levels. The background Boltzmann

equation simply reads @f̄/@⌘ = 0, and it is solved by any distribution that is function only

of the comoving momentum q, namely f = f̄ (q). This implies that the physical momentum

of the individual gravitons redshifts proportionally to 1/a.

At linearized level, the evolution equation for f becomes [15–17]

@f

@⌘
+ ni @f

@xi
+


@ 

@⌘
� n̂i @�

@xi
+

1

2
n̂in̂j @hij

@⌘

�
q

@f

@q
= 0 , (2.4)

where n̂i = q̂i is the direction of motion of the gravitons. The distribution function f is

related to the GW energy density by

⇢GW (⌘0, ~x) =
1

a40

Z
d3q q f (⌘0, ~x, q, n̂) ⌘ ⇢c,0

Z
d ln q ⌦GW (⌘0, ~x, q) , (2.5)

where we use the spectral energy density ⌦GW introduced in Eq. (2.1), which depends also

on the position ~x where the energy density is evaluated. The su�x 0 indicates a quantity

evaluated today. We can account for a possibly anisotropic dependence by defining the

quantity !GW through

⌦GW(⌘0, ~x, q) =

Z
d2n̂ !GW(⌘0, ~x, q, n̂)/4⇡ , (2.6)

and then the bar quantity ⌦̄GW(⌘0, q) is defined as spatial average (over the evaluation

point ~x) of the above quantity ⌦GW (⌘0, ~x, q). With these ingredients we can introduce

the density contrast

�GW (⌘0, ~x, q, n̂) ⌘ �!GW(⌘0, ~x, q, n̂)

⌦̄GW(⌘0, q)
⌘ !GW(⌘0, ~x, q, n̂) � ⌦̄GW(⌘0, q)

⌦̄GW(⌘0, q)
, (2.7)
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DecomposiEon	in	harmonic	space	

where the homogeneous and isotropic fractional energy density is obtained from the zeroth

order distributions function f̄ .

We decompose, as for the CMB, the density contrast in spherical harmonics,

�GW (⌘0, ~x, q, n̂) =
X

`

X̀

m=�`

�GW,`m (⌘0, ~x, q) Y`m(n̂) , (2.8)

and, under the assumption of statistical isotropy, we define the multipole coe�cients

through ⌦
�GW,`m�⇤GW,`0m0

↵
= CGW

` (⌘0, q) �``0 �mm0 . (2.9)

As shown in [15–17], it is useful to re-define the graviton distribution function as

�f ⌘ �q @f̄
@q � (⌘, ~x, q, n̂) , to simplify the first order Boltzmann equation, that now in

Fourier space reads1

�0 + i k µ� =  0 � ik µ�� 1

2
ninj h0

ij , (2.10)

where the terms on the right hand side (rhs) define the so-called source function S(⌘,~k, n̂),

prime denotes a derivative with respect to conformal time, and µ is the cosine of the angle

between ~k and n̂. The GW density contrast is related to the � and to the background

energy density fractional contribution ⌦̄GW [16, 17],

�GW =


4 � @ ln ⌦̄GW (⌘0, q)

@ ln q

�
�
⇣
⌘0, ~k, q, n̂

⌘
, (2.11)

where we recall that ~q = qn̂ is the graviton comoving momentum. Many of the cosmological

GW scenarios mentioned above have a GW spectrum well described by a simple power law

in frequency (i.e., ⌦̄GW / qnT ). In these cases the previous relation reduces to �GW =

(4 � nT )�, where nT is the tensor spectral index.

The solution of the Eq. (2.10) can be decomposed as

�
⇣
⌘, ~k, q, n̂

⌘
= �I

⇣
⌘, ~k, q, n̂

⌘
+ �S

⇣
⌘, ~k, n̂

⌘
+ �T

⇣
⌘, ~k, n̂

⌘
, (2.12)

where I, S, and T stand for Initial, Scalar and Tensor sourced terms respectively. The

scalar and tensor terms correspond to the induced anisotropies arising from the propagation

of GWs in a background with large-scale perturbations, and they are therefore ubiquitous

for all the cosmological (and astrophysical) sources. On the contrary, the initial term is

related to the initial anisotropy contribution, and it is therefore dependent on the specific

mechanism for the GW production (as we review in the next sections, it can for instance

arise from large scalar-tensor-tensor or tensor-tensor-tensor primordial non-Gaussianity, or

in the case of preheating).

Inserting the three terms of (2.12) into (2.11), and expanding in spherical harmonics,

one obtains the Initial, Scalar, and Tensor contributions to the correlators

CGW
` = CGW

`,I (q) + CGW
`,S + CGW

`,T , (2.13)

1In the CMB case �CMB = � T/T .
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related to the initial anisotropy contribution, and it is therefore dependent on the specific

mechanism for the GW production (as we review in the next sections, it can for instance
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in the case of preheating).
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(12)
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Z
dk

k
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(12)
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we those see that the 4 terms in (76) produce a formally identical re-
sult; this is particularly true, considering the fact that the spin-weighted
spherical harmonics have the same orthonormality condition as the spherical
harmonics,

R

d2n̂ sY`m sY
⇤
`0m0 = �``0 �mm0 ,

So, we simply need to compute the first term in details. We find
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In a completely identical way, the 2-point correlator of the scalar sourced
term evaluates to
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⇣
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we those see that the 4 terms in (76) produce a formally identical re-
sult; this is particularly true, considering the fact that the spin-weighted
spherical harmonics have the same orthonormality condition as the spherical
harmonics,

R

d2n̂ sY`m sY
⇤
`0m0 = �``0 �mm0 ,

So, we simply need to compute the first term in details. We find

D

�`m,I (q)�
⇤
`0m0,I (q)

E

= (4⇡)2 (�i)`�`0
Z d3k

(2⇡)3
ei
~k·~x0

Z d3k0

(2⇡)3
e�i~k0·~x0

2⇡2

k3
P� (q, k) (2⇡)

3 �
⇣

~k � ~k0
⌘

Y ⇤
`m

⇣

k̂
⌘

Y`0m0

⇣

k̂0
⌘

j` (k (⌘0 � ⌘in)) j`0 (k
0 (⌘0 � ⌘in))

= (4⇡)2 (�i)`�`0
Z d3k

(2⇡)3
2⇡2

k3
P� (q, k)Y

⇤
`m

⇣

k̂
⌘

Y`0m0

⇣

k̂
⌘

j` (k (⌘0 � ⌘in)) j`0 (k (⌘0 � ⌘in))

= �``0�mm0 (4⇡)2
Z k2dk

(2⇡)3
2⇡2

k3
P� (q, k) [j` (k (⌘0 � ⌘in))]

2

= �``0�mm0 4⇡
Z dk
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P� (q, k) [j` (k (⌘0 � ⌘in))]

2 (82)

14

Ø  e.g.:	anisotropies	imprinted	by	scalar	pertubaEons		

Sachs-Wolfe	 Integrated	Sachs-Wolfe	

where the homogeneous and isotropic fractional energy density is obtained from the zeroth

order distributions function f̄ .

We decompose, as for the CMB, the density contrast in spherical harmonics,

�GW (⌘0, ~x, q, n̂) =
X

`

X̀

m=�`

�GW,`m (⌘0, ~x, q) Y`m(n̂) , (2.8)

and, under the assumption of statistical isotropy, we define the multipole coe�cients

through ⌦
�GW,`m�⇤GW,`0m0

↵
= CGW

` (⌘0, q) �``0 �mm0 . (2.9)

As shown in [15–17], it is useful to re-define the graviton distribution function as

�f ⌘ �q @f̄
@q � (⌘, ~x, q, n̂) , to simplify the first order Boltzmann equation, that now in

Fourier space reads1

�0 + i k µ� =  0 � ik µ�� 1

2
ninj h0

ij , (2.10)

where the terms on the right hand side (rhs) define the so-called source function S(⌘,~k, n̂),

prime denotes a derivative with respect to conformal time, and µ is the cosine of the angle

between ~k and n̂. The GW density contrast is related to the � and to the background

energy density fractional contribution ⌦̄GW [16, 17],

�GW =


4 � @ ln ⌦̄GW (⌘0, q)

@ ln q

�
�
⇣
⌘0, ~k, q, n̂

⌘
, (2.11)

where we recall that ~q = qn̂ is the graviton comoving momentum. Many of the cosmological

GW scenarios mentioned above have a GW spectrum well described by a simple power law

in frequency (i.e., ⌦̄GW / qnT ). In these cases the previous relation reduces to �GW =

(4 � nT )�, where nT is the tensor spectral index.

The solution of the Eq. (2.10) can be decomposed as

�
⇣
⌘, ~k, q, n̂

⌘
= �I

⇣
⌘, ~k, q, n̂

⌘
+ �S

⇣
⌘, ~k, n̂

⌘
+ �T

⇣
⌘, ~k, n̂

⌘
, (2.12)

where I, S, and T stand for Initial, Scalar and Tensor sourced terms respectively. The

scalar and tensor terms correspond to the induced anisotropies arising from the propagation

of GWs in a background with large-scale perturbations, and they are therefore ubiquitous

for all the cosmological (and astrophysical) sources. On the contrary, the initial term is

related to the initial anisotropy contribution, and it is therefore dependent on the specific

mechanism for the GW production (as we review in the next sections, it can for instance

arise from large scalar-tensor-tensor or tensor-tensor-tensor primordial non-Gaussianity, or

in the case of preheating).

Inserting the three terms of (2.12) into (2.11), and expanding in spherical harmonics,

one obtains the Initial, Scalar, and Tensor contributions to the correlators

CGW
` = CGW

`,I (q) + CGW
`,S + CGW

`,T , (2.13)

1In the CMB case �CMB = � T/T .
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Figure 5: Left plot: SW, ISW and total contribution to the angular power-spectrum of the

cosmological SGWB. Right plot: comparison between the SGWB spectrum and the CMB

one.

From Eqs. (2.15), we can infer some properties about the SGWB anisotropies due

to their propagation through cosmological perturbations: similarly to CMB, gravitons are

a↵ected by the Sachs-Wolfe contribution, which represents the energy lost by a graviton

which escapes from a potential well, and by the Integrated Sachs-Wolfe (ISW) e↵ect, due

to tensor and scalar perturbations, the latter producing an anisotropy which is

roughly proportional to the total variation of the potentials �� + � . An important

point to stress here is the “initial” time ⌘i, which has an impact both on the SW and on

the ISW contributions. The numerical evaluation of the angular power spectrum for the

cosmological SGWB has been performed in [109] (see also [120]), modifying the publicly

available code CLASS, usually employed for the computation of CMB anisotropies [156]

and adapting it to the SGWB.

In Fig. 5 we report the angular power spectrum of the cosmological SGWB due to propa-

gation e↵ects sourced by scalar perturbations and we compared it to the CMB one coming

from temperature anisotropies. We can see that the SGWB spectrum shows a larger ampli-

tude compared to the CMB. This can be explained considering the graviton “decoupling”

time, which occurs earlier compared to CMB photons and so gravitons feel for longer time

the propagation e↵ects. In such a figure, we also report the contribution from the SW and

the ISW separately, to show their behaviour at di↵erent angular scales.

From the left plot we can see that at large angular scales (i.e., low `), the SW contri-

bution is dominating while moving to smaller scales (i.e., ` & 100), the ISW contribution

starts to be larger. On the other hand, from the right plot we can quantify the expected

di↵erence among the CMB and SGWB anisotropies.

Interestingly enough, by measuring or constraining angular anisotropies of the SGWB,

it is also possible to probe the level of primordial non-Gaussianity possibly present both in

the scalar and tensor cosmological perturbations through which the SGWB propagates. In-

deed such primordial non-Gaussianity will left be imprinted into the GWs passing through

the background large-scale underlying inhomogeneities, similarly to what happens for CMB

photons. This entails to go beyond the power spectra statistics and to compute higher-

– 19 –



NEW	PROBE	OF	LARGE	SCALE	ANISOTROPIES	(like	CMB	photons)	

Cosmological	GWB	angular	power	spectrum		

Figure 2: Plot of the contributions to the angular power spectrum of the CGWB for adi-
abatic initial conditions and ngwb(q) = 0.4: scalar (blue), tensor (orange). The primordial
tensor spectrum has been computed for the tensor-to-scalar ratio (defined in (3.3)) r = 0.03
and nt(k) = �0.003. All the spectra assume fdec(⌘in) = 0.

The solution of the perturbation equations on super-Hubble scales and for the adiabatic
mode gives [34, 51]

 (⌘,~k) = �2

3

h

1 +
4

15
fdec(⌘)

i�1
R(~k) ,

�(⌘,~k) = �2

3

h

1 +
4

15
fdec(⌘)

i�1h

1 +
2

5
fdec(⌘)

i

R(~k) . (2.39)

The knowledge of fdec(⌘in) is important to set properly the value of the transfer function
T (⌘in, k) in �AD

` and �SW
` . In addition, any variation of fdec(⌘) over time leads to a non-

zero derivative (�0 +  0), and thus to a contribution to the ISW transfer function �ISW
` of

Eq. (2.35). Note that the ISW transfer function of GW anisotropies features an integral from
the very early time ⌘in defined in section 2.2 until today. This is very di↵erent from the
ISW transfer function of CMB anisotropies, in which the integral runs only from the time of
photon decoupling ⌘dec until today.8

In its standard version, the CLASS code infers from user input the value fdec(⌘min) at
the initial time at which perturbations are integrated, ⌘min ⇠ 0.1 Mpc. At this time, which
corresponds to a temperature much smaller than that of neutrino decoupling, Tmin ⌧ T dec

⌫ ⇠
1 MeV, neutrinos are expected to free-stream. For a standard cosmology with three neutrinos,
a simple calculation involving the neutrino-to-photon temperature ratio gives approximately
fdec(⌘min) = ⇢̄⌫(⌘min)/⇢̄r(⌘min) ' 0.4. For models with a non-standard neutrino density or

8To be precise, the ISW integral of CMB anisotropies is performed over e�(�0+ 0), where  is the photon
optical depth. In very good approximation, e� vanishes for ⌘ < ⌘

dec

, which means that the lower boundary
of the integral can be set e↵ectively to ⌘

dec

– although EBSs do not perform such an approximation.

– 13 –



Search for anisotropic gravitational-wave backgrounds using data from Advanced
LIGO and Advanced Virgo’s first three observing runs

The LIGO Scientific Collaboration, The Virgo Collaboration, and The KAGRA Collaboration⇤

(Dated: February 3, 2022)

We report results from searches for anisotropic stochastic gravitational-wave backgrounds using
data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors.
For the first time, we include Virgo data in our analysis and run our search with a new e�cient
pipeline called PyStoch on data folded over one sidereal day. We use gravitational-wave radiometry
(broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds
and to search for gravitational waves from point sources. A spherical harmonic decomposition
method is employed to look for gravitational-wave emission from spatially-extended sources. Neither
technique found evidence of gravitational-wave signals. Hence we derive 95% confidence-level upper
limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from
F↵,⇥ < (0.013� 7.6) ⇥ 10�8erg cm�2 s�1 Hz�1, and on the (normalized) gravitational-wave energy
density spectrum from extended sources, ranging from ⌦↵,⇥ < (0.57� 9.3)⇥ 10�9 sr�1, depending
on direction (⇥) and spectral index (↵). These limits improve upon previous limits by factors of
2.9�3.5. We also set 95% confidence level upper limits on the frequency-dependent strain amplitudes
of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN
1987A and the Galactic Center, with best upper limits range from h0 < (1.7� 2.1)⇥10�25, a factor
of � 2.0 improvement compared to previous stochastic radiometer searches.

I. INTRODUCTION

The stochastic gravitational-wave background (GWB)
is composed of a combination of gravitational-wave sig-
nals from many unresolved sources [1, 2]. A major con-
tribution is expected to be of astrophysical origin, i.e.,
produced by the superposition of gravitational-wave sig-
nals from unresolved individual sources such as binary
black hole and neutron star mergers [3–7], supernovae [8–
12], or depleting boson clouds around black holes [13–18].
The background may also include signals of cosmologi-
cal origin, i.e., produced in the early Universe during an
inflationary epoch[19–27], or as a direct result of phase
transitions [28–30], primordial black hole mergers [31–
34], or other associated phenomena [35]. Di↵erent mod-
els could, in principle, be distinguished by characteristic
features in the angular distribution [36–47]. For example,
cosmic strings have an angular power spectrum which is
sharply peaked at small multipoles [48, 49], while neutron
stars in our Galaxy would trace out the Galactic plane
[50, 51]. In this paper we search for an anisotropic GWB
using data from the Advanced LIGO [52] and Advanced
Virgo [53] gravitational-wave detectors. This is the first
time we have included data from Virgo in a search for an
anisotropic GWB [54, 55].

The three analyses presented in this paper rely on
cross-correlation techniques [56], which have been em-
ployed extensively on gravitational-wave data in the past,
and are referred to as the broadband radiometer analy-
sis (BBR) [57, 58], the spherical harmonic decomposi-
tion (SHD) [59, 60], and the narrow band radiometer
analysis (NBR) [61]. The BBR analysis targets a small

⇤
Full author list given at the end of the article.

number of resolvable, persistent point sources emitting
gravitational waves over a wide frequency band. The
SHD analysis reconstructs the harmonic coe�cients of
the gravitational-wave power on the sky, and can iden-
tify extended sources with smooth frequency spectra. Fi-
nally, the NBR analysis studies frequency spectra from
three astrophysically relevant sky locations: Scorpius X-
1 [62, 63], Supernova 1987A [64, 65], and the Galactic
Center [66, 67]. Resolvable point sources in the sky are
not expected to follow an isotropic distribution [68], un-
derscoring the importance of analysis techniques that can
deal with anisotropic backgrounds.

For the first time, we employ data folding, a technique
that takes advantage of the temporal symmetry inherent
to Earth’s rotation, to combine the data from an entire
observation run into one sidereal day, greatly reducing
the computational cost of this search [69]. Furthermore,
we have employed the python based pipeline PyStoch [70]
to perform the analyses on folded data reported in this
paper.

We do not find evidence for gravitational waves in any
of the three analyses and hence set direction-dependent
upper limits on the gravitational-wave emission. Though
stringent upper limits on the anisotropic GWB have been
obtained in the past [54, 55, 71], our new constraints
improve upon existing limits by a factor of � 2.0.

This paper is structured as follows: Sec II presents
the GWB model adopted in our analyses, and the search
methods used. Section III describes the datasets used in
the searches and briefly explains the data processing. Re-
sults from all three analyses are presented in Section IV.
Finally, we conclude with the interpretation of our results
in Sec V.
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SHD Results
Max SNR (% p-value) Upper limit range (10�9)

↵ ⌦GW H(f) HL(O3) HV(O3) LV(O3) O1+O2+O3 (HLV) O1+O2+O3 (HLV) O1 + O2 (HL)
0 constant / f�3 1.6 (78) 2.1 (40) 1.5 (83) 2.2 (43) 3.2–9.3 7.8–29

2/3 / f2/3 / f�7/3 3.0 (13) 3.9 (0.98) 1.9 (82) 2.9 (18) 2.4–9.3 6.4–25
3 / f3 constant 3.9 (12) 4.0 (10) 3.9 (11) 3.2 (60) 0.57–3.4 1.9–11

TABLE II. We present the maximum SNR across all sky positions with its estimated p-value for the three separate baselines
in the O3 observing as well as all three observing runs combined. We also present the range of the 95% upper limits on the
normalized gravitational-wave energy density ⌦↵(⇥)[sr�1] after combining data from LIGO-Virgo’s three observing runs. Note
that for both the p-values and the upper limits, Virgo-related baselines are incorporated only for O3. The median improvement
across the sky compared to limits set by the O1+O2 analysis is 2.9� 3.3 for the SHD search, depending on ↵.

↵ = 0 ↵ = 2/3 ↵ = 3

SNR

UL

FIG. 3. Top row: SNR maps from the SHD search for extended sources. Bottom row: sky maps representing 95% upper limit
on the normalized gravitational-wave energy density ⌦↵(⇥)[sr�1]. Both sets of maps, presented in equatorial coordinate system,
are derived by combining all three observing runs of LIGO-Virgo data (Virgo was incorporated only for O3). ↵ = 0, 2/3, and
3 are represented from left to right.

FIG. 4. 95% upper limits on C` for di↵erent ↵ using combined
O1+O2+O3 data.

from di↵erent directions on the sky, and on the median
strain amplitude from possible sources in the directions of
Scorpius X-1, the Galactic Center, and SN 1987A. These
limits improve upon previous similar results by factors
of 2.0 � 3.5. We attribute this improvement partly to
observing for twice as long as before, ⇠ p

2, and partly
to the improvement in the LIGO detector sensitivities.
As mentioned in Sec. IVA, the inclusion of the Virgo de-
tector only marginally improves the upper limits due to
its higher noise level compared to the LIGO detectors.
However, we expect the Virgo detector to improve its
noise performance in the next observing runs [95]. Fur-
thermore, as noted in Sec. IVB, the addition of Virgo
detector to the detector network acts as a natural regu-
larizer in the SHD analysis and would enable us to probe
finer structures in the gravitational-wave sky maps. Cur-
rently we use flat, positive priors for the estimators P̂µ

and in future analyses we plan to use more informative



Observability	

Considering	a	network	of	ground	based	detectors	
Rule	of	thumb:	one	expects	that	CGWB	anisotropies	could	be	observed	if	the	
Background	is	detected	with	a	very	high	signal-to-noise,	typically	of	the	order	of	the	
order	105	(in	the	case	where	the	relaEve	anisotropies	are	at	the	level	of	10–4	-	10–5)		
	
	

⟨|Nm|2⟩ =
τ2

4T

∫ ∞

−∞
df |Q̃(f)|2P1(|f |)P2(|f |). (9.10)

We can make use of this expression to find the optimal filter Q̃(f).
The (squared) Signal-to-Noise ratio S/N for the m’th harmonic is now defined via the ratio of expected signal

(magnitude squared) divided by expected (squared) noise. Making use of (5.3) for the former quantity, and (9.10) for
the latter yields
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. (9.11)

Notice that the averaging time τ (which was earlier chosen in a rather arbitrary manner) drops out of this expression.
Provided that the assumptions about τ (4.1) used in deriving this equation are satisfied, the actual value is irrelevant.
In order to find the optimal filter function, it is useful to introduce an inner product. For any complex functions of

frequency A(f) and B(f), this defines a complex number which is denoted by (A,B). The definition is

(A,B) ≡
∫ ∞

−∞
df A∗(f)B(f)P1(|f |)P2(|f |). (9.12)

This inner product is positive definite because (A,A) is real and non-negative, vanishing only if A is zero. In terms
of this inner product, the Signal-to-Noise ratio may be written as
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The optimal choice of filter function Q(f) for determining the m’th harmonic is the one which maximizes this ratio.
The largest value is obtained by choosing

Q̃m(f) =
H(f)

P1(|f |)P2(|f |)

∞
∑

ℓ=|m|

p∗ℓmγ∗
ℓm(f). (9.14)

Using the definition (3.11) of H(f) in terms of the spectral function Ωgw(f), and substituting the optimal filter Q̃m

into the expression for S/N yields
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. (9.15)

For any given source of stochastic gravitational waves, one can use this formula for (S/N)m to determine the obser-
vation time T required to observe the m’th harmonic of the signal as the earth rotates relative to the cosmological
frame.
In precise analogy with the analysis given in [8], the m’th harmonic is observable with 90% confidence if (S/N)m

exceeds 1.65.

X. EXAMPLE: DIPOLE INDUCED BY PROPER MOTION

It is well known that the electromagnetic background radiation, generally referred to as the Cosmic Microwave
Background Radiation (CMBR), is highly isotropic. The largest deviation from isotropy results from the motion of
our local system (the solar system barycenter) with respect to the cosmological rest frame. Analysis of data from the
Cosmic Background Explorer (COBE) satellite shows that our local system is moving with a velocity βproper ≡ v/c =
0.001236 in the direction (l = 264◦, b = 48◦) in galactic coordinates, or equivalently (α = 168◦, δ = −7◦) in celestial

16
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Observability:	LISA	angular	sensiEvity		

Figure 8: Estimated LISA sensitivity to a given multipole ` of the SGWB, for multipoles

up to ` = 10. Even (odd) multipoles are shown with solid (dashed) lines. The sensitivity is

obtained by optimally summing over the LISA channels, see eqs. (4.42) and (4.43).

We indicate with v = �v̂ (where � = v in units with c = 1) the velocity of the frame S
with respect to the rest frame S 0.

In the technical appendix D we derive the resulting expression of an anisotropic SGWB

energy density ⌦GW(f, n̂) as a function of the rest-frame density ⌦0
GW(f). Assuming that

the parameter � is small, we can Taylor expand up to second order in � and write

⌦GW(f, n̂) = ⌦0
GW(f)

⇢
[1 +M (f)] + n̂ v̂D (f) +


(n̂ v̂)2 � 1

3

�
Q(f)

�
, (4.45)

The functions of frequency M , Q, D, control respectively the contributions of kinematic

e↵ects to the monopole, dipole, and quadrupole of GW energy density in the detector

– 38 –

[LISA Cosmology Working Group project ’20/’21:arXiv:2201.08782 ] 



SensiEvity	to	kinemaEc	dipole	and	quadrupole			

[LISA Cosmology Working Group project ’20/’21:arXiv:2201.08782 ] 
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Abstract: We investigate the sensitivity of the Laser Interferometer Space Antenna

(LISA) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We

first discuss the main astrophysical and cosmological sources of SGWB which are character-

ized by anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to

quantify the sensitivity of LISA to di↵erent multipoles. We then perform a Fisher matrix

analysis of the prospects of detectability of anisotropic features with LISA for individual

multipoles, focusing on a SGWB with a power-law frequency profile. We compute the noise

angular spectrum taking into account the specific scan strategy of the LISA detector. We

analyze the case of the kinematic dipole and quadrupole generated by Doppler boosting an

isotropic SGWB. We find that � ⌦GW ⇠ 2 ⇥ 10�11 is required to observe a dipolar signal

with LISA. The detector response to the quadrupole has a factor ⇠ 103 � relative to that

of the dipole. The characterization of the anisotropies, both from a theoretical perspective

and from a map-making point of view, allows us to extract information that can be used

to understand the origin of the SGWB, and to discriminate among distinct superimposed

SGWB sources.

