Some directions for The future of primordial non-Gaussianities

Sébastien Renaux-Petel

CNRS - Institut d'Astrophysique de Paris

Copernicus Seminars June 13th 2023

CMB

Reheating surface

A detective's work

LSS

Observations

Statistical properties

 $\mathbb{P}\left(rac{\delta
ho}{
ho},h_{ij}
ight)$

observational data

Physics of inflation?

theoretical data

"Data! data! data!"

Outline

I. The Physics of Inflation and non-Gaussianities

II. The Cosmological Flow

III. The Cosmological Collider

IV. The Low Speed Collider

I. The Physics of Inflation and non-Gaussianities

- Basics of Inflation from Observations
- Effective Field Theory of Inflationary fluctuations
- Imprints of extra fields

Adiabatic

$$g_{ij} = a^2 e^{2\zeta} \delta_{ij}$$

Single fluctuating scalar degree of freedom left over

Almost scale-invariant

$$\Delta_{\zeta}^{2} = \frac{k^{3}}{2\pi^{2}} \langle \zeta_{\mathbf{k}} \zeta_{-\mathbf{k}} \rangle' = A_{s} \left(\frac{k}{k_{\star}}\right)^{n_{s}-1}$$

$$n_s = 0.9652 \pm 0.0042$$

Approximate time-translation invariance

Very gaussian

$$\frac{\langle \zeta \zeta \zeta \rangle}{\langle \zeta \zeta \rangle^{3/2}} < 10^{-3}$$

Weakly coupled theory

Primordial gravitational waves from B-modes polarization of CMB

$$\frac{\langle h_{ij}h^{ij}\rangle}{\langle \zeta\zeta\rangle} \lesssim 10^{-2}$$

Detection would be spectacular (hint about gravity at Planck scale)

No useful theoretical lower bound: B-modes may be forever out of reach

Primordial non-Gaussianities

Higher-order correlators: beyond free fields ——— measure of interactions

Cosmology

Particle physics

Goal: establish a standard model of inflation

Identify degrees of freedom, mass, dispersion relation, spin, interactions

Additional difficulty compared to particle physics: everything is, a priori, time-dependent

Effective Field Theory of Inflationary Fluctuations

Formulation of theories straight at the level of fluctuations

Source of inflation

Systematic, powerful and direct link with observations

Preferred space-like foliation (existence of clock) breaks time reparametrization invariance

Guaranteed: Goldstone boson

 $\pi(\boldsymbol{x},t)$ fluctuation of the clock field

$$\zeta = -H\pi + \dots$$

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore [2008]

Effective Field Theory of Inflationary Fluctuations

Action in unitary gauge (preferred foliation) invariant only under spatial diff

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} M_{\rm pl}^2 R + M_{\rm pl}^2 \dot{H} g^{00} - M_{\rm pl}^2 (3H^2 + \dot{H}) + \sum_{n=2}^{\infty} \frac{M_n^4(t)}{n!} \left(\delta g^{00} \right)^n + \dots \right]$$

Restoring time diff invariance by Stuckelberg trick $t o t + \pi({m x},t)$ single-field slow-roll in diagnose.

$$t
ightarrow t + \pi(\boldsymbol{x},t)$$
 single-field slow in disguise

Decoupling limit: unperturbed metric is enough

$$\delta g^{00} \to -2\dot{\pi} - \dot{\pi}^2 + (\partial_i \pi)^2 / a^2$$

$$\mathcal{L}_{\pi}/a^{3} = \frac{M_{\rm pl}^{2}|\dot{H}|}{c_{s}^{2}} \left[\dot{\pi}^{2} - c_{s}^{2} \frac{(\partial_{i}\pi)^{2}}{a^{2}} + (1 - c_{s}^{2}) \left(\dot{\pi}^{3} - \dot{\pi} \frac{(\partial_{i}\pi)^{2}}{a^{2}} \right) - \frac{4}{3} M_{3}^{4} \frac{c_{s}^{2}}{M_{\rm pl}^{2}|\dot{H}|} \dot{\pi}^{3} \right]$$