Figure 10: The SNR for the dipole (left) and the quadrupole (right) induced by boosting

an isotropic SGWB with fractional energy density ⌦GW , assumed to be scale free across

the LISA band. An observation time of T = 1 year is assumed.

Figure 11: The SNR for a broken power law, inspired by models of strongly first-order

phase transitions, versus the break frequency. For these models, the total energy density

contributes 0.1% of the total energy density during the radiation era. An observation time

of T = 1 year is assumed.

The expressions (4.46), (4.47), (4.48) quantitatively demonstrate that enhanced spectral

tilts can amplify kinematic anisotropies in certain scenarios.

We plot in Figure 10 the SNR for LISA to detect the kinematic dipole and quadrupole

induced by a scale-invariant profile of ⌦0
GW(f) = constant in the SGWB rest frame. Notice

the di↵erent vertical scale in the two plots, due to the fact that LISA sensitivity to the

quadrupole is a factor ⇠ 103 better than that to the dipole, as discussed in the previous

sections.

We also show in Figure 11 the sensitivity to the dipole induced by a boost with velocity

� on the SGWB spectrum generated by a strongly first order phase transition. We model
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						LISA	sensiDvity	to	Quadrupole			

Ø  for	kinemaDc	dipole	of	an	Astrophysical	GravitaDonal	Wave	background,	see,	e.g.		
						Valbusa,	Ricciardone,	Bertacca	2206.02747	



Similarly	for	Astrophysical	GWB	anisotropies			

-	Cusin,	Dvorkin,	Pitrou,	Uzan	(’17,	‘18+)		
-	Alonso	et	al.	(‘20)	
-	Jenkins	et	al.	(’18,	19’)		
-	Bertacca,	Ricciardone,	Bellomo,	Jenkins,	Matarrese,	Raccanelli,	Regimbau,	Sakellariadou	(‘19)	
-	Bellomo,	Bertacca,	Jenkins,	Matarrese,		Raccanelli,	Regimbau,	Ricciardone,	Sakellariadou	(‘21)	
-	Valbusa,	Nishizawa,	Ricciardone,	Matarrese	(‘23)		
		

A	huge	effort	in	the	literature	about	theoreEcal	analysis	and	observaEonal	tools	developed		



A	few	highlights	



Ø  	3-point	funcGon	of	anisotropies	

Anisotropies	of	CGWB	and	primordial	NG	
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*

3
Y

i=1

�`imi,S

+

=
Z 1

0
dr r2

3
Y

i=1



2

⇡

Z

dki k
2
i T S

`i
(ki, ⌘0, ⌘in) j`i (ki r)

�

h⇣(k1)⇣(k2)⇣(k3)i0

(110)

7.3 Tensor sourced term
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The bispectrum of the sourcing tensor modes factorizes a Dirac ��function,
that can be represented as in eq. (103). Doing so, ref. [1] arrives to an equa-
tion of the type
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(their equation 20). This expression is the tensor analogous of our eq. (104),
with the spin-averaged spherical harmonics replacing the spherical harmonics
(the last factor). In the scalar case, having spherical harmonics results in
orthogonality, producing

P

Li,Mi
GM1M2M3
L1L2L3

�Li`i�Mimi = Gm1m2m3
`1`2`3

. This is the
correct tensorial structure that we found above.

Ref. [1], based on eq. (112), claims that in this case orthogonality is
lost, implying that a more complicated tensorial structure results. This is
not correct. The point (missed in [1]) is that the tensor bispectrum is not
rotationally invariant, so the angular integrals

R

d⌦ki are more complicated
than what appears from eq. (112). In fact, we know from Section 6 that also
this term must factorize Gm1m2m3

`1`2`3
.

This statement is corrected in [4] that acknowledges that indeed the bis-
pectrum is not rotationally invariant. See eq. (2.5) of [4] and the sentence
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Ø  Bispectra	of	anisotropies:		
	
				similar	expression	for	bispectra	induced	by	primordial	non-Gaussianity	of		
				large-scale	gravitaGonal	waves:		
	
	
	
						
				

Anisotropies	of	CGWB	&	primordial	NG	

3-point	funcDon	of	SGWB	energy	density	anisotropies	can	provide	for	the	first	Dme	
a	way	to	probe	at	interferometers	primordial	non-Gaussianity	of	tensor	modes!!	

7.4 Summary of the 3-point correlators

We found
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where in the last expression we have introduced the quantity
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and where
⇠+2 ⌘ ⇠R , ⇠�2 ⌘ ⇠L (126)

We assumed no mixed correlators, so that we have four decoupled con-
tributions in (124), namely h�3

I (q)i, then h�3
Si, then h�3

T i from ⇠R, and then
h�3

T i from ⇠L. Also in this case, we remark that the first contribution can be
in principle q�dependent (which immediately gives the GW frequency that
is measured at the interferometers), while the other quantities are numbers.
Mixed correlators could in general be present.
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FIG. 2: ISW contribution to C̃`,S. We observe a bump at
large ` due to the fact that the potentials at large ` have the
maximum variation.

fix a specific particle physics model, we are able to de-
scribe the evolution of the decoupled relativistic degrees
of freedom, or, in other words, we know fdec(⌘). Under
such a hypothesis, a measurement of the SGWB angular
power-spectrum would allow to determine a range for ⌘i,
on the basis of the evolution of fdec.

Integrated Sachs-Wolfe e↵ect and relativistic particle

species. As anticipated, the ISW e↵ect is roughly pro-
portional to the total variation of the potentials��+� ,
so, when we consider the total variation for the SGWB,
we end up with larger variations with respect to the
CMB, because in the CMB case we take the di↵erence be-
tween the initial value (at recombination) and the present
epoch, but at recombination the potentials were already
damped, especially at small scales, therefore they would
have a smaller impact on the ISW. The ISW contribution
depends upon the variation of the potentials between ⌘i
and ⌘0; so it is sensitive the evolution of fdec(⌘i) up to
low energies scales (T . 0.1 MeV). Thus measurements
of the anisotropies of the SGWB anisotropies can con-
strain extra particles species both at high and low en-
ergy scales. The e↵ect of the change of number of rel-
ativistic degrees of freedom on the ISW contribution to
the angular power-spectrum is represented in Fig. 2. As
anticipated, a higher number of relativistic species sup-
presses the ISW contribution at the largest angular scales
through its e↵ect on the early ISW contribution.
We can sum up the two “scalar” contributions to show
the main e↵ect on large angular scales that, in the fu-
ture, can be probed by GW interferometers. The result
is given in Fig. 3, where the impact of a varying number of
decoupled relativistic species is evident. We did not con-
sider the contribution coming from the tensor background
perturbations since we checked that they do not alter the
spectrum at scales that can be probed in the future by
GW direct detection experiments. As well known [32] de-

FIG. 3: Total scalar contribution to the SGWB angular power-
spectrum, sum of the SW and the ISW terms.

coupled relativistic particles, and in particular neutrinos,
create a damping on the amplitude of the tensor modes
in the CMB. In a similar way relativistic particles have
an impact also on the monopole amplitude of the GW
energy density [35, 36] and so on the amplitude of the
angular power-spectrum.

Conclusions. In this Letter we have shown that the
future detection of the SGWB of cosmological origin
has profound implications on our understanding of the
physics of the early Universe and on high energy physics
aspects not accessible by present-day particle accelera-
tors. We have shown that the anisotropies of the SGWB
inherited by the GW generated during their propagation
in the Universe, from the time of their decoupling at the
end of inflation until today, feel the e↵ect of relativis-
tic particle species that are decoupled from the thermal
bath. Having in mind the poor angular resolution of fu-
ture GW detectors, we have focused on the e↵ects most
relevant at very large scales. As for the CMB, also for the
SGWB, such scales are a↵ected by the SW e↵ect and by
the ISW e↵ect. We have therefore quantified the e↵ect of
di↵erent particle species on both the SW and ISW, and
we have computed the SGWB angular power-spectrum.
The cumulative e↵ect of a larger number of decoupled rel-
ativistic particle species on the angular power-spectrum
of the SGWB is a suppression at large scales. This will
clearly becomes a potential observable e↵ect as soon as
such anisotropies will be detected.
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As discussed in [2], the angular power spectrum of the CGWB is sensitive to the frac-
tional energy density of relativistic and decoupled particles species, since they have a non-
vanishing quadrupole moment, which generates a non-null anisotropic stress, which deter-
mined a di↵erence between the scalar metric perturbations that can be computed by using
the transverse-traceless part of the Einstein equations,

k2( � �) = �32⇡Ga2⇢rN2 . (2.25)

The evolution of the scalar potentials  and � outside the horizon depends therefore
on the fractional energy density of relativistic and decoupled species at ⌘,
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The second contribution is due to the propagation of the CGWB through the large-
scale scalar perturbations of the Universe. At large angular scales, the largest anisotropies
are generated by the redshift of graviton caused by the perturbation of the gravitational
potential at ⌘i (SW e↵ect). To describe this e↵ect we have used the source function

�SW
` (⌘i, k) = T (⌘i, k)j`[k(⌘0 � ⌘i)] . (2.27)

The scalar perturbations leave an imprint on the GWB anisotropies not only at the produc-
tion of the background, but also during the propagation of the GWs during cosmic history.
When a graviton crosses a metric perturbation which evolves in time, it gains/looses energy
(ISW e↵ect). This e↵ect is maximum when the graviton crosses the perturbation while the
mode is re-entering the horizon. The source function for the ISW is

�ISW
` =
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0
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T 0
 (⌘, k) + T 0

�(⌘, k)
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To compute the ISW of the CGWB we have separated the integral of the above equation in
two contributions: the first one, which goes from T (⌘i) to T = 0.5MeV, can be computed
analytically, while the second one, which goes from T = 0.5MeV to the present epoch,
has been already computed by the original version of CLASS. We have split the ISW in two
contributions because the evolution of fdec(⌘) at energy scales much larger than TeV is model
dependent, furthermore it would be computationally expensive to integrate the anisotropies
at so early times. To solve the ISW integral at early times we assume that the spherical
Bessel functions vary much slower than the metric perturbations Christian: this is probably
not always fulfilled. But it is enough if the Bessels remain approx constant which puts a
limit on the k-values which probably is trivially met., therefore j`[k(⌘0 � ⌘)] ⇡ j`[k(⌘0 � ⌘i)]
for ⌘ < ⌘(T = 0.5MeV). This means that the integral can be re-written as
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´
d ln q⌦GW (⌘, ~x, q) , where

⇢crit = 3H2M2
P is the Universe critical energy density,

and H the Hubble rate. Since we are interested in
its inhomogeneous and anisotropic component, we al-
lowed ⌦GW to depend on space. We account for the
anisotropic dependence by defining !GW through ⌦GW =´
d2n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density

contrast �GW ⌘ �!GW(⌘, ~x, q, n̂)/!̄GW(⌘, q). Using the �
definition, introduced in [18, 19], one then finds

�GW =
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with ⌦̄GW the homogeneous, isotropic component of ⌦GW.

As shown in [35], ⌦̄GW is sensitive to the evolution
of the relativistic degrees of freedom g⇤ before matter-
radiation equality. The relativistic degrees of freedom
can be expressed in terms of the photon temperature T ,
the intrinsic degrees of freedom and temperature of the
various particle species g↵ and T↵ as

g⇤(T ) =
X

↵,BE

g↵

⇣T↵

T

⌘4
+
7

8

X

↵,FD

g↵

⇣T↵

T

⌘4
. (5)

With BE we mean integer spin particles which follow
Bose-Einstein statistics, while with FD we identify semi-
integer spin particles which follow Fermi-Dirac statis-
tics. The energy density of relativistic particles can be
written then in terms of g⇤ as ⇢(T ) = ⇡2/30g⇤(T )T 4.
From the end of inflation until the present epoch, the
temperature of the di↵erent particle species decreases,
and many of them become non-relativistic, T↵ . m↵,
giving no more contribution to g⇤, which changes from
g⇤(T & 104 MeV) ' 106, when all the SM particles con-
tribute, to g⇤(T . 0.1MeV) = 3.36, when only photons
and relativistic neutrinos contribute [31, 40].

E↵ects on the scalar perturbations The main role of
relativistic particles is played on the “scalar” part of the
anisotropic stress

k2(�� ) = �32⇡Ga2⇢rN2, (6)

where N2 is the quadrupole moment generated by the
relativistic particles. The fractional energy density of de-
coupled relativistic particles can be described in terms of
degrees of freedom as

fdec(⌘i) ⌘ gdec⇤ (Ti)/g⇤(Ti) , (7)

where gdec⇤ (Ti) are the relativistic degrees of freedom of
decoupled particles evaluated at temperature Ti at the
end of inflation, corresponding to conformal time ⌘i. This
influences the initial conditions for the scalar metric per-
turbations at the end of inflation ⌘i [41, 42]:

 (⌘i, k) =
⇣
1 +

2

5
fdec(⌘i)

⌘
�(⌘i, k), (8)

where the initial value of � is related to the value of
the gauge-invariant curvature perturbation ⇣ of comoving
spatial hyper-surfaces at the end of inflation, ⇣(⌘i, k) =
⇣I(k),

�(⌘i, k) = �2

3

⇣
1 +

4

15
fdec(⌘i)

⌘�1
⇣I(k). (9)

The fractional energy density of decoupled relativistic
particles varies since ⌘i down to temperatures around
0.1MeV, when it reaches a constant value which de-
pends on the chosen Ne↵ ; for instance for 3 light neutrino
species it corresponds to fdec(⌘T<0.1MeV) = 0.4 (di↵er-
ent evolutions of fdec(⌘) for di↵erent particle candidates
are shown for instance in [43]). In this interval � and
 evolve following eqs. (8) and (9) for di↵erent fdec(⌘)
values. At lower temperatures it is well known that small-
scale modes start decaying and oscillating once they cross
the Hubble horizon before matter-radiation equality [30].
On the other hand, large-scale modes change a little bit
around the time of matter-radiation equality, they remain
constant during the matter-dominated epoch and then
start decaying during the recent dark energy-dominated
era [44]. Modes with k ⇡ keq present an intermediate be-
haviour between large and small scales: they have rather
large variations both around the matter-radiation equal-
ity and during the dark-energy-dominated era [45]. Until
⌘ & ⌘eq, decoupled relativistic particles make a substan-
tial contribution to the total energy density and eq. (6)
shows that � and  evolve di↵erently. For ⌘ � ⌘eq no
more species contribute considerably to the anisotropic
stress and � and  become approximately equal because
the Universe is matter dominated.

Correlators of GW anisotropies and extra species con-

tribution. Following the treatment adopted for CMB
anisotropies, we expand the solution in spherical har-
monics, �(n̂) =

P
`

P`
m=�` �`m Y`m(n̂), where Y`m(n̂)

are spherical harmonics and n̂ is the direction of the GW
trajectory to the detector. We focus on two contributions,
even though, as shown in [18, 19] there are three contri-
butions to the anisotropies (the third contribution being
an intrinsic initial perturbation of the distribution func-
tion that is not relevant here for our purposes). There is
a first contribution due to the scalar sources in eq. (3)

�`m,S

4⇡ (�i)`
=

ˆ
d3k

(2⇡)3
⇣I(k)Y

⇤
`m(k̂) T (0)

` (k, ⌘0, ⌘i),(10)

where the scalar transfer function T (0)
` is the

sum of a SW term, similar to CMB pho-
tons, T�(⌘i, k) j`[k(⌘0 � ⌘i)], plus an ISW term,´ ⌘0

⌘i
d⌘0 [T 0

 (⌘, k) + T 0
�(⌘, k)] j`[k(⌘ � ⌘i)] (where j` are

the spherical Bessel functions of order ` and ⌘0 is the
conformal time at the present epoch). It is important
to notice that in this case ⌘i corresponds to the time
at which gravitons decoupled (the end of inflation). In
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FIG. 1: Overview on the present experimental constraints on the abundance of PBH for a monochromatic spectrum (from
Ref. [23] and references therein): in orange, constraints from the CMB; in green, dynamical constraints from White Dwarves
and Ultra-Faint Dwarf galaxies; in blue, micro- and milli- lensing observations from Eros, Kepler, Subaru HSC; in yellow,
the observations of extra-galactic �-ray background. Superimposed can be found the PBH abundances as a function of mass
obtained for both power spectra in Eqs. (2.14) and (2.16), where we have defined k? = 2⇡fLISA. The total abundance is obtained
by integrating over the masses and the parameters have been chosen to get a PBH abundance equal to the one of dark matter,
respectively As = 0.033, A⇣ = 0.044 and �⇣ = 0.5.

coming with momenta of di↵erent magnitudes and from all possible directions. Due to the relatively small observation
time (as compared to the age of the universe) measurements at LISA cannot resolve modes of di↵erent momenta to
a level of accuracy needed to preserve the coherency in the bispectrum. Moreover, even if we could construct a large
array of LISA-like detectors, so to collect observations over a cosmological time, GWs coming from various directions
propagate through di↵erent long wavelength density perturbations. This creates di↵erent time delays along di↵erent
directions, thus making the initially correlated phases of the GWs fully uncorrelated. As we will show, this wipes out
the bispectrum. It can also be seen as the central theorem in action once the ensemble averaging over the various
directions is performed. Unfortunately, this e↵ect seems to be general and not peculiar of our set-up and invalidates
some results about the measurement of the tensor bispectrum through interferometers which appeared recently in the
literature.

The reader should also be aware of the fact that the PBH abundance is exponentially sensitive to the amplitude
of the variance. This means that a small decrease of �2

�

(and therefore the amplitude of the power spectrum of the
comoving curvature perturbation) may reduce significantly the abundance. This, to some extent, plays in our favour
as it implies that, even if fPBH ⌧ 1, the corresponding GWs might be anyway tested by LISA.

The paper is organised as follows. In section II we describe the calculation leading to the GW power spectrum
for two di↵erent shapes of the comoving curvature perturbations; section III is devoted to the calculation of the
GW bispectrum. Section IV contains the details of the e↵ects of the short observation time and of the propagation.
Section V contains our conclusions. The paper contains as well four Appendices where some technicalities are provided,
including an analysis of the LISA response functions for the bispectrum.

A short version of this paper presenting some of the main results can be found in Ref. [34].

II. THE POWER SPECTRUM OF GRAVITATIONAL WAVES

The equation of motion for the GWs is found by expanding the tensor components of the Einstein’s equations up to
second-order in perturbations2

h00
ij + 2Hh0

ij �r2hij = �4Tij
`mS`m, (2.1)

2 We do not consider the free-streaming e↵ect of neutrinos on the GW amplitude [35].

4

where we defined 0 to denote the derivative with respect to conformal time ⌘, d⌘ = dt/a, H = a0/a as the conformal
Hubble parameter as a function of the scale factor a(⌘) and the source term S`m which, in a radiation dominated
(RD) universe, takes the form [15]

Sij = 4 @i@j + 2@i @j � @i

✓

 0

H + 

◆

@j

✓

 0

H + 

◆

. (2.2)

We note that the mechanism of generation of GWs takes place when the relevant modes re-enter the Hubble horizon;
in the case of interest, this happens deep into the radiation-dominated epoch. It is also evident that the source is
intrinsically second-order in the scalar perturbation  . For this reason the GWs generated are expected to feature an
intrinsic non-Gaussian nature. Additionally, since the source contains two spatial derivatives, the resulting bispectrum
in momentum space is expected to peak in the equilateral configuration. The tensor Tij

`m contracted with the source
term in Eq. (2.1) acts as a projector selecting the transverse and traceless components. Its definition in Fourier space
takes the form

T̃ij
`m(~k) = eL

ij(~k) ⌦ eL`m(~k) + eR

ij(~k) ⌦ eR`m(~k), (2.3)

where e�
ij(~k) are the polarisation tensors written in the chiral basis (L, R).

The scalar perturbation  (⌘,~k) appearing in Eq. (2.2) depends directly on the gauge invariant comoving curvature
perturbation through the relation [36]

 (⌘,~k) =
2

3
T (k⌘)⇣(~k), (2.4)

where the transfer function T (k⌘) in the radiation-dominated era is

T (z) =
9

z2

"

sin(z/
p

3)

z/
p

3
� cos(z/

p
3)

#

. (2.5)

By defining the dimensionless variables x = p/k and y = |~k� ~p|/k, the solution of the equation of motion (2.1) can be
recast in the following form

h�
~k
(⌘) =

4

9

Z

d3p

(2⇡)3
1

k3⌘
e�(~k, ~p)⇣(~p)⇣(~k � ~p)

h

Ic(x, y) cos(k⌘) + Is(x, y) sin(k⌘)
i

, (2.6)

where we have introduced e�(~k, ~p) = e�
ij(~k)pipj and [37]

Ic(x, y) = 4

Z 1

0

d⌧ ⌧(� sin ⌧)
h

2T (x⌧)T (y⌧) +
⇣

T (x⌧) + x⌧ T 0(x⌧)
⌘⇣

T (y⌧) + y⌧ T 0(y⌧)
⌘i

,

Is(x, y) = 4

Z 1

0

d⌧ ⌧(cos ⌧)
n

2T (x⌧)T (y⌧) +
h

T (x⌧) + x⌧ T 0(x⌧)
ih

T (y⌧) + y⌧ T 0(y⌧)
io

.

(2.7)

The complete analytical expressions of Ic(x, y) and Is(x, y) can be found in Appendix D of Ref. [37] (see also Ref.
[38]). We define the power spectrum of GWs using the same primed notation of Eq. (1.3) as

D

h�1(⌘,~k
1

)h�2(⌘,~k
2

)
E0

⌘ ��1�2
2⇡2

k3

1

Ph(⌘, k
1

). (2.8)

After having computed the two-point function, in the radiation-dominated era we find Ph(⌘, k) to be

Ph(⌘, k) =
4

81

1

k2⌘2

ZZ

S

dx dy
x2

y2



1 � (1 + x2 � y2)2

4x2

�

2

P⇣(kx)P⇣(ky)
⇥

cos2(k⌘)I2

c + sin2(k⌘)I2

s + sin(2k⌘)IcIs

⇤

, (2.9)

where S is the region in the (x, y) plane allowed by the triangular inequality and shown in Fig. 2 of [37]. The power
spectrum of GWs is directly connected to their energy density [37]:

⌦
GW

(⌘, k) =
⇢
GW

(⌘, k)

⇢
cr

(⌘)
=

1

24

✓

k

H(⌘)

◆

2

Ph(⌘, k), (2.10)
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FIG. 1: Current experimental constraints on monochromatic
spectra of PBH at various masses (from Ref. [22] and refer-
ences therein). The PBH abundance shown as the red line
(corresponding to all of the dark matter) has been obtained
for As = 0.033 and k? = 2⇡fLISA in Eq. (6).

where the Laser Interferometer Space Antenna (LISA)
project [20] has the maximum sensitivity, fLISA ' 3.4
mHz, is M ' 10�12M�.

The serendipity is that around this mass current obser-
vational constraints on the PBH abundances are basically
absent [21], thus allowing fPBH (M) ' 1, see Fig. 1. In-
deed, the Subaru HSC microlensing measurements [23]
must be cut around 10�11M�, since below this mass the
geometric optics approximation is no longer valid [21, 24]:
the angular Einstein radius becomes much smaller than
the angular size of the star, and the magnification is then
too small to be detected [21, 24]. Neutron star limits
[25] are also not included as they depend on rather con-
troversial assumptions about the dark matter density in
globular clusters [21]. The curious reader can find a more
expanded discussion in Appendix A of Ref. [26].

It is an exciting coincidence that the optimal frequency
range for the LISA observatory corresponds to the mass
range where PBHs can account for all the dark matter.
In this letter we show that, if dark matter is composed of
PBHs of masses around 10�12M�, then LISA will mea-
sure the power spectrum of GWs inevitably associated
with the production of the PBHs. Furthermore, and de-
spite the fact that the generated GWs are intrinsically
non-Gaussian (their small-scale source is second-order in
the curvature perturbation), we show that the signal mea-
sured by LISA would be highly Gaussian. This is because,
as with other cosmological GW signals, a very large num-
ber of Hubble patches are observed over the resolution
area of LISA, giving strong central limit theorem Gaus-
sianisation [27]. We also comment on GW propagation in
the perturbed universe and primordial non-Gaussianity,
neither of which a↵ect the conclusion.

This short note contains only the main results; the
reader can find the technical details in Ref. [26].

PBHs as dark matter. From Eq. (4) we see that PBHs
of mass ⇠ 10�12M� will form all of the dark matter if
their corresponding mass fraction is �M ⇠ 6 ·10�15. As a
benchmark example, we take the comoving curvature per-
turbation power spectrum (augmented by the standard
flat spectrum on large CMB scales) to be the limiting
case of a Dirac delta function

P⇣(k) = As k?�(k � k?). (6)

Assuming this spectrum has the huge advantage that we
can perform all the calculations analytically. Fig. 1 shows
the corresponding abundance of PBHs for a represen-
tative choice of parameters. We take k?RH ' 1 and
�c ' 0.45. The precise value of the threshold depends
on the shape of the power spectrum [11], but this does
not much alter the value of the spectrum amplitude As,
which is the most relevant quantity for the amplitude of
GWs produced. The value of As does depend on our
assumption of Gaussian perturbations, which may well
not be accurately valid since As ⇠ 0.03 is quite large.
However, even if positive skewness of the � distribution
meant that fPBH ⇠ 1 could be obtained with a lower
As, so that �c was then several more standard-deviation
units away from zero, the required variance (proportional
to As) would only change by an order unity factor (com-
pared to the ⇠ O(100) reduction that would be required
for the GW signal to become undetectable), so our con-
clusion should remain robust.

The power spectrum of GWs. We define the
Newtonian-gauge scalar metric perturbation  and the
transverse-traceless tensor metric perturbation hij so
that the linearized line element in tightly-coupled radi-
ation domination is

ds2=a2
⇢
�(1 + 2 )d⌘2 +


(1� 2 )�ij +

hij

2

�
dxidxj

�
.

(7)
We neglect the rare areas of strongly non-linear GW pro-
duction associated directly with PBH formation and evo-
lution, and focus on the signal sourced everywhere by
second-order combinations of the linear scalar perturba-
tions. The equation of motion for the GWs is then ob-
tained by expanding Einstein’s equations up to second-
order in the linear perturbations

h00
ij + 2Hh0

ij �r2hij = �4Tij`mS`m, (8)

where 0 is the derivative with respect to the conformal
time ⌘, H = a0/a is the conformal Hubble parameter and
Tij`m projects the source term S`m into its transverse and
traceless part. In the radiation phase the source is given
by [14]

Sij = 2@i@j
�
 2

�
�2@i @j �@i

✓
 0

H + 

◆
@j

✓
 0

H + 

◆
.

(9)
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Since this is second-order in the perturbations, the
sourced GWs are intrinsically non-Gaussian. The source
is also local, depending only on spatial derivatives of the
perturbations, so the resulting bispectrum will peak in
momentum-space configurations where the wavevectors
have similar amplitude (no squeezed component). We
define the projector in Fourier space using the chiral ba-
sis

eTij`m(~k) = eLij(
~k)⌦ eL`m(~k) + eRij(

~k)⌦ eR`m(~k), (10)

where eL,Rij are the polarisation tensors. In Eq. (9) the

scalar perturbation  (⌘,~k) can be written in terms of the
initial gauge-invariant comoving curvature perturbation
as [28]

 (⌘,~k) ⌘ 2

3
T (k⌘)⇣(~k), (11)

where the transfer function during radiation domi-
nation with constant degrees of freedom is T (x) =
(9/x2)

⇥
sin(x/

p
3)/(x/

p
3)� cos(x/

p
3)
⇤
. A straightfor-

ward calculation approximating the primordial perturba-
tions as Gaussian leads to the current abundance of GWs
[29]

⌦GW(f)

⌦r,0
=

cg
72

ˆ 1p
3

� 1p
3

dd

ˆ 1

1p
3

ds


(d2 � 1/3)(s2 � 1/3)

s2 � d2

�2

· P⇣

 
k
p
3

2
(s+ d)

!
P⇣

 
k
p
3

2
(s� d)

!
I2(d, s), (12)

where k = 2⇡f , ⌦r,0 parameterises the current density
of radiation if the neutrinos were massless, cg ' 0.4 ac-
counts for the change of the e↵ective degrees of freedom
of the thermal radiation during the evolution (assuming
Standard Model physics), I2 ⌘ I2

c + I2
s , and

Ic(x, y) = 4

ˆ 1

0
d⌧ ⌧(� sin ⌧)

h
2T (x⌧)T (y⌧)

+
⇣
T (x⌧) + x⌧ T 0(x⌧)

⌘⇣
T (y⌧) + y⌧ T 0(y⌧)

⌘i
,

(13)

Is(x, y) being the same function, but with sin ⌧ replaced
by (� cos ⌧), see Ref. [30]. For the monochromatic power
spectrum (Eq. (6)) we obtain (see also Refs. [16, 18, 30])

⌦GW(f)

⌦r,0
=

A2
scgf

2

15552f2
?

✓
4f2

?

f2
� 1

◆2

✓

✓
2� f

f?

◆
I2

✓
f?
f
,
f?
f

◆
,

(14)

where f? = k?/2⇡ and ✓(x) is the step function. The
current abundance of GWs is given in Fig. 2 with k? ⇠
kLISA = 2⇡fLISA and As ⇠ 0.033. Since the result is only a
function of f/f?, for other possible f? (with typical black
hole masses as indicated on the top axis) the predicted
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FIG. 2: The power spectrum of GWs generated by PBHs
compared with the power-law integrated sensitivity for LISA
estimated on the basis of the proposal [20]: the proposed de-
sign (4y, 2.5 Gm of length, 6 links) is anticipated to have a
sensitivity in between those called C1 and C2 in Ref. [32].
The spike is due to the trigonometric functions coming from
the radiation transfer functions in I2, giving a resonant ef-
fect at f ⇠ 2fLISA/

p
3, as explained in Ref. [16]. The spike

and slow fall-o↵ in power to low frequencies are an artefact
of assuming a monochromatic power spectrum; physical spec-
tra would typically give a smooth spectrum with white-noise
(/ f3) at low frequencies [29], but a similar overall amplitude.

spectrum simply shifts sideways in f . This shows that, if
PBHs of masses in the range 10�15M� . M . 10�11M�
form the dark matter (or even a fraction of it), LISA will
measure the GWs popping out during the PBH formation
time.

The primordial bispectrum of GWs. Since the GW
source is non-linear, the three-point correlator of the
GWs is not vanishing. Its computation is straightfor-
ward in the approximation of Gaussian initial perturba-
tions [29]

⌦
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⇣p1
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,
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+ sin(k1⌘)Is

⇣p1
k1

,
p2
k1

⌘⌘

· (1 ! 2 and 2 ! 3) · (1 ! 3 and 2 ! 1)
i
, (15)

where ~p2 = ~p1 � ~k1, ~p3 = ~p1 + ~k3, and where e⇤�(
~k, ~p) =

e⇤ij� (~k)pipj are the polarisation tensors and � = L,R. The
bispectrum of GWs is dominated by the equilateral con-
figuration [26], k1 ' k2 ' k3 ⌘ k, as expected since it is
sourced by gradients of the curvature perturbations when
the latter re-enter the horizon. For the equilateral con-
figuration and monochromatic power spectrum (Eq. (6)),
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Emission	pathces		
of	GWs	

Interferometer	

Central	limit	theorem		
is	at	work	here…....	
you	are	trying	to	correlate		
many	small	patches	over		
large-scale		distances		
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Initial GWs anisotropies (i.e. at emission)  
Ø  	One	can	have	large-scale	iniDal	anisotropies	if	primordial	(local-type)	NG	is	present:	
						coupling	long	and	short	modes	leads	to	an	amplitude	modulaDon	

Ø  		
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Figure 2. Feynman diagram for the energy density two-point function connected by a fNL bridge.
The double wiggly line indicates a ⇣L long mode.

function in Eq. (2.3), not yet averaged over the long modes, results in
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In practice, it is convenient to write down the energy density before correlating over the long
modes as

⇢GW(⌘, ~x) = ⇢̄GW(⌘)


1 +

24

5
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Z
d3q
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L

(~q)

�
, (3.4)

where the term ⇢̄GW defines the energy density field at zeroth order in the non-linear pa-
rameter, while the second term in the square brackets accounts for the presence of such a
non-Gaussianity. From the energy density one can immediately compute the GWs abundance
as

⌦GW(⌘, ~x, k) = ⌦̄GW (⌘, k)


1 +

24

5
fNL

Z
d3q

(2⇡)3
ei~q·~x ⇣

L

(~q)

�
, (3.5)

where the term ⌦̄GW (⌘, k) identifies the contribution with the absence of the long mode, see
Eq. (2.7).

Following the notation in [44], one can estimate the amount of anisotropy in the GW
abundance by introducing the contrast

�GW(⌘, ~x,~k) =
⌦GW(⌘, ~x, ~k) � ⌦̄GW (⌘, k)
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in terms of the quantity
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This term carries all the information about the amount of anisotropy due to the initial
conditions (su�x I). We choose to define the variable � by following the notation used
in [44] where the subsequent propagation of the GWs in a perturbed FLRW universe was
originally studied by solving the free Boltzmann equation (for a discussion on the graviton
collisional corrections see [52] and Refs. therein). Fig. 3 shows the behaviour of the rescaled
non-linear parameter as a function of the GW momentum for the choice of a Dirac delta and
gaussian power spectrum.

Setting our location at the origin and defining ~k = k n̂, then the position of the source
term is at ~x = n̂(⌘

in

� ⌘), where ⌘
in

indicates the emission time which we associate to the
moment when the modes k⇤ re-enter the horizon and give rise to the signal we are considering

– 7 –

From	propagaDon		
(as	Sachs-Wolfe	from	CMB)	

At	emission	due	to	NG	

Before going into the details of the computation of the correlators, one can have a deeper
look of the ISW contribution to estimate its value with respect to the other. Introducing the
variable ⌘0 = ⌘/⌘

0

and parametrising the scalar transfer functions as
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where we neglected the term q⌘
in

in the Bessel function of the first term. Starting from the
expression of g(⌘), see for example Ref. [53, 54], one can use the analytical fit given by [55]
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@⌘0
= �1.25⌘05 (3.16)

to perform the integral numerically, finding that the ISW e↵ect is subdominant. Therefore
one can approximate the total contribution of the long mode, at leading order in the non-
linear parameter, through the quantity
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In the following subsections we will compute the two-point and three-point functions
of the rescaled energy density as a function of the long modes power spectra and the local
non-linear parameter.

3.1 Two-point function

We start with the computation of the two-point function
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Using the orthonormality of the spherical harmonics and for the choice of a scale invariant
power spectra of the long modes P

⇣L(q) = P
⇣L , the previous expression becomes
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Following the notation of [44], one can define the two-point function as
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Cross-correlaGons	



Cross-correlaEon	of	SGWB	with	CMB		
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Figure 4. Correlation coefficient between the CMB and CGWB when we assume different values of the tensor
spectral tilt n

t

.

the other region is due to the correlation between the first acoustic peak of CMB and the ISW effect
on GWs [31].

4.2 Correlation CMB vs CGWB

To fully exploit the cross-correlation between CMB and CGWB and the available data for the tem-
perature field, we generate constrained realizations of the CGWB [31, 34]. In fact, looking again at
figure 4, one can notice that on multipoles lower than ⇡ 50 the realization of the CGWB should be
nearly deterministically fixed by our observation of CMB, because the correlation coefficient is nearly
1. However, in our case we have to emphasize a peculiarity: a constrained realization of the CGWB
(�

`m

) given a realization of the CMB temperature field (a
`m

) is customarily given by [59]

�
`m

=
CCMB⇥CGWB

`

CCMB

`

a

`m

+ ⇠

`m

vuutCCGWB

`

�
�CCMB⇥CGWB

`

�2

CCMB

`

, (4.1)

where ⇠

`m

is a Gaussian random field with mean 0 and unitary variance. In other words, for the
multipoles where the cross-spectrum is high, the realization of the CGWB acquires a mean similar
to the CMB one and will have a suppressed variance around that. Vice versa, when the cross-
spectrum is low, the CGWB realizations will go back to the standard case, i.e. it will have a null
mean and a variance equal to the square root of the angular power spectrum. In spite of this, we
know that the dipolar modulation model we adopted to describe the power asymmetry introduces a
coupling between different multipoles, which is not accounted for in Eq.4.1. For this reason, we need
to generalize this equation to a case with non-zero contributions in the off-diagonal elements of the
covariance matrices. This is done by considering the known formulas of the mean and the variance of
a conditioned multivariate Gaussian, which recast Eq.4.1 to [35, 60]

#⌫
�

m

= Cov

CMB⇥CGWB

m

�
Cov

CMB

m

��1 #⌫
a

m

+
#⌫
⇠

m

⇥ Chol.[M
m

] , (4.2)

M

m

= Cov

CGWB

m

� Cov

CMB⇥CGWB

m

�
Cov

CMB

m

��1�
Cov

CMB⇥CGWB

m

�
T

. (4.3)

In Eq.4.2 we are fixing the index m and for each we define #⌫
a

m

,
#⌫
⇠

m

and #⌫
�

m

, which are vectors
long `

max

� m. Indeed, �
`m

, a

`m

, ⇠

`m

of Eq.4.1 are the elements of these vectors: #⌫
a

m

is extracted
from the complete vector of the CMB realization fixing m, whereas

#⌫
⇠

m

is a multivariate Gaussian
vector with 0 mean and unitary variance (I

`

max

�m

). Finally, #⌫
�

m

is built exploiting the covariance

separation gets too large w.r.t. the scale of the perturbation.
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4.2 Cross-correlation of SGWB with CMB

Since CMB photons and gravitons share the same geodesics, along which they get red-shifted
or blue-shifted by the same metric fluctuations, we expect a significant correlation between
CMB temperature anisotropies and GW energy density anisotropies. This cross-correlation
has been studied in detail in [35] (sticking to the perturbations induced by scalar fluctuations
on cosmological scales, which provide the dominant contribution; see also [37] where the
anisotropies induced by tensor perturbations have been included too).

The multipoles of GW anisotropies can be inferred from a line-of-sight integral according
to Eqs. (2.16 – 2.20). For the multipoles a`m of CMB temperature fluctuations induced by
adiabatic scalar perturbations, the equivalent integral reads [100]

a`m = 4⇡ (�i)`
Z

d3k

(2⇡)3
ei
~k·~x

0 Y ⇤
`m(k̂)R(~k)⇥S

` (k, ⌘0) , (4.7)

⇥S
` (k, ⌘0) =

Z ⌘
0

⌘
min

d⌘
h

g(⌘)
⇣

T⇥
0

(⌘, k) + T (⌘, k)
⌘

j`[k(⌘0 � ⌘)] (SW)

+ g(⌘) k�1T✓
b

(⌘, k)j0`[k(⌘0 � ⌘)] (DOP)

+ e�(⌘)
@[T (⌘, k) + T�(⌘, k)]

@⌘
j`[k(⌘0 � ⌘)]

i

, (ISW)

where (⌘) is the photon optical depth, g(⌘) the visibility function, T⇥
0

(⌘, k) the transfer
function of the photon temperature monopole, and T✓

b

(⌘, k) the transfer function of the diver-
gence of the baryon bulk velocity. The line-of-sight integral features three terms standing for
the Sachs-Wolfe (SW), Doppler (DOP) and Integrated Sachs-Wolfe (ISW) contributions. As-
suming adiabatic scalar perturbations only, we can write the CMB⇥CGWB cross-correlation
angular power spectrum as

�``0�mm0CCMB⇥CGWB
` (q) ⌘ 1

2
h�GW,`m(⌘, q) a⇤`0m0(⌘) + �⇤GW,`m(⌘, q) a`0m0(⌘)i , (4.8)

where the adiabatic scalar contribution to �GW,`m can be inferred from Eq. (2.35):

�GW,`m = 4⇡ (�i)`(4� ngwb)

Z

d3k

(2⇡)3
ei
~k·~x

0 Y ⇤
`m(k̂)R(~k)

⇥
⇥

�AD
` (k, ⌘0, ⌘in) +�SW

` (k, ⌘0, ⌘in) +�ISW
` (k, ⌘0, ⌘in)

⇤

.
(4.9)

This cross-correlation spectrum can be expanded as the sum of six terms,

CCMB⇥CGWB
` = CSW⇥SW

` + CSW⇥ISW
` + CISW⇥SW

` + CISW⇥ISW
` + CDOP⇥SW

` + CDOP⇥ISW
` ,

(4.10)
each of them involving at last one line-of-sight integral for the CMB part.12 Below, we
give approximate expressions for these six terms, based on the instantaneous decoupling
approximation g(⌘) = �(⌘� ⌘⇤), where ⌘⇤ is the conformal age of the universe at the time of

12Here, for simplicity of notations, when referring to the SW of the CGWB, we include also the monopole
of the (adiabatic) initial anisotropies, called AD in previous equations. Such a combination of AD+SW was
referred to as the Free Streaming Monopole (FSM) in the notations of [35].
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FIG. 1: Contributions to the CMB⇥CGWB cross-correlation
angular power spectrum.

signal as a tool to produce constrained realization maps
of the SGWB, obtained from high-resolution CMB maps
from Planck. To our knowledge, this approach is new in
this specific context and it is of particular interest when
considering the CMB ⇥ CGWB signal, because the cor-
relation between CMB and CGWB at low multipoles is
approximately one. This means that, in the low-noise
regime, the CGWB map at large angular scales is uni-

vocally determined by the CMB one. We generate con-
strained realizations also for the AGWB, which shows
however a smaller degree of correlation with the CMB,
compared to the CGWB.

Cross-correlation CGWB⇥CMB To study the
cross-correlation between the CMB and the CGWB
anisotropies we solved the Boltzmann equation for
the photon and graviton distribution functions f

GW

,
f

�

. The distribution functions for the gravitons
and photons can be expanded as a leading term,
homogeneous and isotropic, plus a first-order con-
tribution rescaled in terms of the functions � and ✓

respectively. The quantity � is related to the pertur-
bation of the GW energy density, specifically to the
SGWB density contrast �

CGWB

and to the CGWB
energy density fractional contribution ⌦̄

CGWB

[26, 27],
�

CGWB

= (4 � @ ln ⌦̄
CGWB

(⌘, q) /@ ln q)� (⌘, ~x, q, n̂),
where q is the graviton comoving momentum. In this
work we consider a power-law dependence of the GW
energy density on frequency, ⌦̄

CGWB

/ q

n

T , so the above
equation simplifies to �

CGWB

= (4�n

T

)�, where n
T

is the
tensor spectral index. Solving the Boltzmann equation
at linear level around a Friedmann-Lemaitre-Robertson-
Walker (FLRW) background metric which, in the Poisson
gauge, ds2 = a

2(⌘)
⇥
�e

2�

d⌘

2 + e

�2 

�

ij

dx

i

dx

j

⇤
, we find

the following solutions for the scalar induced contribution
(see [26, 27] for more details on the derivation)
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0
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(1)

The scalar sector for the CMB is characterized by the
sum of the SW (second row in the equation for ✓

`m,S

),
Doppler (third row) and ISW (fourth row) contributions
(see e.g. [38]). On the other hand the CGWB is charac-
terized by the sum of SW and ISW (second and third line
in the equation for �

`m,S

) [26, 27]. Here, ⌧ is the optical
depth, defined as ⌧(⌘) ⌘

´
⌘

0

⌘

d⌘

0
n

e

�

T

a, with n

e

the free
electron number density and �

T

the Compton cross sec-
tion, v

b

is the velocity of baryons, and g is the visibility
function, defined as g(⌘) ⌘ �⌧

0(⌘)e�⌧(⌘) [38]. The initial
condition contribution, which is model/source dependent,
is taken here as �

I

(⌘
i

, k, q) = �2/(4�n

T

)�(⌘
i

, k) (single-
clock adiabatic case) with n

T

= 0. We expand the solu-
tions of the Boltzmann equation in spherical harmonics,
�(n̂) =

P
`

P
`

m=�`

�
`m

Y

`m

(n̂), where n̂ is the direction
of the photon and GW trajectory. The angular auto and
cross-correlation spectra are

h�CGWB

`m

(⌘
0

) �⇤CGWB

`

0
m

0 (⌘
0

)i ⌘ �

``

0
�

mm

0
C

CGWB

`

,

h✓
`m

(⌘
0

) ✓⇤
`

0
m

0(⌘
0

)i ⌘ �

``

0
�

mm

0
C

CMB

`

,

h✓
`m

(⌘
0

) �⇤CGWB

`

0
m

0 (⌘
0

)i ⌘ �

``

0
�

mm

0
C

CMB⇥CGWB

`
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The cross-correlation spectrum is the sum of four terms,
where each of them represents the correlation between
either the freestream monopole (FSM)1 or the ISW, for
each of the two backgrounds,

C

CMB⇥CGWB

`

= C

FSM⇥FSM

`

+ C

FSM⇥ISW

`

+ C

ISW⇥FSM

`

+ C

ISW⇥ISW

`

. (3)

We did not include the Doppler cross-correlation since
we verified that its impact on the SNR of the cross-
correlation is negligible. However in Appendix A, for

1

The FSM is the monopole at the last scattering surface that

propagates until the present epoch. The FSM of the CGWB is

due to the SW e↵ect only, while the FSM of the CMB is due both

to the SW e↵ect and to the acoustic peaks.
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4.2 Cross-correlation of SGWB with CMB

Since CMB photons and gravitons share the same geodesics, along which they get red-shifted
or blue-shifted by the same metric fluctuations, we expect a significant correlation between
CMB temperature anisotropies and GW energy density anisotropies. This cross-correlation
has been studied in detail in [35] (sticking to the perturbations induced by scalar fluctuations
on cosmological scales, which provide the dominant contribution; see also [37] where the
anisotropies induced by tensor perturbations have been included too).

The multipoles of GW anisotropies can be inferred from a line-of-sight integral according
to Eqs. (2.16 – 2.20). For the multipoles a`m of CMB temperature fluctuations induced by
adiabatic scalar perturbations, the equivalent integral reads [100]

a`m = 4⇡ (�i)`
Z

d3k

(2⇡)3
ei
~k·~x

0 Y ⇤
`m(k̂)R(~k)⇥S

` (k, ⌘0) , (4.7)

⇥S
` (k, ⌘0) =

Z ⌘
0

⌘
min

d⌘
h

g(⌘)
⇣

T⇥
0

(⌘, k) + T (⌘, k)
⌘

j`[k(⌘0 � ⌘)] (SW)

+ g(⌘) k�1T✓
b

(⌘, k)j0`[k(⌘0 � ⌘)] (DOP)

+ e�(⌘)
@[T (⌘, k) + T�(⌘, k)]

@⌘
j`[k(⌘0 � ⌘)]

i

, (ISW)

where (⌘) is the photon optical depth, g(⌘) the visibility function, T⇥
0

(⌘, k) the transfer
function of the photon temperature monopole, and T✓

b

(⌘, k) the transfer function of the diver-
gence of the baryon bulk velocity. The line-of-sight integral features three terms standing for
the Sachs-Wolfe (SW), Doppler (DOP) and Integrated Sachs-Wolfe (ISW) contributions. As-
suming adiabatic scalar perturbations only, we can write the CMB⇥CGWB cross-correlation
angular power spectrum as

�``0�mm0CCMB⇥CGWB
` (q) ⌘ 1

2
h�GW,`m(⌘, q) a⇤`0m0(⌘) + �⇤GW,`m(⌘, q) a`0m0(⌘)i , (4.8)

where the adiabatic scalar contribution to �GW,`m can be inferred from Eq. (2.35):

�GW,`m = 4⇡ (�i)`(4� ngwb)

Z

d3k

(2⇡)3
ei
~k·~x

0 Y ⇤
`m(k̂)R(~k)

⇥
⇥

�AD
` (k, ⌘0, ⌘in) +�SW

` (k, ⌘0, ⌘in) +�ISW
` (k, ⌘0, ⌘in)

⇤

.
(4.9)

This cross-correlation spectrum can be expanded as the sum of six terms,

CCMB⇥CGWB
` = CSW⇥SW

` + CSW⇥ISW
` + CISW⇥SW

` + CISW⇥ISW
` + CDOP⇥SW

` + CDOP⇥ISW
` ,

(4.10)
each of them involving at last one line-of-sight integral for the CMB part.12 Below, we
give approximate expressions for these six terms, based on the instantaneous decoupling
approximation g(⌘) = �(⌘� ⌘⇤), where ⌘⇤ is the conformal age of the universe at the time of

12Here, for simplicity of notations, when referring to the SW of the CGWB, we include also the monopole
of the (adiabatic) initial anisotropies, called AD in previous equations. Such a combination of AD+SW was
referred to as the Free Streaming Monopole (FSM) in the notations of [35].
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4

FIG. 2: SNR of the angular power spectrum of the cross-
correlation versus monopole energy density of the CGWB, in
the case of BBO (blue line), LISA (red line), and noiseless
(black line) cases.

for instance by considering all the LISA TDI channels,
even in some particular new combinations that suppress
the detector noise [71], or when more space-based detec-
tors are correlated among them (considering for instance
a network LISA-Taiji [72] or LISA-BBO). Finally, if we
consider an ideal, noiseless, case we can reach a large
Signal-to-Noise, SNR ⇠ 100.
Constrained realizations Since the correlation coe�-

cient between the CMB and the CGWB approaches 1 on
large scales, a natural – yet in this context still unexplored
– approach is that of exploiting the observed CMB tem-
perature signal in order to build constrained realizations
of the expected CGWB anisotropy field.
Let us start by briefly reviewing, in the context of our

application, the general method to generate constrained
realizations of Gaussian fields [73–77]. The a

`m

and �
`m

spherical harmonics coe�cients are distributed as Gaus-
sian random variables with zero average and covariance
given by a block-diagonal matrix, with `

max

� 2 blocks.
Each block is equal to

C
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`

=

✓
C

CGWB

`

C
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`

C
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`

C
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◆
. (6)

The conditional probability of �
`m

given the a

`m

is still
a Gaussian with mean and elements of the covariance
matrix given by

µ
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=
C
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�
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�
2

C
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`

.

(7)
We extract the a

`m

from the full-sky, Planck SMICA
CMB map using Healpix [78]. Then we generate the con-
strained CGWB map with mean µ

`m

and covariance ⌃
`m

reported above, with angular power spectra obtained con-
sidering the most recent Planck best-fit parameters [79].
The result of this procedure is reported in Figure 3, where
we have generated both a low resolution (`

max

= 20) and
a higher resolution (`

max

= 200) constrained map. As
stressed at the beginning of this section, until ` ' 30,

the correlation coe�cient r between the CMB and the

CGWB, defined as r = C

CMB⇥CGWB

`

/

q
C

CMB

`

C

CGWB

`

,

is almost one. In the low-noise regime, the CGWB sig-
nal on large scales – i.e., those at which interferometers
are sensitive – is then nearly deterministically predicted
by the observed CMB fluctuations, considering small un-
certainties on cosmological parameters (technically, this
reflects in the fact that, when r ! 1, the variance of the
constrained multipoles goes to 0 in the cosmic variance
dominated limit). For this reason, these constrained re-
alizations of the CGWB could be used as a useful tool
in the future, for example to test foreground or other
systematic contamination in the data, by comparing the
observed map with the CMB-based prediction.

Cross-correlation AGWB⇥CMB In the case of the
cross-correlation between CMB and AGWB anisotropies
we focused on the background contribution generated
from the merging of BBHs, which is expected to be
detected in the next LIGO run (O5) [8, 80]. Using
the formalism developed in [51], we can write the en-
ergy density of the AGWB monopole as ⌦̄

AGWB

/4⇡ =
f

o

⇢

c

´
d�̄ d~✓ N(z,f

e

,

~

✓)

(1+z)

w(z) where f

o

is the measured fre-
quency, f

e

is the frequency at emission, ⇢
c

is the critical
energy density of the Universe, �̄ is the comoving distance
(i.e., conformal time) in the observer’s frame [81, 82], ~✓
contains all the astrophysical parameters (e.g., the mass
of the haloM

h

, the mass of the star that originated the bi-
nary M

?

, the mass of the compact BHs ~m, the spin of the
BBH, the orbital parameters and the star formation rate
(SFR)) and N(z, f

e

,

~

✓) is the total comoving density of
GWs reported in Appendix B, together with the details
on the generation of our AGWB signal. Starting from
the background we can defined the AGWB over-density
as [51]
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(8)

where b is the galaxy bias and W̃ is the weight function
reported in Appendix B. Since we are interested here just
in an order-of-magnitude estimate of the expected corre-
lation signal at small redshift, we have taken b = 1, for
the sake of simplicity.
The cross-correlation of the AGWB with the CMB is now
induced by late-ISW of the latter. In the noiseless case
the SNR of the cross-correlation is ' 5 for a monopole
energy density ⌦̄

AGWB

' 10�10 at f = 25Hz. When
the noise of the ground-based detectors is included, a
detectable level of the cross-correlation signal requires
a large amplitude of the monopole energy density, of
the order 10�7, which is ruled out by latest LIGO con-
strains [53]. However, the SNR will increase significantly
with future space-based detectors, like LISA or BBO. In
this case, a noise level N

`

⇡ 10�26 (the expected noise
level of LISA) allows for a possible detection (i.e., SNR

2

FIG. 1: Contributions to the CMB⇥CGWB cross-correlation
angular power spectrum.

signal as a tool to produce constrained realization maps
of the SGWB, obtained from high-resolution CMB maps
from Planck. To our knowledge, this approach is new in
this specific context and it is of particular interest when
considering the CMB ⇥ CGWB signal, because the cor-
relation between CMB and CGWB at low multipoles is
approximately one. This means that, in the low-noise
regime, the CGWB map at large angular scales is uni-

vocally determined by the CMB one. We generate con-
strained realizations also for the AGWB, which shows
however a smaller degree of correlation with the CMB,
compared to the CGWB.

Cross-correlation CGWB⇥CMB To study the
cross-correlation between the CMB and the CGWB
anisotropies we solved the Boltzmann equation for
the photon and graviton distribution functions f

GW

,
f

�

. The distribution functions for the gravitons
and photons can be expanded as a leading term,
homogeneous and isotropic, plus a first-order con-
tribution rescaled in terms of the functions � and ✓

respectively. The quantity � is related to the pertur-
bation of the GW energy density, specifically to the
SGWB density contrast �

CGWB

and to the CGWB
energy density fractional contribution ⌦̄

CGWB

[26, 27],
�

CGWB

= (4 � @ ln ⌦̄
CGWB

(⌘, q) /@ ln q)� (⌘, ~x, q, n̂),
where q is the graviton comoving momentum. In this
work we consider a power-law dependence of the GW
energy density on frequency, ⌦̄

CGWB

/ q

n

T , so the above
equation simplifies to �

CGWB

= (4�n

T

)�, where n
T

is the
tensor spectral index. Solving the Boltzmann equation
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sum of the SW (second row in the equation for ✓

`m,S

),
Doppler (third row) and ISW (fourth row) contributions
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The cross-correlation spectrum is the sum of four terms,
where each of them represents the correlation between
either the freestream monopole (FSM)1 or the ISW, for
each of the two backgrounds,
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We did not include the Doppler cross-correlation since
we verified that its impact on the SNR of the cross-
correlation is negligible. However in Appendix A, for

1

The FSM is the monopole at the last scattering surface that

propagates until the present epoch. The FSM of the CGWB is

due to the SW e↵ect only, while the FSM of the CMB is due both

to the SW e↵ect and to the acoustic peaks.
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Ø  	Since	the	correlaDon	coefficient	between	the	CMB	and	the	CGWB	approaches	1	on		
							large	scales,	a	natural	approach	is	that	of	exploiDng	the	observed	CMB	temperature	signal		
							in	order	to	build	constrained	realizaDons	of	the	expected	CGWB	anisotropy	field.		
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Figure 5. Constrained realization of the CGWB with `
MAX

= 400 (left) and Planck CMB map downgraded
to `

MAX

= 400 (right). It is clear that the large-scale features of Planck’s map are faithfully reproduced here,
whereas the two observables drift apart on smaller scales.

on GWs [30]. For the most red tilted spectra, the slight increase on the cross-spectrum we notice in
figure 1 (right) is mainly due to the tensor induced contribution.

4.2 Correlation CMB vs CGWB

To fully exploit the cross-correlation between CMB and CGWB and the available data for the tem-
perature field, we generate constrained realizations of the CGWB [30, 33]. In fact, looking again at
figure 4, one can notice that on multipoles lower than ⇡ 50 the realization of the CGWB should be
nearly deterministically fixed by our observation of CMB, because the correlation coefficient is nearly
1. A constrained realization of the CGWB (�
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) given a realization of the CMB temperature field
(a
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) is given by
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where ⇠ is a Gaussian random field with mean 0 and unitary variance. In other words, for the
multipoles where the cross-spectrum is high, the realization of the CGWB acquires a mean similar to
the CMB one and will have a suppressed variance around that. Vice versa, when the cross-spectrum
is low, the CGWB realizations will go back to the standard case, i.e. it will have a null mean and
a variance equal to the square root of the angular power spectrum. Indeed, comparing figure 5,
the latter being Planck’s temperature map downgraded to `

MAX

= 400, one can notice that the
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							Also	useful	for:		
		
Ø  		Test	foregrounds	or	systemaDcs	effects	by	comparing	the	CGWB	observed	map	with	the		
								CMB-based	predicDon.		

Ø  	To	test	new	physics	signatures	(e.g.	deviaDons	from	GR,	test	CMB	anomalies,	etc.	)		
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FIG. 3: Left plot: Planck CMB SMICA map with `
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= 200; Central plot: constrained CGWB map with `
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= 200 in the
noiseless case; Right plot: constrained CGWB map with `

max

= 20. In all the maps we have fixed N
side

= 64.

FIG. 4: Left plot: Planck CMB SMICA map with `
max

= 200; Central plot: constrained AGWB map with `
max

= 200 in the
noiseless case; Right plot: constrained AGWB map with `

max

= 20. In all the maps we have fixed N
side

= 64.

analyses of CGWB anisotropies. While the noise level of
forthcoming experiments is still fairly high for a meaning-
ful application of this technique, significant improvements
are expected in the future. A way to significantly lower
the noise level (by orders of magnitude) would also be
to combine several interferometers; we have not explic-
itly accounted for this possibility in our SNR forecasts.
The AGWB ⇥ CMB correlation is lower than the CGWB
⇥ CMB one. Therefore CMB-based constrained realiza-
tions are less powerful in this case. However, the power
of constrained realization techniques could in this case be
significantly enhanced by accounting for correlations be-
tween the AGWB and LSS observables. We will explore
this in a future work.

While completing this paper, we came across [83] where
the cross-correlation CGWBxCMB has been used to as-
sess the capability of future gravitational wave interfer-
ometers to constrain Early Universe extensions to the
⇤CDM model through a Fisher analysis.
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analyses of CGWB anisotropies. While the noise level of
forthcoming experiments is still fairly high for a meaning-
ful application of this technique, significant improvements
are expected in the future. A way to significantly lower
the noise level (by orders of magnitude) would also be
to combine several interferometers; we have not explic-
itly accounted for this possibility in our SNR forecasts.
The AGWB ⇥ CMB correlation is lower than the CGWB
⇥ CMB one. Therefore CMB-based constrained realiza-
tions are less powerful in this case. However, the power
of constrained realization techniques could in this case be
significantly enhanced by accounting for correlations be-
tween the AGWB and LSS observables. We will explore
this in a future work.
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ometers to constrain Early Universe extensions to the
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AGWB-CMB	cross	correlaEon	and	primordial	
non-Gaussianity		

FluctuaDons	in	the	sources	of	GWs	induce	GW	anisotropies;	GWs	bias	does	depend	from	fNL	

4

source functions; they contain the information about the
anisotropies and will be an important piece in the con-
struction of the cross-correlation. Their full expressions
can be found in [25]. We report as an example the one
related to the density anisotropies,

S [i]�
m

` = (4⇡)i`
Z

dz

H(z)
W [i](z)b[i]GWj`(k�(z))T�

m

(⌘, k) ,

(11)

with j`(x) the spherical Bessel function and T�
m

is the
a transfer function linking �m to the primordial curva-
ture perturbation ⇣ (⌘ is the conformal time) [59]. The
angular power spectrum is defined as
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It is straightforward to show that
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(k)S [j]�

` (k)P⇣(k) , (13)

where P⇣(k) is the primordial power spectrum (i.e. the
two-point correlation function in Fourier space). The di-
mensionless power spectrum can be built from P⇣(k) as
[28, 60]

P⇣(k) =
k3

(2⇡2)
P⇣(k) = As

✓
k

kp

◆n
s

�1

, (14)

where As and ns are the scalar perturbations amplitude
and tilt, respectively, and kp is the pivot scale.

III. COSMIC MICROWAVE BACKGROUND

The Cosmic Microwave Background has been found in
1964 by Penzias and Wilson, that were able to see just
the monopole [61]. Up to now we have been able to
characterize both the monopole and the anisotropies of
the signal with very high accuracy (up to ` ⇠ 2500) [62].
Since the description and characterization of the CMB is
out of the purposes of this work, but at the same time is
an important part of the work, we will discuss just the
main points, reporting the reader to specific works for a
more detailed analysis. We start from defining the CMB
temperature as [63]

T (x, n̂, ⌘0) = T (⌘0)[1 +⇥(x, n̂, ⌘0)] . (15)

Here the anisotropies are contained in the function ⇥.
The three main contributions to the CMB anisotropies
on large scales are the Sachs-Wolfe, the Doppler and the
Integrated Sachs-Wolfe (ISW). Actually the first one is
imprinted at the moment of the decoupling and is a grav-
itational redshift e↵ect. The Doppler depends on the pe-
culiar velocity of the Earth with respect to the cosmic
fluid, while the third one is still a gravitational redshift

e↵ect, but imprinted during the propagation of the sig-
nal (we will discuss this latter e↵ect in more detail later).
Also for the CMB the typical procedure is to expand the
perturbation in spherical harmonics as

⇥(xo, n̂, ⌘0) =
X

`m

Y ⇤
`m(n̂)aCMB

`m , (16)

with xo position of the observer. At the end one gets

aCMB
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Z
d2n̂Y ⇤

`m(n̂)⇥(n̂)

=

Z
d3k

(2⇡)3
Y ⇤
`m(k̂)T`(k̂)⇣(k) . (17)

Here we indicated with T`(k̂) the source functions and
also in this case there will be one for each term of
the anisotropies. We report as an example the source
function for the ISW, expected to dominate the cross-
correlation with the density anisotropies described be-
fore, i.e.

T ISW
` = (4⇡)i`

Z ⌘
0

0

d⌘ [T 0
 (⌘, k) + T 0

�(⌘, k)] e
�⌧ j`(k(⌘0�⌘)) .

(18)
In this equation T� and T are transfer functions that
relate the gravitational potential to the primordial cur-
vature perturbation ⇣ (for the explicit expression see e.g.
[28]). The j`’s are the spherical Bessel functions, ⌘ the
conformal time and ⌧ the optical depth.

IV. NON-GAUSSIAN BIAS

The quantity that links the distribution of GW sources
to the underlying dark matter distribution is the bias. In
this work we focus on the e↵ects of primordial local nG
on it. In this case the primordial gravitational potential
can be modeled as [20, 21]

� = �L + fNL(�
2
L � h�2

Li) , (19)

where �L is the Gaussian potential, while fNL is a pa-
rameter that quantifies the amount of primordial nG. Ac-
tually, starting from (19) one can show that the e↵ects
of nG can be recasted in an additional scale-dependent
contribution to the bias �b such that [35–37]

�b(k) = 3fNL(b� 1)�c
⌦m

T (k)D(z)k2

✓
H0

c

◆2

. (20)

Here D(z) is the growth function, T (k) the matter power
spectrum and �c = 1.686 is the spherical collapse linear
over-density [34, 64, 65]. Such a correction is propor-
tional to fNL, meaning that in principle we could use this
signal to constrain this parameter. Moreover we observe
that the scale dependence goes like k�2 meaning that the
e↵ect of the correction will be important on large scales
(small k). This is an important remark since actually we
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anisotropies and will be an important piece in the con-
struction of the cross-correlation. Their full expressions
can be found in [25]. We report as an example the one
related to the density anisotropies,
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Z
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H(z)
W [i](z)b[i]GWj`(k�(z))T�

m

(⌘, k) ,

(11)

with j`(x) the spherical Bessel function and T�
m

is the
a transfer function linking �m to the primordial curva-
ture perturbation ⇣ (⌘ is the conformal time) [59]. The
angular power spectrum is defined as

CAGWB
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D
aGW
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X

i,j;↵�
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` . (12)

It is straightforward to show that

C
[i,j]↵�
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Z
dk

(2⇡)3
k2S [i]↵

`

⇤
(k)S [j]�

` (k)P⇣(k) , (13)

where P⇣(k) is the primordial power spectrum (i.e. the
two-point correlation function in Fourier space). The di-
mensionless power spectrum can be built from P⇣(k) as
[28, 60]

P⇣(k) =
k3

(2⇡2)
P⇣(k) = As

✓
k

kp

◆n
s

�1

, (14)

where As and ns are the scalar perturbations amplitude
and tilt, respectively, and kp is the pivot scale.

III. COSMIC MICROWAVE BACKGROUND

The Cosmic Microwave Background has been found in
1964 by Penzias and Wilson, that were able to see just
the monopole [61]. Up to now we have been able to
characterize both the monopole and the anisotropies of
the signal with very high accuracy (up to ` ⇠ 2500) [62].
Since the description and characterization of the CMB is
out of the purposes of this work, but at the same time is
an important part of the work, we will discuss just the
main points, reporting the reader to specific works for a
more detailed analysis. We start from defining the CMB
temperature as [63]

T (x, n̂, ⌘0) = T (⌘0)[1 +⇥(x, n̂, ⌘0)] . (15)

Here the anisotropies are contained in the function ⇥.
The three main contributions to the CMB anisotropies
on large scales are the Sachs-Wolfe, the Doppler and the
Integrated Sachs-Wolfe (ISW). Actually the first one is
imprinted at the moment of the decoupling and is a grav-
itational redshift e↵ect. The Doppler depends on the pe-
culiar velocity of the Earth with respect to the cosmic
fluid, while the third one is still a gravitational redshift

e↵ect, but imprinted during the propagation of the sig-
nal (we will discuss this latter e↵ect in more detail later).
Also for the CMB the typical procedure is to expand the
perturbation in spherical harmonics as

⇥(xo, n̂, ⌘0) =
X

`m

Y ⇤
`m(n̂)aCMB

`m , (16)

with xo position of the observer. At the end one gets

aCMB
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Z
d2n̂Y ⇤

`m(n̂)⇥(n̂)

=

Z
d3k

(2⇡)3
Y ⇤
`m(k̂)T`(k̂)⇣(k) . (17)

Here we indicated with T`(k̂) the source functions and
also in this case there will be one for each term of
the anisotropies. We report as an example the source
function for the ISW, expected to dominate the cross-
correlation with the density anisotropies described be-
fore, i.e.

T ISW
` = (4⇡)i`

Z ⌘
0

0

d⌘ [T 0
 (⌘, k) + T 0

�(⌘, k)] e
�⌧ j`(k(⌘0�⌘)) .

(18)
In this equation T� and T are transfer functions that
relate the gravitational potential to the primordial cur-
vature perturbation ⇣ (for the explicit expression see e.g.
[28]). The j`’s are the spherical Bessel functions, ⌘ the
conformal time and ⌧ the optical depth.

IV. NON-GAUSSIAN BIAS

The quantity that links the distribution of GW sources
to the underlying dark matter distribution is the bias. In
this work we focus on the e↵ects of primordial local nG
on it. In this case the primordial gravitational potential
can be modeled as [20, 21]

� = �L + fNL(�
2
L � h�2

Li) , (19)

where �L is the Gaussian potential, while fNL is a pa-
rameter that quantifies the amount of primordial nG. Ac-
tually, starting from (19) one can show that the e↵ects
of nG can be recasted in an additional scale-dependent
contribution to the bias �b such that [35–37]

�b(k) = 3fNL(b� 1)�c
⌦m

T (k)D(z)k2

✓
H0

c

◆2

. (20)

Here D(z) is the growth function, T (k) the matter power
spectrum and �c = 1.686 is the spherical collapse linear
over-density [34, 64, 65]. Such a correction is propor-
tional to fNL, meaning that in principle we could use this
signal to constrain this parameter. Moreover we observe
that the scale dependence goes like k�2 meaning that the
e↵ect of the correction will be important on large scales
(small k). This is an important remark since actually we
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II. SGWB ANISOTROPIES

In this section, we show how primordial scalar curva-
ture fluctuations, ⇣, induce an anisotropic contribution,
�
GW

, to the energy density associated with the SGWB.
We begin by reviewing anisotropic SGWBs to introduce
our notation (see, e.g., Ref. [22]), before focussing on in-
trinsic and induced sources of anisotropy in Sections IIA
and IIB, respectively.

Experimental searches for a SGWB signal focus on the
normalized energy density per unit frequency

⌦
GW

(f,x) ⌘ 1

⇢
cr

d⇢
GW

d ln f
, (1)

where ⇢
cr

is the critical density, ⇢
GW

is the GW energy
density. We have allowed for position dependence via x,
the magnitude |x| accounts for the time elapsed from GW
horizon (re-)entry until today, while x̂ indicates the direc-
tion of observation. The quantity ⌦

GW

(f,x) is obtained
by averaging the GW signal over all GW directions n̂

⌦
GW

(f,x) ⌘ 1

4⇡

Z
d2n̂!

GW

(f, n̂,x) . (2)

One codifies within !
GW

(f, n̂,x) both an isotropic
part as well as possible SGWB anisotropies. The
parametrization is (see also e.g. [17–20]) as follows:

!
GW

(f, n̂,x) = !̄
GW

(f) [1 + �
GW

(f, n̂,x)] . (3)

In general, there are two distinct e↵ects that source the
anisotropy �

GW

: intrinsic or primordial anisotropies, and
induced anisotropies. We now consider each case sepa-
rately. We note here that the standard sub-horizon evolu-
tion is implicit in Eqs. (2-3). More specifically, in Eq. (3)
it is the factored out term !̄

GW

(f) to be understood as
the result of the usual time evolution (all the way to to-
day) regulated by the appropriate transfer function.

A. Intrinsic SGWB anisotropies

It is well-known that large non-Gaussianities can in-
duce anisotropies in the SGWB. A case in point is the
analysis of Ref. [23, 24] showing how a large squeezed ten-
sor 3-point function leads to a quadrupolar asymmetry
in the SGWB. In the present work, we consider instead
the STT case arising from a primordial h⇣��i correlator.

We work in comoving gauge, where the perturbed
Friedmann-Robertson-Walker line element reads

ds2 = �a2(⌘)
�
d⌘2 � [(1� 2⇣)�

ij

+ �
ij

] dxidxj

 
, (4)

where, ⌘ is conformal time, ⇣ is the scalar curvature fluc-
tuation, and �

ij

is the transverse-traceless tensor pertur-
bation. The scalar and tensor power spectra are

h⇣
k
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⇣
k

2

i0 ⌘ P
⇣

(k
1

) , h�
k

1

�
k

2

i0 ⌘ P
�

(k
1

) , (5)

and the scalar-tensor-tensor correlator bispectrum B is
defined as:

B
STT

(k
1

, k
2

, q
L

) ⌘ h�
k

1

�
k

2

⇣
qLi0 , (6)

where the symbol 0 denotes the correlators, excluding the
wavenumber delta functions.
In analogy1 with the results of [24], we find that the

existence of mode-coupling, in the form of a non-trivial
squeezed bispectrum, modulates the primordial tensor
power spectrum according to

Pmod

�

(x,k) = P
�

(k)


1 +

Z
d3q

L

(2⇡)3
eiqL·x F

NL

(q
L

,k) ⇣(q
L

)

�
,

(7)
where

F
NL

(q
L

, k) =
B

STT

(k+ q

L

/2, �k+ q

L

/2, �q

L

)

P
�

(k)P
⇣

(q
L

)
. (8)

The modulated spectrum in Eq. (7) is to be understood
as a primordial quantity, i.e. the spectrum at horizon
re-entry for the k modes. Its sub-horizon evolution is
accounted for in standard fashion through the transfer
function in the expression for the energy density ⌦

GW

.
We stress here the implicit assumption that the STT

bispectrum in Eq. (8) is one that breaks consistency rela-
tions (CRs). If this were not the case, the leading order
term in the squeezed B

STT

would amount to a gauge ar-
tifact and the resulting physical contribution would be
suppressed (see Section IV for examples of models that
break CRs).
We further note that the integral in Eq. (7) only spans

large scales (q
L

⌧ k). Expressing quantities in terms of
GW frequency and direction, the resulting GW energy
density is

⌦
GW

(f,x) =
2⇡2

3H2

0

f2

"
1

4⇡

Z
d2n̂ Pmod

�

(f, n̂,x)

#
, (9)

and the quantities !̄
GW

, �
GW

introduced in Eq. (3) read

!̄
GW

(f) =
2⇡2

3H2

0

f2 P
�

(f) , (10)

�prim
GW

(f, n̂,x) = (11)
Z

|fL|⌧|f |
f2

L

df
L

Z
d2n̂

L

eiqL·x F
NL

(f
L

n̂
L

, f n̂) ⇣ (f
L

n̂
L

) ,

where q

L

= 2⇡f
L

n̂
L

and k = 2⇡fn̂. The intrinsic
anisotropy can therefore be very significant in models
with an enhanced STT correlator. In such cases the pri-
mordial contribution becomes the leading one and the
induced counterpart, �ind

GW

, to be described in the next
Section, can be safely neglected.

1 The pioneering work on fossil fields includes [25–29].
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B. Induced SGWB anisotropies

A second source of anisotropy of the SGWB is due
to the scalar perturbations present in an inhomogeneous
universe as primordial GWs travel over cosmological dis-
tances. The e↵ect is the GW analog of the Sachs-Wolfe
e↵ect: long wavelength scalar fluctuations modulate the
GWs frequency and direction and induce anisotropies
in ⌦

GW

(see e.g. [17–20]). We consider the case of
scalar fluctuations that re-enter the horizon during mat-
ter domination.2 Following [17], we assume the gravita-
tional waves reenter the horizon when the universe can
be treated as a perfect fluid with p = w⇢. The induced
SGWB anisotropy (see [17, 20] for a derivation) is given
by

�ind
GW

(f, n̂) =
2

5

⇣
⌫ + 1� n

T

2

⌘
⇣
L

(n̂) , (12)

with ⌫ = 2/(1 + 3w) and n
T

the standard tensor tilt.
The overall coe�cient on the right hand side of Eq. (12)
is then expected to be of order one. This is to be com-
pared with Eq. (11), whose contribution can be signifi-
cantly larger than the induced term for large primordial
STT non-Gaussianity. Indeed, inflationary models such
as those in Section IV can support signals in excess of
F
NL

⇠ 103.
In what follows we consider cross-correlation of GW

anisotropies with CMB temperature anisotropies under
the assumption that the former receives the leading con-
tribution via Eq. (11).3

III. CORRELATING ANISOTROPIES IN THE
SGWB WITH THE CMB

We now compute the cross-correlations between
the gravitational wave anisotropies and the CMB-
temperature anisotropy, focusing on the contribution due
to �prim

GW

. The starting point is given by

�prim
GW,`m

=

Z
d⌦

x̂

Y ⇤
`m

(x̂)

Z

k⌧k⇤

d3k

(2⇡)3
eik·x F

NL

(k, k⇤) ⇣(k) ,

(13)
where Y ⇤

`m

(x̂) are spin-0 spherical harmonics, k⇤ = 2⇡f⇤,
is the short modes momentum and, for the sake of sim-
plicity, we consider a F

NL

that depends only on the mag-
nitude of the momenta in Eq. (8). Similarly, for temper-
ature anisotropies one has:

�
T,`m

= (�i)`
4⇡

5

Z
d3k

(2⇡)3
Y ⇤
`m

(k̂)j
`

(k r
lss

)⇣(k) , (14)

2 Our conclusions do not depend qualitatively on this assumption.
See e.g. [20] for the general case.

3 Curvature fluctuations also contribute to anisotropies of the as-
trophysical SGWB: ⇣ induces matter inhomogeneities in the large
scale structure, where astrophysical GW sources are located. The
amplitude of the resulting SGWB anisotropies are at most of the
order of �indGW , see e.g. [13].

FIG. 1. Cross-correlation of the GW anisotropy with the
CMB in the Sachs-Wolfe limit. The correlation decays expo-
nentially with a characteristic scale `⇤ ⇡ 44.
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signals the
last scattering surface. The resulting angular cross-power
spectrum is
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where r⇤ is the time between between today and horizon
re-entry for the tensor modes. The expression in Eq. (15)
can be further simplified under the assumptions of (i) a
scale invariant power spectrum P

⇣

(k) = (2⇡2/k3)A
s

; (ii)
a constant value for F

NL

. The corresponding ` depen-
dence of CGW�T

`

is represented in Fig. (1), normalised
by CT�T

`

, for the case of F
NL

= 1. The plot is largely
insensitive to the value of r⇤ so long as this quantity
corresponds to modes that have re-entered the horizon
during radiation era, i.e. those that are relevant both for
PTA and laser interferometers such as LISA.
It is both useful and straightforward [30] at this stage

to provide an estimate of the statistical error in the mea-
surement of the key primordial quantity F

NL

. Equipped
with the entries of the matrix
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where CTT

`

= 2⇡A
s

/[25 `(` + 1)] (in the Sachs-Wolfe
regime), and CGW
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is the auto-correlation of GW
anisotropies, we obtain the Fisher matrix for F
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is given by I
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and we have assumed the Sachs-Wolfe approximation
and a noise-dominated regime, CGW
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' NGW

`

, for GW
anisotropies. The error on F

NL

is simply given by �F
NL

=
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e.g.	Adshead,	Afshori,	Dimastrogiovanni	et	al.	‘21		
							(see	also	Alba,	Maldacena	‘15	;	N.B.,	Bertacca	et	al.	‘20)						

(e.g.	Malhotra,	Dimastrogiovanni,	Fasiello,	Shiraishi	‘21).					



An	applicaGon:	can	we	use	GWs	to	test	
the	staGsGcal	isotropy	of	the	Universe?	
	
Can	(primordial)	GWs	and	CMB	anomalies	
“talk”	to	each	other?		

See	G.	Galloni,	N.	B.,	S.	Matarrese,	M.	Migliaccio,	A.	Ricciardone,	N.	ViRorio	‘22.		



CMB	Anomalies	
Planck Collaboration: The Planck mission

Fig. 9. Maximum posterior CMB intensity map at 50 resolution derived from the joint baseline analysis of Planck, WMAP, and
408 MHz observations. A small strip of the Galactic plane, 1.6 % of the sky, is filled in by a constrained realization that has the same
statistical properties as the rest of the sky.

Fig. 10. Maximum posterior amplitude Stokes Q (left) and U (right) maps derived from Planck observations between 30 and
353 GHz. These mapS have been highpass-filtered with a cosine-apodized filter between ` = 20 and 40, and the a 17 % re-
gion of the Galactic plane has been replaced with a constrained Gaussian realization (Planck Collaboration IX 2015). From
Planck Collaboration X (2015).

8.2.1. Polarization power spectra

In addition to the TT spectra, the 2015 Planck likelihood in-
cludes the T E and EE spectra. Figure 12 shows the T E and EE
power spectra calculated from the 2015 data and including all
frequency combinations. The theory curve shown in the figure
is the best-fit base ⇤CDM model fitted to the temperature spec-

tra using the PlanckTT+lowP likelihood. The residuals shown
in Fig. 12 are higher than expected and provide evidence of
residual instrumental systematics in the T E and EE spectra. It
is currently believed that the dominant source of errors is beam
mismatch generating leakage from temperature to polarization
at low levels of a few µK2 in D`. We urge caution in the in-
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power spectra calculated from the 2015 data and including all
frequency combinations. The theory curve shown in the figure
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Hemispherical	power	asymmetry			
Ø  A	(maybe	too	simplified)	model	can	be	a	dipolar	modulaDon		
	

scale fluctuations, carrying the modulation, and g has only sub-horizon modes [10]. In this way, h
will assume a deterministic value in our Hubble volume, while the other field will look like stan-
dard stochastic fluctuations and will account for the standard Gaussian behavior of the anisotropies.
As aforementioned, across the Hubble volume an observer will see spontaneously broken statistical
isotropy as an effect of the slow modulation of h, while its local gradient and curvature will pick a
preferred direction, breaking the statistical isotropy [5]. Specifically, we write ⇣ as

⇣( #⌫
x ) = g( #⌫

x )[1 + h( #⌫
x )] , (3.3)

where again g( #⌫
x ) makes our considerations compatible with the observed statistical homogeneity and

isotropy on small scales and h( #⌫
x ) is the modulating field breaking isotropy. Going to Fourier space,

we will perform the ensemble averages on one Hubble volume, so that only the g field will get averaged.
In this way we find
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In Eq.3.5 we can identify three terms, based on their order in h(
#⌫
k ).

Recalling that we are looking to a modulation of the scalar perturbations, the interesting term
to explore is �

S

, thus we can plug the previous equation into
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where the transfer function is defined as
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So, we obtain three different terms contributing to the two-point correlation functions:
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where (0, 1, 2) indicates the order in the modulating field. Let us now report the final results for each
of these terms.

3.1 Zeroth order term in the modulating field

Starting from the zeroth order term (in the modulating field), it is easy to find
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where the angular power spectrum reads
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As expected, this expression is basically the same obtained in the isotropic case.
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Figure 1: Modulation of the power spectrum measured in an M -sized patch embedded within a larger

L-sized patch. The L-patch is crossed by a long-wavelength mode (2.14) whose amplitude is

enhanced above the typical amplitude by a factor E. In applications, the M -patch [located

at the aggregate coordinate x+; see Eq. (2.2)] would be centred on the last-scattering sur-

face.

Within the M -patch, the two-point function would respond to an infinitely long wave-
length perturbation as if it were a shift in the zero-mode of the fields. Therefore to linear
order in the amplitude of the perturbation,
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where ‘· · · ’ denotes terms of second-order or higher in ”„ which we have neglected. Except
in §3 we are not using the slow-roll approximation, so ”„µ runs over the perturbations in the
scalar fields and their momenta. The same is true for ˆ/ˆ„µ.

Our interest is in perturbations with large but finite wavelength. For such pertur-
bations (2.1) represents the beginning of a series describing the response of È’’Í to the
position-dependent fluctuation ”„µ(x

+
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is the aggregate position of the M -patch
surrounding x
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The two-point function will respond not only to the displacement ”„µ but also other local
operators built from its gradients such as ˆ2”„µ. Therefore
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the scalar perturbations after having gone to Fourier space and having decomposed the solution in
spherical harmonics [23, 24]:
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reminds us that we are looking to scalar sourced anisotropies and �
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k ) is a term coming from the initial conditions [30]. In Eq.2.5, the first term represents the

SW effect, i.e., an anisotropy set by the value of the gravitational potential � at ⌘in. The second one
accounts for the propagation of gravitons from ⌘

in

up to us today, thus the ISW effect. Interestingly,
this procedure is similar to the CMB one, in which case, including only the SW and ISW effects, we
have [19]
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a is the optical depth, �
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is the Compton cross section and g(⌘) = �⌧
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is the visibility function.
Let us remark again a very important detail: notice that in Eq.2.5 � and �

I

are evaluated in ⌘

in

,
which roughly corresponds to the end of inflation, instead in Eq.2.6 there is the visibility function,
which restricts the evaluation of � and ⇥0 around recombination. This is the consequence of the
fact that CMB photons are generated approximately on the LSS, whereas we consider the primordial
gravitons to be produced all together at the end of inflation. In order to relate these quantities to
some observables, we compute the angular power spectrum, i.e the two point correlation function
assuming that the statistical variables involved satisfy statistical isotropy. In this case, we can write
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3 Methods: modulation of the gravitational potentials

What happens if we want to include a modulation of the gravitational potentials, relaxing some of
the assumption of the standard case?

The scalar perturbations of the metric are typically expressed as

� = ⇣(
#⌫
k )⇥ {Transfer Function(k)}⇥ {Growth Function(⌘)} , (3.1)

where ⇣(
#⌫
k ) is the primordial value of the curvature perturbation set during inflation, the {Transfer

Function(k)} controls the evolution of perturbations through the epochs of horizon crossing and radi-
ation/matter transition and the {Growth Function(⌘)} controls the wavelength-independent growth
at late times [19].

From now on, except where differently specified, we will refer with the name “transfer function”
to the actual product of {Transfer Function(k) ⇥ Growth Function(⌘)} of Eq.3.1, in such a way that
we can write

�(⌘,
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k ) = T�(⌘, k)⇣(
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k ) ,  (⌘,

#⌫
k ) = T (⌘, k)⇣(

#⌫
k ) . (3.2)

Neglecting any anisotropic stress, we could consider for simplicity T� = T , but we keep them
distinguished to allow future generalization of this work.

In order to include a modulation of the gravitational potentials, we can assume that �( #⌫
x ) actu-

ally depends on two fields g( #⌫
x ) and h( #⌫

x ), instead of a single field ⇣; h is only related to super-horizon
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the scalar perturbations after having gone to Fourier space and having decomposed the solution in
spherical harmonics [23, 24]:
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Let us remark again a very important detail: notice that in Eq.2.5 � and �
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are evaluated in ⌘
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,
which roughly corresponds to the end of inflation, instead in Eq.2.6 there is the visibility function,
which restricts the evaluation of � and ⇥0 around recombination. This is the consequence of the
fact that CMB photons are generated approximately on the LSS, whereas we consider the primordial
gravitons to be produced all together at the end of inflation. In order to relate these quantities to
some observables, we compute the angular power spectrum, i.e the two point correlation function
assuming that the statistical variables involved satisfy statistical isotropy. In this case, we can write
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3 Methods: modulation of the gravitational potentials

What happens if we want to include a modulation of the gravitational potentials, relaxing some of
the assumption of the standard case?

The scalar perturbations of the metric are typically expressed as

� = ⇣(
#⌫
k )⇥ {Transfer Function(k)}⇥ {Growth Function(⌘)} , (3.1)

where ⇣(
#⌫
k ) is the primordial value of the curvature perturbation set during inflation, the {Transfer

Function(k)} controls the evolution of perturbations through the epochs of horizon crossing and radi-
ation/matter transition and the {Growth Function(⌘)} controls the wavelength-independent growth
at late times [19].

From now on, except where differently specified, we will refer with the name “transfer function”
to the actual product of {Transfer Function(k) ⇥ Growth Function(⌘)} of Eq.3.1, in such a way that
we can write
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k ) ,  (⌘,
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k ) = T (⌘, k)⇣(
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k ) . (3.2)

Neglecting any anisotropic stress, we could consider for simplicity T� = T , but we keep them
distinguished to allow future generalization of this work.

In order to include a modulation of the gravitational potentials, we can assume that �( #⌫
x ) actu-

ally depends on two fields g( #⌫
x ) and h( #⌫

x ), instead of a single field ⇣; h is only related to super-horizon
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scale fluctuations, carrying the modulation, and g has only sub-horizon modes [10]. In this way, h
will assume a deterministic value in our Hubble volume, while the other field will look like stan-
dard stochastic fluctuations and will account for the standard Gaussian behavior of the anisotropies.
As aforementioned, across the Hubble volume an observer will see spontaneously broken statistical
isotropy as an effect of the slow modulation of h, while its local gradient and curvature will pick a
preferred direction, breaking the statistical isotropy [5]. Specifically, we write ⇣ as

⇣( #⌫
x ) = g( #⌫

x )[1 + h( #⌫
x )] , (3.3)

where again g( #⌫
x ) makes our considerations compatible with the observed statistical homogeneity and

isotropy on small scales and h( #⌫
x ) is the modulating field breaking isotropy. Going to Fourier space,

we will perform the ensemble averages on one Hubble volume, so that only the g field will get averaged.
In this way we find
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and the 2-point correlation function of ⇣ becomes
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In Eq.3.5 we can identify three terms, based on their order in h(
#⌫
k ).

Recalling that we are looking to a modulation of the scalar perturbations, the interesting term
to explore is �
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where the transfer function is defined as
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So, we obtain three different terms contributing to the two-point correlation functions:
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where (0, 1, 2) indicates the order in the modulating field. Let us now report the final results for each
of these terms.

3.1 Zeroth order term in the modulating field

Starting from the zeroth order term (in the modulating field), it is easy to find
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where the angular power spectrum reads
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As expected, this expression is basically the same obtained in the isotropic case.
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the scalar perturbations after having gone to Fourier space and having decomposed the solution in
spherical harmonics [23, 24]:
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where
S

reminds us that we are looking to scalar sourced anisotropies and �
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k ) is a term coming from the initial conditions [30]. In Eq.2.5, the first term represents the

SW effect, i.e., an anisotropy set by the value of the gravitational potential � at ⌘in. The second one
accounts for the propagation of gravitons from ⌘

in

up to us today, thus the ISW effect. Interestingly,
this procedure is similar to the CMB one, in which case, including only the SW and ISW effects, we
have [19]
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is the visibility function.
Let us remark again a very important detail: notice that in Eq.2.5 � and �
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are evaluated in ⌘

in

,
which roughly corresponds to the end of inflation, instead in Eq.2.6 there is the visibility function,
which restricts the evaluation of � and ⇥0 around recombination. This is the consequence of the
fact that CMB photons are generated approximately on the LSS, whereas we consider the primordial
gravitons to be produced all together at the end of inflation. In order to relate these quantities to
some observables, we compute the angular power spectrum, i.e the two point correlation function
assuming that the statistical variables involved satisfy statistical isotropy. In this case, we can write
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3 Methods: modulation of the gravitational potentials

What happens if we want to include a modulation of the gravitational potentials, relaxing some of
the assumption of the standard case?

The scalar perturbations of the metric are typically expressed as

� = ⇣(
#⌫
k )⇥ {Transfer Function(k)}⇥ {Growth Function(⌘)} , (3.1)

where ⇣(
#⌫
k ) is the primordial value of the curvature perturbation set during inflation, the {Transfer

Function(k)} controls the evolution of perturbations through the epochs of horizon crossing and radi-
ation/matter transition and the {Growth Function(⌘)} controls the wavelength-independent growth
at late times [19].

From now on, except where differently specified, we will refer with the name “transfer function”
to the actual product of {Transfer Function(k) ⇥ Growth Function(⌘)} of Eq.3.1, in such a way that
we can write

�(⌘,
#⌫
k ) = T�(⌘, k)⇣(

#⌫
k ) ,  (⌘,

#⌫
k ) = T (⌘, k)⇣(

#⌫
k ) . (3.2)

Neglecting any anisotropic stress, we could consider for simplicity T� = T , but we keep them
distinguished to allow future generalization of this work.

In order to include a modulation of the gravitational potentials, we can assume that �( #⌫
x ) actu-

ally depends on two fields g( #⌫
x ) and h( #⌫

x ), instead of a single field ⇣; h is only related to super-horizon
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Ø  	E.g.,	for	scalar	induced	anisotropies:		

3.2 First order term in the modulating field

To proceed further with the first order term, we need to specify an expression for the modulating
field.

In our case, we want to reproduce an excess power in one of the two hemispheres of the CMB,
thus the most natural and simple choice is to go for a dipole modulation following [10], such as
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where
#⌫
k 0 is the wavenumber of the modulating field fluctuation, !1 is the amplitude of the modulation,

1 will remind us that we are considering a dipole modulation and Drec is the conformal distance to
the LSS.

Here we can notice some peculiarity of Eq.3.5: working out the expression for h
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k 0. As a first approximation we can think the modulation in Eq.3.11 as / Y10

(dipole), but, again, one could have considered something different. For instance, [10] considers also a
quadrupolar modulation / Y20 to study another CMB anomaly, i.e. the alignment of the quadrupole
and octopole.
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Here, we define two new transfer functions
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Also, in Eq.3.13, it appears
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This is a coupling matrix, which in our case (i.e. `1 = 1 and `2 = `

0) couples modes with ` to ` ± 1
through the triangle rule of the 3� j Wigner’s symbols [52].
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Ø  	Let’s	consider	a	dipole	modulaEon:		

scale fluctuations, carrying the modulation, and g has only sub-horizon modes [10]. In this way, h
will assume a deterministic value in our Hubble volume, while the other field will look like stan-
dard stochastic fluctuations and will account for the standard Gaussian behavior of the anisotropies.
As aforementioned, across the Hubble volume an observer will see spontaneously broken statistical
isotropy as an effect of the slow modulation of h, while its local gradient and curvature will pick a
preferred direction, breaking the statistical isotropy [5]. Specifically, we write ⇣ as

⇣( #⌫
x ) = g( #⌫

x )[1 + h( #⌫
x )] , (3.3)

where again g( #⌫
x ) makes our considerations compatible with the observed statistical homogeneity and

isotropy on small scales and h( #⌫
x ) is the modulating field breaking isotropy. Going to Fourier space,

we will perform the ensemble averages on one Hubble volume, so that only the g field will get averaged.
In this way we find
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In Eq.3.5 we can identify three terms, based on their order in h(
#⌫
k ).

Recalling that we are looking to a modulation of the scalar perturbations, the interesting term
to explore is �
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where the transfer function is defined as
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So, we obtain three different terms contributing to the two-point correlation functions:
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where (0, 1, 2) indicates the order in the modulating field. Let us now report the final results for each
of these terms.

3.1 Zeroth order term in the modulating field

Starting from the zeroth order term (in the modulating field), it is easy to find
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where the angular power spectrum reads
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As expected, this expression is basically the same obtained in the isotropic case.
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3	terms	according	to	the	order	of	the	modulaDng	field			



The	role	of	GWs	in	assessing	the	anomaly	

Ø Forecasts	for	future	observaDons:	including	noise	
				103	simulaDons	of	CGWB	constrained	on	the	Planck	map.		

Signficance	w.r.t.	to	the	joint	cosmic	variance:	
27.9%	of	the	simulaDons	below	the	red	curve		
have	a	>3σ	significance	(and	60%	of	them		
improve	w.r.t	to	Planck’s	significance).				
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Figure 10. Estimated significance for the joint estimator of the modulating amplitude using a set of
1000 CGWB realizations constrained on the Planck’s map, assuming ¸

max

= 20, nt = 0. The dashed
black curve is the significance of the JCV (red curve of figure 7). The Planck’s map significance
without GWs is represented as a solid vertical blue line, whereas the solid red curve indicates the
dispersion of the joint estimation.

Figure 11. Joint estimation of the modulating amplitude when we include the instrumental noise of
BBO, assuming ¸

max

= 6, nt = 0.52. The dotted black and red lines are respectively obtained including
or not the BBO instrumental noise. The dashed black line indicate the noiseless joint estimation from
the constrained realizations on the Planck’s SMICA map, whereas the dashed red one represent the
CGWB constrained realizations. Finally, the red solid line is the joint estimation when we include the
BBO instrumental noise.

6 Conclusions

CMB anomalies have been observed since WMAP and have been reassessed by the Planck
satellite. Specifically, the CMB power asymmetry, i.e. a di�erence in the mean power over the
two di�erent hemispheres centered around (l, b) = (221, ≠20), has an estimated significance of
1.95‡. This suggests a possible breaking of statistical isotropy on large-scales, which has precise
and testable consequences on CMB for each physical model trying to describe such an anomaly.
These e�ects reflect also on the CGWB, a well-known prediction of inflationary models, through
the same Boltzmann equations regulating both the propagation of gravitons and photons.
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Figure 12. Estimated significance for the joint estimator of the modulating amplitude using a set of
1000 CGWB realizations constrained on the Planck’s map and including the instrumental noise of
BBO, assuming ¸

max

= 6, nt = 0.52 (solid red line). The dashed gray curve is the dispersion of the
BBO JCV we show in figure 8. The Planck’s map significance without GWs is represented as a solid
vertical blue line. The black dashed line is the noiseless case.

We have computed the e�ect on the two-point correlation functions of both the CMB
temperature field and the CGWB in the case of a dipolar modulation of the gravitational
potentials, which can potentially reproduce this power asymmetry. This modulation breaks
statistical isotropy on our Hubble volume without flawing the Universe’s global isotropy and
homogeneity.

These kinds of models generate a coupling between multipoles ¸, ¸ ± 1 and ¸ ± 2 in all
observables, which can then be tested through the statistical tools developed in [10]. GWs
behaves nearly identically to CMB temperature, thus we exploited constrained realizations
of the CGWB to perform our joint analysis with the SMICA Planck temperature map and
unconstrained realizations of both the CMB and the CGWB to assess the cosmic variance
associated to a model with no modulation.

In section 3, we present the main theoretical results of this work: the analytic expression
of CMB and CGWB anisotropies in the presence of a dipolar modulation of the gravitational
potentials. In particular, we included the SW and ISW for both observables. In section 4,
we explore the dependency of the CGWB angular power spectrum on the tensor spectral
tilt n

t

(also, in appendix A we explore this dependency distinguishing between scalar and
tensor contributions to the anisotropies). This is done in a similar fashion as in [48] for other
parameters as Ne� (see also [63]). In section 5, we study the role of GWs in assessing the
significance of the CMB power asymmetry. We show that in the noiseless case, the significance
gets severely increased as shown in figure 10. Specifically, the 83.4% of the simulations has a
significance Ø 3‡ and all of them improve the value from Planck’s map of 1.95‡. Also, we study
the capabilities of both LISA and BBO to observe this kind of anomaly. In the case of a blue
tilted spectrum (r = 0.066 at 0.01 Mpc≠1 and n

t

= 0.52, saturating the upper bounds of [49]),
useful to provide enough energy density of GWs at the scales of the considered interferometers,
we show that BBO has the ability to fully reproduce the noiseless case, given that it is signal-
dominated. Indeed, when limiting to the first six multipoles, the 60.1% of the simulations
improves the significance we obtain for the Planck’s temperature map, i.e. 1.95‡, and the 27.9%
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Coding	the	CGWB	anisotropies		
Ø  	We	just	completed	a	code	(GW_CLASS)	that	performs	the	numerical	evaluaDon		
							of	the	angular	power	spectra	for	different	CGWB	sources	(including	the	monopole															)	
	
Ø  	GW_CLASS	is	an	extension	of	CLASS,	and	it	will	become	soon	publicly	available;			
						efforts	lead	by	Florian	Schulze,	Lorenzo	Valbusa	Dall’Armi,	Angelo	Ricciardone,		
						J.	Lesgourgues,	in	collaboraDon	with	S.	Matarrese,	D.	Bertacca,	N.B.	&	C.	Fidler	
	
		

Florian: I think we agreed to do the expansion in �GW instead of �. Check if we are consistent
everywhere. As we will see in the next sections, the scalar and tensor contributions are
ubiquitous for all the cosmological sources, since they are generated by the propagation
itself, while the initial contribution can be related to specific scenarios. Following [4, 5], the
three contributions to the solution of the linear Boltzmann equation are

�GW,`m,I (q) = 4⇡ (�i)l (4� ngwb)

Z
d3k

(2⇡)3
ei
~k·~x

0 �
⇣
⌘in, ~k, q

⌘
Y ⇤
`m

⇣
k̂
⌘
j` [k (⌘0 � ⌘in]) ,

�GW,`m,S = 4⇡ (�i)l (4� ngwb)

Z
d3k

(2⇡)3
ei
~k·~x

0 ⇣
⇣
~k
⌘
Y ⇤
`m

⇣
k̂
⌘
�S

` (k, ⌘0, ⌘in) ,

�GW,`m,T = 4⇡ (�i)l (4� ngwb)

Z
d3k

(2⇡)3
ei
~k·~x

0

X

�=±2

��Y
⇤
`m

⇣
k̂
⌘
⇠�

⇣
~k
⌘
�T

` (k, ⌘0, ⌘in) ,

(2.10)

where we have introduced the transfer function �X
` , with X = S, T . These represent the

time evolution of the graviton fluctuations originated from the primordial perturbations.

�S
` (k, ⌘0, ⌘in) ⌘ T (⌘in, k) j` (k (⌘0 � ⌘in)) +

Z ⌘
0

⌘
in

d⌘
@ [T� (⌘, k) + T (⌘, k)]

@⌘
j` (k (⌘ � ⌘in)) ,

�T
` (k, ⌘0, ⌘in) ⌘

s
(`+ 2)!

(`� 2)!

1

4

Z ⌘
0

⌘
in

d⌘
@� (⌘, k)

@⌘

j` (k (⌘0 � ⌘))

k2 (⌘0 � ⌘)2
. (2.11)

Furthermore, we decomposed the tensor modes �ij into two polarization modes �

�ij =
X

�=±2

eij,�(k̂)�(⌘, k) ⇠�(~k) , (2.12)

with the transfer function ⇠(⌘, k), stochastic variable ⇠�(~k) and polarization tensors eij,�(k̂).
With the solution in harmonic space, we can compute the angular correlator C`, which reflects
the amplitude of the di↵erent anisotropies at di↵erent angular scales. Under the assumption
of statistical isotropy, the angular power spectrum is defined as

⌦
�GW,`m�⇤GW,`0m0

↵
⌘ �``0 �mm0 [C`,I (q) + C`,S + C`,T ] , (2.13)

where the three contributions are given by

C`,I (q) = 4⇡ (4� ngwb)
2
Z

dk

k
[j` (k (⌘0 � ⌘in))]

2 PI (q, k) ,

C`,S = 4⇡ (4� ngwb)
2
Z

dk

k

⇥
�S

` (k, ⌘0, ⌘in)
⇤2

P⇣ (k) ,

C`,T = 4⇡ (4� ngwb)
2
Z

dk

k

⇥
�T

` (k, ⌘0, ⌘in)
⇤2 X

�=±2

P� (k) . (2.14)

Here, we have introduced the primordial power spectra of the “initial term” PI (q, k), of the
scalar curvature perturbation ⇣, P⇣ (k), and of the primordial tensor modes ⇠�(~k), P� (k). We
have assumed that the large-scale perturbations of ⇣ and of ⇠� are nearly Gaussian, according
to CMB data [6]. Scalar and tensor sources of anisotropies are uncorrelated, since two-point
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1 Introduction

The Cosmological Background of Gravitational Waves represents the Holy Grail for future
Cosmic Microwave Background (CMB) and Gravitational Waves (GWs) detectors. It is pro-
duced by di↵erent mechanisms in the early universe such as inflation, phase transition, cosmic
strings and Primordial Black Holes (PBH) (see [1? ] for reviews). Each of these sources it is
expected to be characterized by a peculiar frequency shape that can be used to discriminate
among them []. However, for next generation detectors, such as Einstein Telescope/Cosmic
Explorer or LISA, the better sensitivity will increase the number of detectable sources and
will generate a situation where several sources will be overlapping in the detector frequency
band. In such a situation, of course, the detection of the Stochastic Background of Gravi-
tational Waves will be even more challenging. For this reason it is important to introduce
new observables that can complementary characterize the SGWB signal. It has been shown
in the literature that the anisotropies (i.e. spatial dependence) of the stochastic background
are an useful tool to distinguish the source. This happens both for the astrophysical back-
ground generated by many overlapping or faint/distant sources [] and for the cosmological
one []. Similarly to CMB photons, GWs are characterized by small (spatial dependent) fluc-
tuations in the energy density which are the mirror of the production mechanism and carry
information about the propagation trough cosmological perturbations. The astrophysical
background has been well studied in the literature and a complete analytical treatment of
its anisotropies has been carried out in []. Recently it has been also publicly released a
CLASS-based code [], which allows to numerically estimate the level of anisotropies for the
AGWB, taking into account all the astrophysical dependencies and the impact of projection
e↵ects on the AGWB. On the other hand, the cosmological background anisotropies, which
share many analogies with CMB anisotropies, has been recently described in []. It has been
show how the CGWB carries relevant information about extra-relativistic particles beyond
the Standard Model of particle physics [] and how it can be used to probe pre-recombination
physics. It has also been shown that CGWB anisotropies have a large degree of correlation
with CMB anisotropies which have multiple applications: from test of systematics [], to as-
sess the significance of CMB anomalies, and for testing the interaction of the inflaton during
inflation.

In this paper we present a public code to compute the anisotropies of the CGWB starting
from the knowledge of the source which generate it. The GW_CLASS code is a branch of the
Boltzmann solver code CLASS, which has been developed to compute CMB anisotropies [].
The GW_CLASS code takes into account the early universe origin (i.e., decoupling) of the GW
signal, and its propagation through large-scale anisotropies. It incorporates the computation
of the CGWB angular power spectrum CGW

` and the spectral energy density ⌦̄GW(f) in
CLASS. CLASS_GW will be publicly available on GitHub as a new CLASS branch.

While CGWB anisotropies themselves do not carry any information about the back-
ground energy density, its knowledge is necessary since, being gravitons non-thermal, such a
quantity rescale the angular spectrum, and in particular its derivative wrt to the background
frequency. This peculiar behaviour has been used in the literature also to increase the level
of anisotropies [].

Among many cosmological sources of GWs, we have focused on inflationary models
characterized by a blue tilt (nT > 0), on first-order phase transition and on primordial black
holes. These represent the main candidates for GW interferometers like Einstein Telescope/-
Cosmic Explorer and LISA. The CLASS_GW code allows to compute the monopole signal and
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InEal	anisotropies		
Ø  	Model	dependent	term		
		
Ø  	We	have	considered	various	early	universe	generaDon	mechanisms	for	the	CGWB:		
							e.g.		
								**	inflaGon	models		
								**	first-order	phase	transiGon		
								**	scalar-induced	GWs	(e.g.	accompanying	PBH	formaGon)	

AdiabaDc	contribuDon		 Non-adiabaDc	contribuDon	(in	the	GW)			

Ø  	e.g,	in	the	case	of	adiabaDc	iniDal	anisotropies	one	can	show	that		

see		A.	Ricciardone,	L.	Valbusa	Dall’Armi,	N.	B.,	D.	Bertacca,	M.	Liguori,	S.	Matarrese,	PRL	2021	&			
F.	Schulze,	L.	Valbusa,	J.	Lesgourgues,	A.	Ricciardone,	N.B,	D.	Bertacca,	C.	Fidler,	S.	Matarrese		arXiv:2305.01602	

coupling regime between GW modes. (One can draw an analogy with the CMB for which,
as long as photons are tightly coupled, their multipoles ` � 2 are suppressed by powers of
k⌘/, where  is the photon optical depth, see e.g. [46]). Later on, during the free-streaming
regime, higher multipoles grow, but remain very small on super-Hubble scales, since the
structure of the Boltzmann hierarchy requires

�`(⌘,~k, q) ⇡ k⌘ �`�1(⌘,~k, q) . (2.29)

At the initial time ⌘in defined in section 2.2, Fourier modes of interest are particularly far
outside the Hubble scale, k⌘in ⌧ 1, and thus the multipoles ` � 2 can be safely neglected.
This argument does not hold for the dipole �1, which is a gauge-dependent quantity, and
which also depends on momentum exchanges during a possible early tight coupling regime.
It does hold for the quadrupole �2, which could be sourced by tensor perturbations on
cosmological scales, but remains very small as long as these scales are super-Hubble.

In a next step, we can decompose as usual the possible solutions of the system of
perturbation equations (including the Boltzmann hierarchy for �`) in one growing adiabatic
mode and several non-adiabatic and/or decaying modes. If we consider only the growing
adiabatic mode (and neglect any decaying mode) we are compatible with the “separate
universe assumption” [49]. As a matter of fact, in this case, each Hubble patch evolves like
a separate universe, where it is possible to foliate the space-time in spatial hypersurfaces of
uniform density in which the curvature perturbation is conserved. Then, on super-Hubble
scales, all quantities, such as e.g. the density of GWs ⇢GW(⌘, ~x), have spatial fluctuations
(whatever gauge one chooses) related to a unique time-shifting function �⌘(~x) via the time-
derivative of the background solution, like in

�⇢GW(⌘, ~x) = ˙̄⇢GW(⌘) �⌘(~x) . (2.30)

If a mechanisms like inflation generates primordial curvature perturbations R(~k) in the
universe, the presence of the adiabatic mode is unavoidable. Non-adiabatic modes may appear
in cases where the generation of GWs leads additionally to intrinsic primordial fluctuations
in � that are not captured by the “separate universe assumption”. Such a GW generation
mechanism should involve a local time-shifting function (that is, a local random process) on
top of the time-shifting function that describes primordial curvature perturbations. Such a
mechanism is di�cult to realize on super-Hubble scales. However, we will see later an explicit
example based on GWs generated by the formation of primordial black holes triggered by
non-Gaussian perturbations [50].

We already argued that multipoles ` � 2 should be vanishingly small on super-Hubble
scales obeying k⌘in ⌧ 1. In the case of the adiabatic mode, it is also possible to relate the
monopole �0 to metric perturbations (in the Newtonian gauge, to  , see appendix B) and
to prove that �1 ⌧ �0 (see Appendix C for a proof in the same gauge). For non-adiabatic
modes, it is not obvious that the dipole can be neglected, but for simplicity, we assume that
this is true in this work and in our CLASS implementation. Thus, we always assume that �
reduces to its monopole component �0, and we can expand the initial perturbation � of the
graviton phase-space distribution into an adiabatic and non-adiabatic contribution,

�(⌘in,~k, q, n̂) = �0(⌘in,~k, q) = TAD
� (⌘in, k, q)R(~k) + �NAD

0 (⌘in,~k, q) . (2.31)

In the Newtonian gauge and for the adiabatic contribution, we can use the relation

�0(⌘in,~k, q) = � 2

4� ngwb(q)
 (⌘in,~k) (2.32)
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It does hold for the quadrupole �2, which could be sourced by tensor perturbations on
cosmological scales, but remains very small as long as these scales are super-Hubble.
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mode and several non-adiabatic and/or decaying modes. If we consider only the growing
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derivative of the background solution, like in
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If a mechanisms like inflation generates primordial curvature perturbations R(~k) in the
universe, the presence of the adiabatic mode is unavoidable. Non-adiabatic modes may appear
in cases where the generation of GWs leads additionally to intrinsic primordial fluctuations
in � that are not captured by the “separate universe assumption”. Such a GW generation
mechanism should involve a local time-shifting function (that is, a local random process) on
top of the time-shifting function that describes primordial curvature perturbations. Such a
mechanism is di�cult to realize on super-Hubble scales. However, we will see later an explicit
example based on GWs generated by the formation of primordial black holes triggered by
non-Gaussian perturbations [50].

We already argued that multipoles ` � 2 should be vanishingly small on super-Hubble
scales obeying k⌘in ⌧ 1. In the case of the adiabatic mode, it is also possible to relate the
monopole �0 to metric perturbations (in the Newtonian gauge, to  , see appendix B) and
to prove that �1 ⌧ �0 (see Appendix C for a proof in the same gauge). For non-adiabatic
modes, it is not obvious that the dipole can be neglected, but for simplicity, we assume that
this is true in this work and in our CLASS implementation. Thus, we always assume that �
reduces to its monopole component �0, and we can expand the initial perturbation � of the
graviton phase-space distribution into an adiabatic and non-adiabatic contribution,

�(⌘in,~k, q, n̂) = �0(⌘in,~k, q) = TAD
� (⌘in, k, q)R(~k) + �NAD

0 (⌘in,~k, q) . (2.31)

In the Newtonian gauge and for the adiabatic contribution, we can use the relation

�0(⌘in,~k, q) = � 2

4� ngwb(q)
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Different	sources	and	CGWB	anisotropies	

Ø  	InflaGon:		

of GWs. The idea is to estimate the angular anisotropies in models that have a monopole
amplitude detectable by the future ground-based interferometer network ET+CE. Among
several cosmological sources of GWs, inflationary models with a blue tilt, first-order phase
transition and second-order induced GW are very promising, since they allow testing di↵erent
aspects of the early universe. The detection of inflationary GWs with interferometers would
allow testing di↵erent scales (of the inflationary) potential, besides CMB scales; GWs from
first-order phase transition would be a test of beyond Standard Model physics, at energies not
accessible with colliders. Finally, second-order induced GWs, in connection with Primordial
Black Holes, o↵er the possibility to explain a fraction or (for some mass range) the totality
of the Dark Matter [11–13].

In the following, let us now introduce the most important sources implemented in
CLASS_GW.

3.1 Power law CGWB

Many GW sources are described by a power-law behavior in ⌦̄GW (especially if we focus on
a limited frequency band). AR: Describe and cite some models that predict a power law
spectrum.
So we start by introducing a simple power law parameterization of the CGWB implemented
in CLASS_GW. The GW energy density ⌦̄GW is parameterized as

⌦̄PL
GW (f) = ⌦̄⇤

✓
f

fpivot

◆n
GWB

, (3.2)

where nGWB is the spectral tilt, and the value ⌦̄⇤ at the pivot frequency f⇤.
In this case the density contrast of the CGWB becomes

�PLGW (⌘, ~x, f, n̂) = (4� nGWB)� (⌘, ~x, f, n̂) . (3.3)

The initial contribution to the anisotropies can be as a power law too, Is there a specific
reason for using gw?

PI(k) = Agwi exp

"
ngwi log

k

kpivot
+

1

2
↵gwi

✓
log

k

kpivot

◆2
#
, (3.4)

where Agwi is the amplitude, ngwi the spectral index and ↵gwi the running. Notice, that we
orientate on the notation for the scalar and tensor power spectrum in CLASS. In this case,
PI(k) describes an isocurvature mode, because it is completely independent o↵ both scalar
and tensor modes.

3.2 Inflationary GWB

The cosmological background produced by quantum fluctuations during inflation is related
to the primordial tensor spectrum PT by

⌦̄GW(q) =
1

12H2
0a

2
0

⌘2eq
2⌘40

PT (q) , (3.5)

where the evolution of tensor modes that re-entered the horizon during the radiation-dominated
era has been taken into account in the ratio between the conformal time at the equality be-
tween matter and radiation ⌘eq and the conformal time today ⌘0 [14]. According to [15], this
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with		

factor keeps into account for the evolution during the radiation and the matter epoch, while
the impact of the transfer function of tensor modes when dark energy dominates the energy
budget of the Universe is negligible at high frequencies and it becomes important only below
10�18Hz. Note however when free-streaming particles like neutrinos are considered, there
could be an extra damping of tensor modes due to their anisotropic stress in the Einstein
equation [16–18] which provides an additional factor (in the case of neutrinos the factor is
0.82) in our expression for ⌦̄GW.

The tensor spectrum is written in terms of a tensor-to-scalar ratio r and the tensor tilt
nT ,

PT (q) = rAs

✓
q

q⇤

◆nT

, (3.6)

where As is the amplitude of the scalar perturbations and the pivot scale is q⇤ = 0.01Mpc.
The most recent bounds of these parameters have been evaluated by combining several CMB
and GW experiments [19], finding r < 0.028 and �1.37 < nT < 0.42 at 95% CL.

Maybe add a comment on the behaviour of T during dark energy epoch... precisely for
z  0.7

Florian: Details of the calculation are given in App. C

3.3 Primordial Black Holes

For a Dirac delta power spectrum of the scalar curvature perturbation on small scales,
P⇣s (k) = A⇤ k⇤ � (k � k⇤), the expression for the SGWB energy density is 1

⌦̄GW(⌘, f) =
1

a2H2⌘2
A2⇤

15552

f2

f2⇤


4f2⇤
f2

� 1

�2
✓ (2f⇤ � f) I2

✓
f⇤
f
,
f⇤
f

◆
(3.7)

where ✓ is the Heaviside step function, and

I2

✓
f⇤
f
,
f⇤
f

◆
⌘ I2

c

✓
f⇤
f
,
f⇤
f

◆
+ I2

s

✓
f⇤
f
,
f⇤
f

◆

=
729

16

✓
f

f⇤

◆12✓
3� 2f2⇤
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The peak GW frequency f⇤ is related to the peak of small scale scalar modes k⇤ By

f⇤ =
c

2⇡a0
q⇤ . (3.9)

We note that the result (3.7) for the one-point expectation value of the GW energy density
is independent of position.
In order to generate anisotropies in this kind of model we need to include the non-Gaussianity
of the primordial scalar perturbations

⇣(~k) = ⇣g(~k) +
3

5
fNL

Z
d3p

(2⇡)3
⇣g (~p) ⇣g(~k � ~p), (3.10)

1This expression is valid during radiation domination.
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Ø  	Phase-transiGons:	broken	power	law			

Broken Power-law

All the three contribution are well described by a broken power law spectrum, or a double
broken power law, where the two tilts and the pivot frequency are typically chosen at the
maximum of the sensitivity of the detector.
In a recent paper [20], for the bubble collision contribution they have parameterized the BPL
as (see Eq. 12)

⌦̄BPL
GW (f) = ⌦̄⇤

(a+ b)c
b
⇣

f
f⇤

⌘�a/c
+ a

⇣
f
f⇤

⌘b/c�c , (3.22)

The fitted values of the powers a, b and c, the peak position !p/� and the peak amplitude
Sp depend on the details of the scalar potential, and are given in Table 1 for a real scalar
field as well as for breaking of global and gauged U(1) symmetries.

100Sp !p/� a b c
gauge U(1)/real scalar 3.61± 0.1 0.82± 0.01 2.34± 0.03 2.41± 0.02 4.20± 0.2
global U(1) 4.23± 0.1 0.68± 0.01 1.00± 0.02 2.17± 0.05 2.02± 0.1

Table 1: Fitted values for the template (3.22) for GWs sourced by bubble collisions. From
Ref. [20].

On the other hand, in the LIGO paper they have used the following parameterization [21]

⌦̄DBPL
GW (f) = ⌦̄⇤

✓
f

f⇤

◆n
1

"
1 +

✓
f

f⇤

◆�
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2

�n
1

�

(3.23)

choosing n1 = 3, from causality, and n2 which takes the values �4 and �1, for sound
waves and bubble collisions, respectively. In CLASS_GW we use this later representation to
parameterize a CGWB from PT.
Typically, the GW spectrum from sound waves is better described by a double broken power-
law which goes beyond this parameterization [? ].

4 Combining SGWB with CMB

Since CMB photon and graviton share their geodesics, a large correlation between these two
signals is expected. The cross-correlation between the CMB and the CGWB has been studied
in detail in [22], where the solution of the Boltzmann equation for graviton, Eq. (2.10), has
been combined with the solution for the CMB distribution function,

f�(⌘, ~x, ~q) =f̄�(q)� q
df̄�(q)

dq
✓(⌘, ~x, ~q) . (4.1)
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(n1=3,	and	n2=-4	or	-1	for	sound	waves	and	bubble	collisions)	

Ø  	Scalar-induced	GWs	from	PBH	formaGon:				

factor keeps into account for the evolution during the radiation and the matter epoch, while
the impact of the transfer function of tensor modes when dark energy dominates the energy
budget of the Universe is negligible at high frequencies and it becomes important only below
10�18Hz. Note however when free-streaming particles like neutrinos are considered, there
could be an extra damping of tensor modes due to their anisotropic stress in the Einstein
equation [16–18] which provides an additional factor (in the case of neutrinos the factor is
0.82) in our expression for ⌦̄GW.

The tensor spectrum is written in terms of a tensor-to-scalar ratio r and the tensor tilt
nT ,

PT (q) = rAs

✓
q

q⇤

◆nT

, (3.6)

where As is the amplitude of the scalar perturbations and the pivot scale is q⇤ = 0.01Mpc.
The most recent bounds of these parameters have been evaluated by combining several CMB
and GW experiments [19], finding r < 0.028 and �1.37 < nT < 0.42 at 95% CL.

Maybe add a comment on the behaviour of T during dark energy epoch... precisely for
z  0.7

Florian: Details of the calculation are given in App. C

3.3 Primordial Black Holes

For a Dirac delta power spectrum of the scalar curvature perturbation on small scales,
P⇣s (k) = A⇤ k⇤ � (k � k⇤), the expression for the SGWB energy density is 1
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1

a2H2⌘2
A2⇤

15552

f2

f2⇤


4f2⇤
f2

� 1

�2
✓ (2f⇤ � f) I2

✓
f⇤
f
,
f⇤
f

◆
(3.7)

where ✓ is the Heaviside step function, and

I2

✓
f⇤
f
,
f⇤
f

◆
⌘ I2

c

✓
f⇤
f
,
f⇤
f

◆
+ I2

s

✓
f⇤
f
,
f⇤
f

◆

=
729

16

✓
f

f⇤

◆12✓
3� 2f2⇤

f2

◆4
8
<

:

"
4

✓
2� 3

f2

f2⇤

◆�1

� log

✓����1�
4f2⇤
3f2

����

◆#2

+ ⇡2✓

✓
2f⇤p
3f

� 1

◆9=

; .

(3.8)

The peak GW frequency f⇤ is related to the peak of small scale scalar modes k⇤ By

f⇤ =
c

2⇡a0
q⇤ . (3.9)

We note that the result (3.7) for the one-point expectation value of the GW energy density
is independent of position.
In order to generate anisotropies in this kind of model we need to include the non-Gaussianity
of the primordial scalar perturbations

⇣(~k) = ⇣g(~k) +
3

5
fNL

Z
d3p

(2⇡)3
⇣g (~p) ⇣g(~k � ~p), (3.10)

1This expression is valid during radiation domination.
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10�18Hz. Note however when free-streaming particles like neutrinos are considered, there
could be an extra damping of tensor modes due to their anisotropic stress in the Einstein
equation [16–18] which provides an additional factor (in the case of neutrinos the factor is
0.82) in our expression for ⌦̄GW.

The tensor spectrum is written in terms of a tensor-to-scalar ratio r and the tensor tilt
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where As is the amplitude of the scalar perturbations and the pivot scale is q⇤ = 0.01Mpc.
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and GW experiments [19], finding r < 0.028 and �1.37 < nT < 0.42 at 95% CL.

Maybe add a comment on the behaviour of T during dark energy epoch... precisely for
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The peak GW frequency f⇤ is related to the peak of small scale scalar modes k⇤ By

f⇤ =
c

2⇡a0
q⇤ . (3.9)

We note that the result (3.7) for the one-point expectation value of the GW energy density
is independent of position.
In order to generate anisotropies in this kind of model we need to include the non-Gaussianity
of the primordial scalar perturbations

⇣(~k) = ⇣g(~k) +
3
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Z
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(2⇡)3
⇣g (~p) ⇣g(~k � ~p), (3.10)

1This expression is valid during radiation domination.

– 11 –

Figure 3: Left: Example of frequency spectra for the monopole of the CGWB generated
either by: cosmological inflation (with a blue tilt nt = 0.4), PBHs (with a peak adjusted to
the frequency f⇤ = 100Hz), or a phase transitions (with a peak adjusted to f⇤ = 10 Hz).
Right: angular power spectra for these three sources evaluated at fp = 10Hz, assuming
adiabatic initial conditions in the inflation case, and non-adiabatic modes in the other two
cases. See the text for more details on assumptions and parameters.

In the right panel of the same figure, we show the GW anisotropy angular power-spectra
associated to these mechanisms, evaluated at a pivot frequency fp = 10Hz – that is, close to
the maximum sensitivity of the network CE+ET. We assume additionally fdec(⌘ini) = 0 and
the following initial conditions:

• For cosmological inflation, we take adiabatic initial conditions and ngwb = nt;

• For PBHs, on top of adiabatic initial conditions, we consider the non-adiabatic contri-
bution generated by a (local) non-Gaussianity parameter fNL = 1, and we infer ngwb

at the pivot scale from the background spectrum shown on the left panel (ngwb ' 1.2);

• For the phase transition, the simplest scenarii are expected to lead to adiabatic ini-
tial conditions, but non-adiabatic modes could arise in more complicated cases (see
e.g. [92]). For illustrative purposes, we arbitrarily assume here that, on top of adia-
batic initial conditions, the CGWB anisotropies include a non-adiabatic mode with the
parametrization of Eq. (3.4), taking Agwi = 1⇥ 10�10, ngwi = 0.0, and computing ngwb

from the background spectrum shown on the left panel (ngwb ' �0.5).

It is interesting to notice that the three signals considered here produce average monopole
terms of the same order of magnitude, but very di↵erent anisotropy spectra. The features
in the angular power spectra of Figure 3 depend on the chosen initial condition and on the
tensor tilt of the monopole signal (which is responsible for an enhancement/suppression of
the angular power spectrum).

For instance, in our examples, the angular power spectrum of the CGWB for the PT is
one order of magnitude larger than that from inflation, because:

• At the chosen frequency f = 10 Hz, the AD+SW+ISW contribution to the CCGWB⇥CGWB
`

spectrum is enhanced by a factor 2.5, due to an increase in the factor (4� ngwb)2. To
understand this in more details, one can note that, according to Eqs. (2.34, 2.35), the
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Black Holes, which may explain a fraction or (for some mass range) the totality of the Dark
Matter [54, 55].

Below we briefly describe the GW sourcing mechanisms implemented in GW CLASS. In
principle, it is straightforward to implement in GW CLASS other exotic mechanism that could
generate a CGWB, such as cosmic strings [3].

3.1 CGWB from inflation with adiabatic initial conditions

For GWs produced by quantum fluctuations during inflation, the current value of the aver-
age GW energy density ⌦̄GW is related to the primordial tensor spectrum PT through (see
Appendix D for details)

⌦̄GW(q) =
1

12H2
0a

2
0

⌘2eq
2⌘40

PT (q) . (3.2)

Here we expressed the average GW energy density as function of comoving momentum q
instead of frequency f = c

2⇡q . This relation takes into account the evolution of the tensor
modes that re-entered the Hubble scale during radiation domination [56]. It depends on
the value of conformal time at equality between matter and radiation, ⌘eq, and today, ⌘0.
Note that Eq. (3.2) takes into account the evolution of GWs during radiation and matter
domination, but not during dark energy domination. However, as explained [57], the impact
of the latter stage is negligible at high frequencies (as long as f � 10�18Hz). Besides,
Eq. (3.2) neglects the damping of tensor modes propagating in a universe containing free-
streaming particles with non-zero anisotropic stress [58–60]. This additional e↵ect should
lead to a suppression factor (close to 0.82 in the minimal cosmological model, when the
damping is only due to active neutrinos).

The primordial tensor spectrum PT (k) = 4Ph
�

(k) is a familiar object in CMB physics,
usually expressed as a function of a Fourier wavenumber k, since it is related to the Fourier
transform of the tensor mode of metric fluctuations, hij(⌘in, ~x). The quantity PT in Eq. (3.2)
is the same quantity, evaluated however at a much smaller wavenumber, matching the wave-
length of GWs probed by GW detectors. Like in the rest of this paper, we use k to denote
comoving wavenumbers associated to inhomogeneities on cosmological scales, and q to denote
comoving wavenumbers describing GW wavelengths, that is, comoving momenta of gravitons.
However, the fluctuations of tensor perturbations on cosmological scales, whose variance is
encoded on PT (k), comes from the existence of very large wavelengths in the graviton phase-
space distribution �. Thus, in this case, k and q have the same physical interpretation.
This means that PT (k) in Eq. (2.24) and PT (q) in Eq. (3.2) represent fundamentally the
same function, just evaluated on di↵erent scales (cosmological scales in the PT (k) case, and
wavelengths to which GW detectors are sensitive in the PT (q) case).

The primordial tensor spectrum is commonly parametrized in terms of a tensor-to-scalar
ratio r and tensor tilt nt,

PT (k) = rAs

✓

k

k⇤

◆n
t

, (3.3)

where As is the amplitude of scalar perturbations at the CMB pivot scale k⇤ = 0.01Mpc.
The most recent bounds on these parameters have been evaluated by combining several CMB
and GW experiments [61], finding r < 0.028 and �1.37 < nt < 0.42 at 95% CL.

Since PT (k) and PT (q) are fundamentally the same function, we could assume the
same value for the PT (k) spectral index nt and for the PT (q) spectral index ngwb. We note
however that the power-law ansatz of Eq. (3.3) is not necessarily valid across the huge interval
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Forecasts	for	cosmological	parameters	

Ø  	Use	SGWB	anisotropies	to	measure	cosmological	parametes,	as	for	CMB	anisotropies	

Ø  	Consider	the	minimal	scenario:	ΛCDM	model	+	GWs	from	inflaDon	with	r=0.035	and		
							ngwb=0.4		

Ø  	The	CGWB	anisotropies	depend	on	the	following	cosmo	parameters:		
							**	h		
							**	ωcdm	

											**	As	
							**		ns	
							**	fdec(ηi)	

Figure 8: Fiducial model for the forecast assuming a CGWB produced by inflation with a
blue tilt. We use a power-law CGWB with ⌦̄GW = 9.5⇥10�11 and ngwb = 0.4, corresponding
to a CGWB generated by inflation with a blue tiled tensor spectrum: r = 0.025 and nt =
0.4. The fiducial values of all other parameters can be found in Table 1. Left: Fiducial
model (solid lines) and instrumental sensitivity (dot-dashed lines) for the CGWB background
energy density (or monopole) ⌦̄GW(f). The vertical line shows the pivot frequency fp =
10Hz. Right: Power spectrum for the anisotropies in the CGWB, CCGWB⇥CGWB

` (solid
lines) and detector noise NGW

` (dot-dashed lines). Since the detector noise scales like ⌦̄�2
GW,

we multiplied all spectra by ⌦̄2
GW.

the sensitivity of the joint temperature+GW forecast, �(⌧reio) = 0.0014, is about three
times better than with Planck temperature+polarisation data, and twice better than
in forecasts with future temperature+polarisation data from CMB-Stage-IV + Lite-
BIRD [105]. The cosmic-variance-limited temperature+GW error is even competing
with the sensitivity of ⌧reio measurements from future 21cm surveys like HERA or SKA
[106]. This shows that an ideal CGWB detector would bring decisive information for
the measurement of {As, ⌧reio} – and also potentially of the neutrino mass through the
removal of parameter degeneracies [105, 107].

• The Hubble rate and matter density parameters a↵ect the shape of the CMB and
GW spectra (tilt of the plateau due to the ISW e↵ect, scale and shape of the acoustic
oscillations in the CMB case, scale and shape of the raising of the GW spectrum for
modes crossing the Hubble rate during radiation domination). Our forecast shows that
the errors on {h,!m} shrink roughly by a factor

p
2 in the combined fit, which suggests

that the map of CMB temperature anisotropy and GW anisotropies contain roughly
the same amount of information on h and !m.

• The overall tilt of all spectra depends on ns. Thus, one may expect that the error on
the tilt also shrinks by

p
2 in the combined case. The gain is actually a bit larger. This

is due to the fact that the GW spectrum is not a↵ected by acoustic oscillations and
Silk damping, and thus, is a more direct probe of the primordial spectrum shape over
a larger multipole range.

• The baryon density parameter !b only a↵ects the CMB spectrum. Still, its forecasted
error decreases a tiny bit in the joint forecast. This comes for degeneracies between !b

and other parameters that are better determined by the GW data.
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Forecasts	for	cosmological	parameters	

Parameter Fiducial [Prior] Planck + Planck + Planck
CE+ET+ET1000 CV(`max = 2500) alone

h 0.6736 [0.5 - 0.8] 0.6741± 0.0096 0.6756± 0.0068 0.674± 0.010
!m 0.143 [0.1 - 0.2] 0.1429± 0.0020 0.1426± 0.0014 0.1429± 0.0021
ln 1010As 3.044 [1.7 - 5] 3.044± 0.015 3.0413± 0.0053 3.044± 0.016
ns 0.965 [0.9 - 1] 0.9654± 0.0051 0.9662± 0.0028 0.9653+0.0051

�0.0057

!b 0.02237 [0.02 - 0.025] 0.02238± 0.00020 0.02240± 0.00016 0.02238± 0.00022
⌧reio 0.0544 [0.02 - 0.08] 0.0547± 0.0071 0.0536± 0.0012 0.0545± 0.0073
fdec(⌘in) 0 [0 - 1] < 0.597 < 0.159 -

Table 1: Forecasted errors on parameters extracted from temperature anisotropy data from
Planck, alone or in combination with mock GW anisotropy data from two futuristic GW
detectors: CE+ET+ET1000, and an ideal cosmic-variance-limited instrument CV(`max =
2500). We assume a CGWB produced by inflation with a blue tilt, like in Figure 8.

Figure 9: For the same forecast as in Table 1, one-dimensional posteriors and two-
dimensional 68% / 95% confidence limits on the reconstructed cosmological parameters.
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Forecasts	for	iniEal	anisotropies	

With this the CGWB becomes

⌦GW(⌘, ~x, q) = ⌦̄GW (⌘, q)


1 +

24

5
fNL

Z
d3k

(2⇡)3
ei
~k·~x ⇣L

⇣
~k
⌘�

, (3.11)

where the term ⌦̄GW (⌘, q) is given by (3.7).

Initial condition for PBH

In this case the initial condition term is specified by

�I(⌘, ~x, q) =
3

5
f̃NL (q)

Z
d3k

(2⇡)3
ei
~k·~x ⇣L

⇣
~k
⌘

(3.12)

where

f̃NL (q) ⌘
8 fNL

4� @ ln ⌦̄
GW

(⌘, q)
@ ln q

. (3.13)

This term carries all the information about the amount of anisotropy due to the initial
condition. In Fourier space the initial condition is

�I(⌘, ~q,~k) =
3

5
f̃NL(q)⇣L(~k) . (3.14)

3.4 Phase Transition

In general, three main mechanisms contribute to the PT CGWB spectrum:

• Bubble walls collisions creating distortions in the plasma. Their action is usually
accounted with a method called envelope approximation, consisting in approximating
the bubble motion with an infinitesimally thin spherical layer. This is the backbone of
the scalar field � contribution to the SGWB signal.

• Sound wave generated in the plasma after the bubble collision.

• Turbulence phenomena after the bubble collision described by Magneto-Hydro-
Dynamics (MHD).

As a consequence

h2⌦̄GW(f) = h2⌦̄�(f) + h2⌦̄sw(f) + h2⌦̄turb(f) . (3.15)

Bubble collision

The GW spectrum resulting from bubble collisions is a broken power-law2 that depends on
the strength of the phase transition ↵, the inverse duration of the phase transition � and
the phase transition temperature T⇤. The peak amplitude and position are related to the
parameters ↵, � and T⇤ via

h2⌦̄�(f) = 1.67⇥ 10�5�vw

✓
H⇤
�

◆2✓ �↵

1 + ↵

◆2✓ 100

g(T⇤)

◆ 1

3

Senv(f) , (3.16)

2At scales larger than the horizon scale at the time of the transition the spectrum scales as f3 because the
source is diluted by the Hubble expansion.
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In first approximation, this results in a shift of the second peak, visible in Fig. 10. The second
peak appears at ⇠ �2, and not at �1. Considering also the ` dependence, the possibility
to break this ambiguity arises. Since the fNL is shifted / �S

` , observing many ` allows to
determine the full value of fNL. Since the chosen experiment of CE+ET+ET100 is only able
to observe the first multipoles until ` ⇠ 4 (see right plot of Fig. 9), it is not able to break
this ambiguity.

Observing more multipoles would also help in measuring fdec(⌘i). Here the reason is,
that fNL and fdec(⌘i) are influencing not only the absolute magnitude of anisotropies, but
also the shape w.r.t. `.

Concluding, a forecast with more detected multipoles would be an interesting case study,
but goes beyond the scope of this work.
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In first approximation, this results in a shift of the second peak, visible in Fig. 10. The second
peak appears at ⇠ �2, and not at �1. Considering also the ` dependence, the possibility
to break this ambiguity arises. Since the fNL is shifted / �S

` , observing many ` allows to
determine the full value of fNL. Since the chosen experiment of CE+ET+ET100 is only able
to observe the first multipoles until ` ⇠ 4 (see right plot of Fig. 9), it is not able to break
this ambiguity.

Observing more multipoles would also help in measuring fdec(⌘i). Here the reason is,
that fNL and fdec(⌘i) are influencing not only the absolute magnitude of anisotropies, but
also the shape w.r.t. `.

Concluding, a forecast with more detected multipoles would be an interesting case study,
but goes beyond the scope of this work.
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IniDal	anisotropies	 Anisotropies	due	to	propagaDon	

Ø  	Scalar-induced	GWs	accompanying	PBH	formaGon		

Figure 10: Fiducial model for the forecast assuming a CGWB produced by PBHs, with a
fiducial local non-Gaussianity parameter fNL = 1. Left: Fiducial model (solid line) and detec-
tor sensitivity (dot-dashed lines) for the CGWB background energy density (i.e., monopole)
⌦̄GW(f). The vertical line shows the pivot frequency fp = 10Hz. Right: Angular power
spectrum for the CGWB anisotropies CCGWB⇥CGWB

` and detector noise NGW
` . Since the

detector noise scales like ⌦̄�2
GW, we multiplied all spectra by ⌦̄GW.

Parameter Fiducial [Prior] CE+ET+ET100
fNL 1 [-11.1 - 9.3] 1.17+0.23

�0.41, �1.74+0.42
�0.23

fdec(⌘in) 0 [0 - 1] ���

Table 2: Forecasted errors on the cosmological parameters a↵ecting only the CGWB
anisotropies, assumed to be measured by the GW detector combination CE+ET+ET100.
We assume a CGWB produced by PBHs like in Figure 10.

Figure 11: For the same forecast as in Table 2, one-dimensional posteriors and two-
dimensional 68% / 95% confidence limits on the reconstructed cosmological parameters.
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where

f̃NL (q) ⌘
8 fNL
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GW
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8 fNL

4� ngwb(q)
. (3.11)

In Fourier space, this initial condition reads

�NAD
0 (⌘in,~k, q) =

3

5
f̃NL(q)Rg(~k) , (3.12)

where Rg(~k) represents the Gaussian curvature perturbation on large (cosmological) scales,
whose power spectrum is given by PR(k) in the notations of previous sections.

Interestingly, since this non-adiabatic contribution depends on the curvature perturba-
tion, it is fully correlated with the adiabatic mode. Then the adiabatic, non-adiabatic and
cross-correlation spectra are related to each other through

PNAD
� (k, q) =

9

25
f̃2
NL(q)PR(k) , (3.13)

P⇥(k, q) =
6

5
f̃NL(q)PR(k) . (3.14)

The non-adiabatic initial condition induced by fNL may amplify GW anisotropies in a very
significant way, since for the PBH scenario the ratio of non-adiabatic to standard AD+SW
contributions to the anisotropy spectrum scales like

CNAD
`

CAD+SW
`

⇠

0

@

3
5

8 f
NL

4�n
gwb

(q)

2
3

h

� 2
4�n

gwb

(q) + 1
i

1

A

2

=

⇢

36fNL

5[2� ngwb(q)]

�2

, (3.15)

where we used T = �2
3 during radiation domination with fdec = 0 and Eq. (2.35). In the

case in which fNL = 1 and ngwb(q) = 0, we find

CNAD
`

CAD+SW
`

⇡ 13 . (3.16)

This qualitative relation shows that even with fNL of order one, the non-adiabatic contribu-
tion dominates the spectrum CCGWB⇥CGWB

` .

3.4 Phase Transition

When a PT takes place, the Universe goes from a metastable to a stable state, which represent
the configurations of minimal potential energy at high and low temperatures respectively. If
latent heat is involved, the PT is of the first order and the phases of the Universe are
converted from the false to the true vacuum in a discontinuous way, through the nucleation
of bubbles [79]. Such first order PTs can happen in many extensions of the Standard Model
(e.g., with additional scalar singlet or doublet, spontaneously broken conformal symmetry,
or phase transitions in a hidden sector). In [80], it has been realized for the first time that a
large CGWB could be produced during a first-order PT and this is potentially detectable by
present and future GW interferometers [9, 40]. In general, three main mechanisms contribute
to the generation of GWs [3], by acting as a source in the transverse-traceless part of the
Einstein equations:
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Figure 10: Fiducial model for the forecast assuming a CGWB produced by PBHs, with a
fiducial local non-Gaussianity parameter fNL = 1. Left: Fiducial model (solid line) and detec-
tor sensitivity (dot-dashed lines) for the CGWB background energy density (i.e., monopole)
⌦̄GW(f). The vertical line shows the pivot frequency fp = 10Hz. Right: Angular power
spectrum for the CGWB anisotropies CCGWB⇥CGWB

` and detector noise NGW
` . Since the

detector noise scales like ⌦̄�2
GW, we multiplied all spectra by ⌦̄GW.

Parameter Fiducial [Prior] CE+ET+ET100
fNL 1 [-11.1 - 9.3] 1.17+0.23

�0.41, �1.74+0.42
�0.23

fdec(⌘in) 0 [0 - 1] ���

Table 2: Forecasted errors on the cosmological parameters a↵ecting only the CGWB
anisotropies, assumed to be measured by the GW detector combination CE+ET+ET100.
We assume a CGWB produced by PBHs like in Figure 10.

Figure 11: For the same forecast as in Table 2, one-dimensional posteriors and two-
dimensional 68% / 95% confidence limits on the reconstructed cosmological parameters.
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Ø  	Scalar-induced	GWs	accompanying	PBH	formaXon		
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Figure 12: Fiducial model for the forecast assuming a CGWB produced by sound waves
during a PT. Left: fiducial model (solid lines) and experimental sensitivity (dot-dashed line)
for the monopole ⌦̄GW(f). The vertical line shows the pivot frequency fp = 10Hz. Right:
Power spectrum for the CGWB anisotropies CCGWB⇥CGWB

` and detector noise NGW
` , both

multiplied by ⌦̄�2
GW. For the anisotropy spectrum, we assume an uncorrelated non-adiabatic

contribution with amplitude Agwi. The two curves correspond to the two fiducial models
assumed here, featuring two di↵erent values of Agwi.

Parameter Fiducial [Prior] CE+ET+ET100
ln 1010Agwi 0 [-10 - 10] < 0.927
ngwi 0 [-2 - 2] > 0.0344
fdec(⌘in) 0 [0 - 1] ���
ln 1010Agwi 6.9 [-10 - 30] 6.6± 3.1
ngwi 0 [-2 - 2] �0.06± 0.65
fdec(⌘in) 0 [0 - 1] ���

Table 3: Forecasted errors on the cosmological parameters a↵ecting only the CGWB
anisotropy spectrum for the detector combination CE+ET+ET100. Like in Figure 12, we
assume a CGWB produced by sound waves during a PT, with an uncorrelated non-adiabatic
contribution of amplitude Agwi = 1.0⇥ 10�10 (upper half) or 1.0⇥ 10�7 (lower half).

Figure 13: For the same forecasts as in Table 3 (PT case with two fiducial values of Agwi =
1.0⇥ 10�10 (left) or 1.0⇥ 10�7 (right)), one-dimensional posteriors and two-dimensional 68%
/ 95% confidence limits on the reconstructed cosmological parameters.
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regime, higher multipoles grow, but remain very small on super-Hubble scales, since the
structure of the Boltzmann hierarchy requires

�`(⌘,~k, q) ⇡ k⌘ �`�1(⌘,~k, q) . (2.29)

At the initial time ⌘in defined in section 2.2, Fourier modes of interest are particularly far
outside the Hubble scale, k⌘in ⌧ 1, and thus the multipoles ` � 2 can be safely neglected.
This argument does not hold for the dipole �1, which is a gauge-dependent quantity, and
which also depends on momentum exchanges during a possible early tight coupling regime.
It does hold for the quadrupole �2, which could be sourced by tensor perturbations on
cosmological scales, but remains very small as long as these scales are super-Hubble.

In a next step, we can decompose as usual the possible solutions of the system of
perturbation equations (including the Boltzmann hierarchy for �`) in one growing adiabatic
mode and several non-adiabatic and/or decaying modes. If we consider only the growing
adiabatic mode (and neglect any decaying mode) we are compatible with the “separate
universe assumption” [49]. As a matter of fact, in this case, each Hubble patch evolves like
a separate universe, where it is possible to foliate the space-time in spatial hypersurfaces of
uniform density in which the curvature perturbation is conserved. Then, on super-Hubble
scales, all quantities, such as e.g. the density of GWs ⇢GW(⌘, ~x), have spatial fluctuations
(whatever gauge one chooses) related to a unique time-shifting function �⌘(~x) via the time-
derivative of the background solution, like in

�⇢GW(⌘, ~x) = ˙̄⇢GW(⌘) �⌘(~x) . (2.30)

If a mechanisms like inflation generates primordial curvature perturbations R(~k) in the
universe, the presence of the adiabatic mode is unavoidable. Non-adiabatic modes may appear
in cases where the generation of GWs leads additionally to intrinsic primordial fluctuations
in � that are not captured by the “separate universe assumption”. Such a GW generation
mechanism should involve a local time-shifting function (that is, a local random process) on
top of the time-shifting function that describes primordial curvature perturbations. Such a
mechanism is di�cult to realize on super-Hubble scales. However, we will see later an explicit
example based on GWs generated by the formation of primordial black holes triggered by
non-Gaussian perturbations [50].

We already argued that multipoles ` � 2 should be vanishingly small on super-Hubble
scales obeying k⌘in ⌧ 1. In the case of the adiabatic mode, it is also possible to relate the
monopole �0 to metric perturbations (in the Newtonian gauge, to  , see appendix B) and
to prove that �1 ⌧ �0 (see Appendix C for a proof in the same gauge). For non-adiabatic
modes, it is not obvious that the dipole can be neglected, but for simplicity, we assume that
this is true in this work and in our CLASS implementation. Thus, we always assume that �
reduces to its monopole component �0, and we can expand the initial perturbation � of the
graviton phase-space distribution into an adiabatic and non-adiabatic contribution,

�(⌘in,~k, q, n̂) = �0(⌘in,~k, q) = TAD
� (⌘in, k, q)R(~k) + �NAD

0 (⌘in,~k, q) . (2.31)

In the Newtonian gauge and for the adiabatic contribution, we can use the relation

�0(⌘in,~k, q) = � 2

4� ngwb(q)
 (⌘in,~k) (2.32)
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A	non-adiabaDc	contribuDon	(uncorrelated		
to	the	adiabaDc	one)	is	assume		

ranging from CMB scales to detectable GW wavelengths. To deal with situations in which
the tensor tilt is scale-dependent, we defined ngwb as a free input parameter independent
of nt in GW CLASS. Depending on physical assumptions, the user can either set ngwb = nt

(subject to the Planck bounds) or ngwb 6= nt (accounting for the variation of the tensor tilt
between cosmological scales and detector scales).10 We recall that the value of ngwb matters
because it enters the overall pre-factor in the expression of CCGWB⇥CGWB

` , see Eq. (2.34).
In a given cosmological model with known cosmological parameters, including fdec(⌘in),

no further assumptions are needed to compute the SGWB power spectrum induced by single-
field inflation: the code can readily evaluate Eq. (2.34) (with the non-adiabatic power spec-
trum PNL

� set to zero).

3.2 Generic non-adiabatic CGWB

Among others, GW CLASS o↵ers a generic parametrization of a possible non-adiabatic contri-
bution to the CGWB. This parametrization does not necessarily relate to known physical
mechanisms, but is useful for tests and order-of-magnitude estimates.

With non-adiabatic perturbations, the initial GW spectrum PNAD
� (k, q) may depend

on two independent arguments k and q. Indeed, in the general case, k refers to spatial
modulations of the GW phase-space density on cosmological scales, and q to the frequency
spectrum of GWs. If we do not assume that tensor fluctuations are entirely generated by
inflation, there is no general reason to assume that the dependence on k and q are the same.

In this case, we will assume that at the detector frequency q = 2⇡f/c, the initial GW
spectrum PNAD

� (k, q) depends on cosmological wavenumbers through

PNAD
� (k, q) = Agwi(q) exp

"

ngwi(q) log
k

k⇤
+

1

2
↵gwi(q)

✓

log
k

k⇤

◆2
#

, (3.4)

where Agwi(q) is the spectrum amplitude, ngwi(q) the spectral index and ↵gwi(q) the running
(gwi stands for Gravitational Wave Initial), all evaluated at the pivot scale k⇤. A more
general parametrization of the initial GW spectrum could be easily implemented in GW CLASS.
The spectral index ngwi, referring to k-dependence of the � power spectrum, should not be
confused with ngwb, which refers to frequency dependence of the background GW density (or
monopole) ⌦̄GW(q).

If we assume that this non-adiabatic CGWB contribution is not correlated with the
adiabatic contribution, the non-adiabatic spectrum CCGWB⇥CGWB

` featured in the second
line of Eq. (2.34) (defined at the detector frequency q) can be computed for a given set of
parameters {Agwi, ngwi,↵gwi, k⇤, ngwb, fdec(⌘in)}.

3.3 Primordial Black Holes

Given the nonlinear nature of gravity, secondary GWs are produced by quadratic contribu-
tions in the scalar perturbations that act as a source in the transverse and traceless part of
the Einstein equations [62–68] (see [69] for a recent review). A significant amount of GWs can
be generated only when the amplitude of the scalar perturbation (spectrum) at small scales
is much larger than at CMB scales. This can happen, e.g., if the inflation evolution shows
some deviation from scale invariance [70], for instance in an ultra-slow-roll phase (see e.g.,
[71–73] for recent discussions about the possibility to generate PBH in single-field models.),

10In the parametrization described in Appendix F.2, the option n
gwb

= n
t

corresponds to the case
inflationary gwb and the option n

gwb

6= n
t

to the case analytic gwb.
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N.B.	:	for	specific	models,	see.e.g.,		
Geller,	Hook,	Sundrum,	Tsai,	‘18;	
Kumar,	Sundrum,Tsai,	‘22.			
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Figure 12: Fiducial model for the forecast assuming a CGWB produced by sound waves
during a PT. Left: fiducial model (solid lines) and experimental sensitivity (dot-dashed line)
for the monopole ⌦̄GW(f). The vertical line shows the pivot frequency fp = 10Hz. Right:
Power spectrum for the CGWB anisotropies CCGWB⇥CGWB

` and detector noise NGW
` , both

multiplied by ⌦̄�2
GW. For the anisotropy spectrum, we assume an uncorrelated non-adiabatic

contribution with amplitude Agwi. The two curves correspond to the two fiducial models
assumed here, featuring two di↵erent values of Agwi.

Parameter Fiducial [Prior] CE+ET+ET100
ln 1010Agwi 0 [-10 - 10] < 0.927
ngwi 0 [-2 - 2] > 0.0344
fdec(⌘in) 0 [0 - 1] ���
ln 1010Agwi 6.9 [-10 - 30] 6.6± 3.1
ngwi 0 [-2 - 2] �0.06± 0.65
fdec(⌘in) 0 [0 - 1] ���

Table 3: Forecasted errors on the cosmological parameters a↵ecting only the CGWB
anisotropy spectrum for the detector combination CE+ET+ET100. Like in Figure 12, we
assume a CGWB produced by sound waves during a PT, with an uncorrelated non-adiabatic
contribution of amplitude Agwi = 1.0⇥ 10�10 (upper half) or 1.0⇥ 10�7 (lower half).

Figure 13: For the same forecasts as in Table 3 (PT case with two fiducial values of Agwi =
1.0⇥ 10�10 (left) or 1.0⇥ 10�7 (right)), one-dimensional posteriors and two-dimensional 68%
/ 95% confidence limits on the reconstructed cosmological parameters.
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Conclusions	
Ø 	We	are	close	to	a	detecDon	of	a	SGWB	(LIGO	O5	and	PTA	data)	
	
Ø  	Not	easy	to	disentangle	the	various	contribuDons	(e.g.	astro	vs	cosmo)		

Ø  Different	(and	new	tools)	to	disentangle	the	various	contribuDons		
					developed	recently:	anisotropies	of	SGWB	energy	density,		
					cross-correlaDons	(+	tests	of	chirality,	non-Gaussianity)		
	
Ø  	anisotropies	of	the	SGWB	and	its	cross-correlaDons	with	other		
						cosmological	tracers:	a	new	test	bench	for	Cosmology.	Allow	to	test	
						our	standard	cosmological	model,	our	theory	of	Gravity,	systemaDcs						
	
Ø  	some	issues:		low	resoluDon,	subtracDon	of	resolved	sources		
		
Ø Are	there	other	ways	in	order	to	discriminate	among	different	GW	
				backgrounds?		



Nanograv	12.5	year	data		
6 The NANOGrav Collaboration

Figure 1. Posteriors for a common-spectrum process in NG12, as recovered with four models: free-spectrum (gray violin plots
in left panel), broken power law (solid blue lines and contours), 5-frequency power law (dashed orange lines and contours), and
30-frequency power law (dot-dashed green lines and contours). In the left panel, the violin plots show marginalized posteriors
of the equivalent amplitude of the sine-cosine Fourier pair (i.e.,

p
S(f)/T , with units of seconds) at the frequencies on the

horizontal axis; the lines show the mean reconstructed power laws in the left panel, and the 1� (thicker) and 2� posterior
contours for the amplitude and spectral slope in the right panel. In the left panel, the shaded regions trace ±1� ranges for the
common-spectrum process power as a function of frequency, as implied by the Bayesian posteriors for the power-law parameters.
The dotted vertical line in the left panel sits at fyr = 1yr�1, where PTA sensitivity is reduced by the fitting of timing-model
parameters; the corresponding free-spectrum amplitude posterior is unconstrained. The dashed vertical line in the right panel
sits at � = 13/3, the expected value for a GWB produced by a population of inspiraling SMBHBs. For both the broken power
law and 5-frequency power law models, the amplitude (ACP) posterior shown on the right is extrapolated from the lowest
frequencies to the reference frequency fyr. We observe that the slope and amplitude of the 30-frequency power law are driven
by higher-frequency noise, whereas the 5-frequency power law recovers the low-frequency GWB-like slope of the free spectrum
and broken power law.

⇣

ab

represents the angle between pulsars a and b. While
errors in the timescale (the “clock”) have a monopolar
ORF, �

ab

= 1. Pulsar-intrinsic red noise is also modeled
as a power-law, however, in that case there is no ORF.
The AGWB in Eq. (2) is replaced with an Ared, and �

with �red. There is a separate (Ared, �red) pair for each
pulsar in the array.

As in NG9gwb and NG11gwb, we implemented sta-
tionary Gaussian processes with a power-law spectrum
in rank-reduced fashion, by approximating them as a
sum over a sine–cosine Fourier basis with frequencies
k/T and prior (weight) covariance S

ab

(k/T )/T , where
T is the span between the minimum and maximum
TOA in the array (van Haasteren & Vallisneri 2014).
We use the same basis vectors to model all red noise
in the array, both pulsar-intrinsic noise and global sig-
nals, like the GWB. Using a common set of vectors helps
the sampling, and reduces the likelihood computation
time. In previous work, the number of basis vectors
was chosen to be large enough (with k = 1, . . . , 30)
that inference results (specifically the Bayesian upper
limit) for a common-spectrum signal became insensitive
to adding more components. However, doing so has the
disadvantage of potentially coupling white noise to the

highest-frequency components of the red-noise process,
thus biasing the recovery of the putative GWB, which
is strongest in the lowest-frequency bins.

For this paper, we revisit the issue and set the num-
ber of frequency components used to model common-
spectrum signals to five, on the basis of theoretical argu-
ments backed by a preliminary analysis of the data set.
We begin with the former. By computing a strain spec-
trum sensitivity curve for the 12.5-year data set using
the hasasia tool (Hazboun et al. 2019) and obtaining
the signal-to-noise ratio (S/N) of a � = 13/3 power-law
GWB, we observed that the five lowest frequency bins
contribute 99.98% of the S/N, with the majority coming
from the first bin. We also injected a � = 13/3 power-
law GWB into the 11-year data set NG11, and measured
the response of each frequency using a 30-frequency free
spectrum model, in which we allowed the variance of
each sine–cosine pair in the red-noise Fourier basis to
vary independently. We observed that the lowest few
frequencies are the first to respond as we raised the
GWB amplitude from undetectable to detectable lev-
els (see Figure 13). The details of this injection analysis
are described in Appendix A.
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Figure 4. Distributions of the optimal statistic and S/N for
HD (blue), monopole (orange), and dipole (green) spatial
correlations, as induced by the posterior probability distri-
butions of pulsar-intrinsic red noise parameters in a Bayesian
inference run that includes a spatially uncorrelated common-
spectrum process. The means of each distribution are the
noise-marginalized Â2 given in Table 3. The top panel also
shows the posterior of an uncorrelated common red pro-
cess A2

CP (dashed gray) from Figure 2 for comparison. All
three cross-correlation patterns are identified in the data
with modest significance; but it is only for an HD-correlated
process that the amplitude estimate is compatible with the
posteriors of Figure 2.

not distinguish among them. Nevertheless, these results
are markedly di↵erent from those of NG11gwb, which
found no trace of correlations. The highest S/N is found
for the monopolar process, which may seem in conflict
with the Bayes factors of Table 2; however,Figure 4
shows that the corresponding amplitude estimate Â

2 is
more than a factor of two lower than implied by the
ACP posterior, shown there by the dashed curve. A
compatible amplitude estimate is found only for the HD
process. In other words, the optimal-statistic analysis
is consistent with the Bayesian analysis. They agree on
the presence of an HD-correlated process at the com-
mon amplitude indicated by the Bayesian analysis, and
both find it strongly unlikely that there are monopolar
or dipolar processes of equal amplitude. These optimal-
statistic results are robust with respect to changing �

within the range recovered in Figure 1.

Figure 5. Average angular distribution of cross-correlated
power, as estimated with the optimal statistic on the 11-year
data set (top) and 12.5-year data set (bottom). The num-
ber of pulsar pairs in each binned point is held constant for
each data set. Due to the increase in pulsars in the 12.5-yr
data set, the number of pairs per bin increases accordingly.
Pulsar-intrinsic red-noise amplitudes are set to their maxi-
mum posterior values from the Bayesian analysis, while the
SSE is fixed to DE438. The dashed blue and dotted orange
lines show the cross-correlated power predicted for HD and
monopolar correlations with amplitudes Â2 = 4⇥ 10�30 and
9⇥ 10�31, respectively.

Figure 5 shows the angular distribution of cross-
correlated power for both NG11 and NG12, as obtained
by grouping pulsar pairs into angular-separation bins
(with each bin hosting a similar number of pairs). The
error bars show the standard deviations of angular sepa-
rations and cross-correlated power within each bin. The
dashed and dotted lines show the values expected theo-
retically from HD- and monopolar-correlated processes
with amplitudes set from the measured Â

2 (the first col-
umn of Table 3). While errors are smaller for NG12 than
for NG11, neither correlation pattern is visually appar-
ent.

4.3. Bayesian measures of spatial correlation

Inspired by the optimal statistic, we have developed
two novel Bayesian schemes to assess spatial correla-
tions. We report here on their application to the 12.5-
year data.

First, we performed Bayesian inference on a model
where the uncorrelated common-spectrum process is
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timing fit as determined by an F -test. We modeled
variations in the pulse dispersion as a piecewise con-
stant through the inclusion of DMX parameters (NG9,
Jones et al. 2017). The timing model fits were primar-
ily performed using the tempo timing software, and the
software packages tempo2 and pint were used to check
for consistency. The timing model fits were done using
the TT(BIPM2017) timescale and the JPL SSE model
DE436 (Folkner & Park 2016). The latest JPL SSE
(DE438, Folkner & Park 2018), which we take as our
fiducial model for the analyses in this paper, was not
available when TOA processing was being done. How-
ever, this does not a↵ect the results presented later,
as the corresponding changes in the timing parameters
are well within their linear range, which is marginalized
away in the analysis (NG9; NG9gwb).

We modeled noise in the pulsars’ residuals with three
white-noise components plus a red noise component.
The white noise components are EQUAD, which adds
white noise in quadrature; ECORR, which describes
white noise that is correlated within the same observ-
ing epoch but uncorrelated between di↵erent observing
epochs; and EFAC, which scales the total template-
fitting TOA uncertainty after the inclusion of the previ-
ous two white noise terms. For all of these components,
we used separate parameters for every combination of
pulsar, backend, and receiver.

Many processes can produce red noise in pulsar resid-
uals. The stochastic GWB appears in the residuals as
red noise, however it appears specifically correlated be-
tween di↵erent pulsars (Hellings & Downs 1983). Other
astrophysical sources of red noise include spin noise,
pulse profile changes, and imperfectly modeled disper-
sion measure variations (Cordes 2013; Lam et al. 2017;
Jones et al. 2017). These red noise sources are unique
to a given pulsar. There are also potential terres-
trial sources of red noise, including clock errors and
ephemeris errors (Tiburzi et al. 2016), which are corre-
lated di↵erently than the GWB. We model the intrinsic
red noise of each pulsar as a power-law, similar to the
GWB (see Sec. 3.1).

The changes to the data processing procedure de-
scribed above significantly improved the quality of the
data. In order to quantify the e↵ect of these changes,
we produced an “11-year slice” data set by truncating
the 12.5-year data set at the MJD corresponding to the
last observation in the 11-year data set, and compared
the results of a full noise analysis of this data set to
those for the 11-year data set. As discussed in NG12, we
found a reduction in the amount of white noise in the
11-year slice compared to the 11-year data set. How-
ever, we also found that the red noise changed for many

pulsars. Specifically, there is a slight preference for a
steeper spectral index across most of the pulsars, indi-
cating that for some pulsars the reduction in white noise
produced an increased sensitivity to low-frequency red
noise processes, like the GWB.

3. DATA MODEL

The statistical framework for the characterization of
noise processes and GW signals in pulsar-timing data is
well documented (see e.g., NG9gwb; NG11gwb). In this
section we give a concise description of our probabilistic
model of the 12.5-year data set, focusing on the di↵er-
ences from earlier studies. The model attempts to rep-
resent every known deterministic and stochastic source
of timing residuals that could be interpreted as GWs:
it extends the individual timing models of the pulsars
(discussed in Sec. 2.3) by adding common-spectrum pro-
cesses with specific correlation structures between pul-
sars. In Sec. 3.1 we define our spectral models of time-
correlated (red) processes, which include pulsar-intrinsic
red noise and the GWB; in Sec. 3.2 we list the com-
binations of time-correlated processes included in our
Bayesian model-comparison trials; in Sec. 3.3 we dis-
cuss our prescriptions for the solar system ephemeris.
Our Bayesian and frequentist techniques of choice will
be described alongside our results in Secs. 4 and 5, with
more technical details in Appendix B and Appendix C.

3.1. Models of time-correlated processes

The principal results of this paper are referred to a
fiducial power-law spectrum of the characteristic GW
strain:

h

c

(f) = AGWB

✓
f

fyr

◆
↵

, (1)

with ↵ = �2/3 for a population of inspiraling SMBHBs
in circular orbits whose evolution is dominated by GW
emission (Phinney 2001). We performed our analysis in
terms of the timing-residual cross-power spectral density

S

ab

(f) = �
ab

AGWB
2

12⇡

2

✓
f

fyr

◆��

f

�3
yr . (2)

where � = 3 � 2↵ (so the fiducial SMBHB ↵ = �2/3
corresponds to � = 13/3), and where �

ab

is the over-
lap reduction function (ORF), which describes average
correlations between pulsars a and b in the array as a
function of the angle between them. For an isotropic
GWB, the ORF is given by Hellings & Downs (1983)
and we refer to it casually as “quadrupolar” or “HD”
correlations.

Other spatially correlated e↵ects present with dif-
ferent ORFs. Systematic errors in the solar system
ephemeris have a dipolar ORF, �

ab

= cos ⇣

ab

, where

First	PTA	evidence	for	a	Dme-correlated	stochasDc		
process	with	a	common	amplitude	and	spectral	index		
across	all	pulsars.		

However	no	staDsDcl	evidence	(or	a	very	marginal	one)	
for	spaDal	quadrupolar	correlaDon.			

InflaDon:	γCP=5	

SMBHB:	γCP=13/3	
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The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational
wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We
present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular,
inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in
the ∼2–90 nHz band shows consistency with isotropy, with the strain amplitude in l > 0 spherical
harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will
become standard tools to probe the angular distribution of source populations.
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Introduction.—Pulsar timing arrays (PTAs) are currently
being used to search for, and to eventually characterize,
the nanohertz stochastic gravitational wave background
(SGWB) by looking for correlated deviations in the pulse
times of arrival (TOAs) of multiple radio millisecond
pulsars distributed across the sky. The SGWB in the
nanohertz regime is thought to be generated by the
incoherent superposition of a large number of weak and
unresolved GW sources, including supermassive black
hole binaries (SMBHBs) [1–7], decaying cosmic-string
networks [8–11], or primordial GWs [12,13]. Previous

analyses have assumed background isotropy, which
emerges as a special case from the more general anisotropy
framework presented here. Although GWs have not yet
been directly detected, limits on the angular power dis-
tribution of a nanohertz SGWB may constrain the distri-
bution of low redshift structure [14], the location of several
particularly bright nearby sources dominating the signal
strain budget [15,16], and open a new avenue to explore
the population characteristics of SMBHBs. Moreover, if a
significant fraction of SMBHBs stall rather than merge, or
are rapidly driven to merger via strong couplings to the
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pixelation the constraints in each pixel become tighter, until
we reach the limit of one pixel, which recovers the usual
all-sky upper limit. Figure 2 can also help to explain the
results in the right panel of Fig. 1, where we see that the
distribution of pulsars in our array leads to the suboptimal
overlapping of the antenna response functions, which in
turn causes insensitivities around the 4 clustered pulsars
and on large angular scales. Hence, we will lack sensitivity
to large angular scale anisotropy (l ∼ 1), which is reflected
in the right panel of Fig. 1. Moreover, this sensitivity map
illustrates the importance of timing pulsars from all over the
sky to ensure a more uniform sensitivity to GW strain,
which will be possible through international collaborations
such as the International PTA [48].
Conclusions.—Our analyses suggest that this data set is

not informative enough to update our prior knowledge of
the angular distribution of the nanohertz SGWB. Using a
prior that enforces a positive SGWB distribution, we find
that the 95% upper limit on the strain amplitude in
multipoles of the background distribution with l > 0 is
≲40% of the monopole strain. No evolution of these upper
limits as a function of GW frequency is found since the
constraints are a reflection of the prior. Additionally, we
can recover the joint posterior distribution of the cross-
correlation values between pulsar pairings, and sub-
sequently map these to a spherical-harmonic or pixel
ORF basis. With the only constraint being positive defi-
niteness of the cross-correlation matrix, the strain ampli-
tude in l > 0 multipoles is ≲400% of the monopole value.
The strain-amplitude upper limits as a function of location
on the sky reflect the overlapping antenna pattern behavior
of the full PTA, where the limits can often be more than an
order of magnitude worse than the all-sky limit. A full
description of all techniques employed here, and their
efficacy, will be provided in a follow-up methods paper.

Forthcoming advanced radio instruments such as the
Five-Hundred-Metre Aperture Spherical Radio Telescope
[49,50], MeerKAT [51], and the Square Kilometre Array
[52] will enhance the detection and inference prospects
for anisotropic GW skies by detecting large numbers of
millisecond pulsars and timing them to unprecedented
precision. Upcoming studies will investigate how we can
combine galaxy catalogs with frequency-dependent maps
of the nanohertz GW sky to probe whether the strain budget
is being dominated by a few bright nearby sources, or is
more diffuse. We hope that the work presented here,
together with these future studies, will provide important
insights into the demographics, evolution, and assembly of
SMBHBs not accessible by any other means.
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FIG. 2 (color online). 95% upper limits on the GW strain
amplitude in each pixel. These limits are obtained by mapping
from the Bayesian MCMC-sampled cross-correlation values to a
pixelated ORF basis (Npix ¼ 12 288). White stars show the pulsar
locations.
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Introduction.—Pulsar timing arrays (PTAs) are currently
being used to search for, and to eventually characterize,
the nanohertz stochastic gravitational wave background
(SGWB) by looking for correlated deviations in the pulse
times of arrival (TOAs) of multiple radio millisecond
pulsars distributed across the sky. The SGWB in the
nanohertz regime is thought to be generated by the
incoherent superposition of a large number of weak and
unresolved GW sources, including supermassive black
hole binaries (SMBHBs) [1–7], decaying cosmic-string
networks [8–11], or primordial GWs [12,13]. Previous

analyses have assumed background isotropy, which
emerges as a special case from the more general anisotropy
framework presented here. Although GWs have not yet
been directly detected, limits on the angular power dis-
tribution of a nanohertz SGWB may constrain the distri-
bution of low redshift structure [14], the location of several
particularly bright nearby sources dominating the signal
strain budget [15,16], and open a new avenue to explore
the population characteristics of SMBHBs. Moreover, if a
significant fraction of SMBHBs stall rather than merge, or
are rapidly driven to merger via strong couplings to the
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Frequency	dependence	of	the	anisotropies		

This	shows	how	the	anisotropies	coming	from	different	sources	–	or	from	a	given	source		
but	from	different	mulDpoles	–	depend	differently	on	frequency.		

Figure 5: Left: dependence of the tensor tilt ngwb over frequency. Right: dependence of the
quadrupole and hexadecapole of the CGWB spectrum CCGWB⇥CGWB

` (q, q) over frequency
(using the one-to-one correspondence between momentum q and frequency f), normalized at
the pivot frequency fp = 1Hz.

In the literature, when discussing signal-to-noise separation, it has always been assumed
that CGWB anisotropy maps at di↵erent frequencies are fully correlated [39, 47, 98, 99], such
that one could factorize the dependency on q1 and q2 as

CCGWB⇥CGWB
` (q1, q2) =

E(q1)E(q2)
E2(qp)C

CGWB⇥CGWB
` (qp)

. (4.5)

This condition is equivalent to stating that the correlation factor of the spectra at di↵erent
frequencies, defined as

r`(q1, q2) ⌘
CCGWB⇥CGWB
` (q1, q2)

q

CCGWB⇥CGWB
` (q1, q1)C

CGWB⇥CGWB
` (q2, q2)

, (4.6)

is equal to one.
Here we stress that this assumption is only an approximation. For instance, when ngwb

is independent of q, and PNAD
� (k, q) either vanishes or is independent of q, r`(q1, q2) = 1.

This is typically the case when GWs are generated by inflation with purely adiabatic initial
conditions and a negligible running of the tensor tilt. However, the condition is broken
in other scenarii. Then, our formalism allows to compute explicitly the correlation factor
according to Eqs. (4.3, 4.6).

We illustrate this for two di↵erent cases in Figure 4. These cases are similar to the
examples picked up in Section 3.5 and shown in Fig. 3. However, in the PBH case, we
consider fNL = 10�2 instead of fNL = 1. This choice is motivated by the fact that at
low multipoles, when fNL is very large, the angular power spectrum is dominated by the
NAD initial condition. Then, in very good approximation, the frequency dependence can be
factorized and r`(q1, q2) ' 1, like for the standard inflationary case.

In Figure 5 we show the angular power spectrum evaluated at q1 = q2 for di↵erent
frequencies, normalized at the pivot frequency fp = 1Hz. This shows how the anisotropies
coming from di↵erent sources – or from a given source but from di↵erent multipoles – depend
di↵erently on frequency. This behaviour is potentially useful for an e�cient component
separation, as discussed in [44].
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The gravitational instability in the expanding universe is studied in the second-order ap-
proximation. This work is an extension of Lifshitz's linearized theory on the basis of 
general relativity. Basic equations are formulated generally, but their analysis is confined to 
a special case where pressure effects are negligible and the spatial curvature of the unperturbed 
model universe is zero. The results show that the second-order density contrast tends to 
accentuate the increase of the first-order density contrast with time, unless the linear dimen-
sion of the perturbation is too great. Moreover it is shown that gravitational wave is induced 
by deformed density perturbations even if the first-order metric perturbation includes no part 
of gravitational wave. If time is ·reversed, our results will be applicable to the problem of 
the gravitational instability in the contracting universe or in the collapsing star. 

§ 1. Introduction 

Behaviors of small density perturbations in the expanding universe have so 
far been investigated only in the linear approximation.1

),
2
),

3
) Because of non-

linearity of hydrodynamic (and gravitational) equations, however, non-linear 
terms, which were neglected in the linear approximation, become effective with 
the growth of the perturbations. It is, therefore, very interesting to develop 
the non-linear theory of gravitational instability. . 

In this paper, we calculate the second-order perturbations by iteration method 
and study the non-linear effect which appears in the problem of gravitational 
instability. Our calculation is made on the basis of general relativity, as in 
Lifshitz's linearized theory,1

) in order that we may take into account the relativistic 
effects on gravitational instability. As the first-order terms in the perturbation 
expansion, we adopt only the perturbations involving the change of the density 
of matter, among three types of perturbations classified by Lifshitz. The syn-
chronous reference system is still used in the perturbed states of the universe 
and thereby special additional conditions are imposed on perturbed parts of the 
metric tensor. 

In § 2 the unperturbed models of the universe and the linearized theory 
of gravitational instability are briefly reviewed. In § 3 the general equations 
for the second-order small perturbations are derived. In § 4 the second-order 
metric perturbations are analyzed in the case where pressure effects are negligible 
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The nonlinear dynamics of cosmological perturbations of an irrotational collisionless fiuid is analyzed
within general relativity. Relativistic and Newtonian solutions are compared, stressing the different role
of boundary conditions in the two theories. Cosmological implications of relativistic effects, already
present at second order in perturbation theory, are studied and the dynamical role of the magnetic part
of the Weyl tensor is elucidated.

PACS numbers: 98.80.Hw, 04.40.Nr

In a recent paper [1] we have shown that the general
relativistic (GR) dynamics of a self-gravitating perfect
fluid is greatly simplified under three assumptions: (i)
the fluid is collisionless (i.e., with zero pressure, p), (ii) it
has zero initial vorticity, ro,b [2], and (iii) the so-called
"magnetic" part of the Weyl tensor, H,b, is zero. The
former two conditions are wide enough to allow for many
cosmological cases, such as the evolution of dark matter
adiabatic perturbations generated during inflation. The
third assumption is more problematic. In linear theory
H,b only contains vector and tensor modes (e.g. , Ref.
[3]): If the vorticity vanishes no vector modes are present
and H,b only contains gravitational waves. Beyond linear
theory the meaning of H,b is less straightforward. It is
reasonable to assume that H,b =0 forbids at least the oc-
currence of gravitational waves. This is particularly clear
in the present context, where, thanks to the absence of
pressure gradients, the motion is geodesic and, if H, b also
vanishes, no spatial gradients appear in the evolution
equations (apart from those contained in convective time
derivatives, which can be dropped by going to a comoving
frame): It is hard to think of any actual wave propaga-
tion with no spatial derivatives appearing in the fluid and
gravitational evolution equations.
Following Ellis [4] we describe the dynamics directly in

terms of observable fluid and geometric quantities: the
mass density p, the expansion scalar e, and three trace-
less, flow-orthogonal and symmetric tensors, the shear,
ep, the so-called "electric" part of the %eyl tensor, Fp,
describing tidal interactions of the fluid element with the
surrounding matter, and its magnetic part Hg. As noted
in Ref. [1], if the magnetic component is switched off, all
the equations for the GR dynamics take a strictly local
form: Each element evolves independently of the others.
Only at the initial time Cauchy data must be consistently
given on a spatial hypersurface. The subsequent evolu-
tion can be entirely followed in Lagrangian form until
caustic formation, when the one-to-one mapping between
fluid elements and space points is lost. %e call such a
system a silent universe, in that no information can be ex-
changed among different fluid elements. This is due to
the causal nature of GR, where signal exchange can only
occur dynamically via gravitational radiation and, in the

case of fluids with nonzero pressure, also via sound waves,
but none of these wave modes is allowed when p =H,b
=0. Because of the advantages of a purely local treat-
ment, this method [ll has recently attracted some atten-
tion. In particular, Croudace et al. [5] have shown the
connection of the GR pancake solution [1] with the Szek-
eres metric [61; Bertschinger and Jain [7] have performed
a detailed study of the Lagrangian dynamics of fluid ele-
ments.
However, the condition H,b =0 cannot be taken as an

exact constraint for the general cosmological case. It has
been shown [8] that the only solutions of Einstein equa-
tions, with p=co,b =H,b=0 are either of Petrov type I,
or conformally flat, or homogeneous and anisotropic of
Bianchi type I, or locally axisyrnmetric (i.e., with two de-
generate shear eigenvalues) and described by a Szekeres
line element [6]. All of these cases require some restric-
tions on the initial data: The exact conditions above are
not suitable to study cosmological structure formation.
However, requiring p =co,b =0 and H,b =0 appears
more feasible. A small H,b is in fact compatible with ar-
bitrary departures from local axisymmetry of fluid ele-
ments. This is shown by the behavior of perturbations
around Robertson-Walker (RW): Whatever initially sca-
lar perturbations are given, H,b vanishes at first order,
but not beyond. A small value of H,b allows arbitrary ra-
tios among the shear eigenvalues, provided the initial per-
turbations are small. For general initial shapes of the
fluid elements the system will radiate gravitationally dur-
ing nonlinear evolution. However, fully GR numerica1
computations [9] have shown that only a negligible frac-
tion (less than 1%) of the total energy is carried away in

the form of gravitational radiation, during the nonlinear
collapse of collisionless ellipsoids. In spite of these facts,
as our calculations below demonstrate, a nonzero H,b a1-
lows for the influence of the surrounding matter on the
evolution of fluid elements. Although this signal travels
at finite speed, for perturbations on scales much smaller
than the horizon it effectively appears as an instantaneous
Newtonian feature. One might wonder whether during
the late phases of collapse, when local axisymmetry is ex-
pected to be established, the environmental influence on
the evolving fluid element can be neglected and the
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