Non-linearly realised symmetry

Effective Field Theory of Inflationary Fluctuations

Action in unitary gauge (preferred foliation) invariant only under spatial diff

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} M_{\rm pl}^2 R + M_{\rm pl}^2 \dot{H} g^{00} - M_{\rm pl}^2 (3H^2 + \dot{H}) + \sum_{n=2}^{\infty} \frac{M_n^4(t)}{n!} \left(\delta g^{00} \right)^n + \dots \right]$$

Restoring time diff invariance by Stuckelberg trick $t o t + \pi(x,t)$ non-perturbative background (DBI)

$$t \rightarrow t + \pi(\boldsymbol{x}, t)$$
 non-perturbative background (DBI) or effect of heavy fields (gelaton)

Decoupling limit: unperturbed metric is enough

$$\delta g^{00} \to -2\dot{\pi} - \dot{\pi}^2 + (\partial_i \pi)^2 / a^2$$

$$\mathcal{L}_{\pi}/a^{3} = \frac{M_{\rm pl}^{2}|\dot{H}|}{c_{s}^{2}} \left[\dot{\pi}^{2} - c_{s}^{2} \frac{(\partial_{i}\pi)^{2}}{a^{2}} + (1 - c_{s}^{2}) \left(\dot{\pi}^{3} - \dot{\pi} \frac{(\partial_{i}\pi)^{2}}{a^{2}} \right) - \frac{4}{3} M_{3}^{4} \frac{c_{s}^{2}}{M_{\rm pl}^{2}|\dot{H}|} \dot{\pi}^{3} \right]$$

Non-linearly realised symmetry

Bispectrum

$$\langle \zeta_{\boldsymbol{k}_1} \zeta_{\boldsymbol{k}_2} \zeta_{\boldsymbol{k}_3} \rangle = (2\pi)^3 \delta^{(3)}(\boldsymbol{k}_1 + \boldsymbol{k}_2 + \boldsymbol{k}_3) B_{\zeta}(k_1, k_2, k_3)$$
Homogeneity

Isotropy

$$B_{\zeta} \equiv (2\pi)^4 \frac{S(k_1, k_2, k_3)}{(k_1 k_2 k_3)^2} A_s^2$$

Amplitude $S \sim f_{
m NL}$

Scale-dependence (overall size)

Shape dependence (configuration of triangles)

Equilateral/orthogonal non-Gaussianities

$$\mathcal{L}_{\pi}/a^{3} = \frac{M_{\rm pl}^{2}|\dot{H}|}{c_{s}^{2}} \left[\dot{\pi}^{2} - c_{s}^{2} \frac{(\partial_{i}\pi)^{2}}{a^{2}} + (1 - c_{s}^{2}) \left(\dot{\pi}^{3} - \dot{\pi} \frac{(\partial_{i}\pi)^{2}}{a^{2}} \right) - \frac{4}{3} M_{3}^{4} \frac{c_{s}^{2}}{M_{\rm pl}^{2}|\dot{H}|} \dot{\pi}^{3} \right]$$

Non-linearly realised symmetry

$$f_{
m NL}^{
m eq} \sim rac{1}{c_s^2} - 1$$

$$f_{
m NL}^{
m eq} = -26 \pm 47$$
 (68% CL) $f_{
m NL}^{
m orth} = -38 \pm 24$ Planck 2018

 $c_s \ge 0.021$

 $f_{
m NL}^{
m eq} \sim 1$ threshold for slow-roll dynamics

$$f_{
m NL} = \mathcal{O}(\epsilon,\eta) \sim 10^{-2}$$
 gravitational floor Maldacena (03)

Imprints of additional degrees of freedom

$$S[\pi] + S[mixing] + S[other]$$

Ubiquitous in string theory, supergravity ...

Probed in squeezed limit

$$oldsymbol{k}_{
m S}$$

$$\kappa = k_{\rm L}/k_{\rm S} \ll 1$$

Observable squeezed limit in single-clock inflation

$$S \propto \kappa$$
 $\kappa \ll 1$

Maldacena, Creminelli, Zaldarriaga, Tanaka, Urakawa, Pajer, Schmidt ...

Imprints of additional degrees of freedom

Example:
$$S_{\pi-\sigma} = -\int \mathrm{d}^4 x \sqrt{-g} \tilde{M}_1^3 \delta g^{00} \sigma$$
 $S_{\sigma} = -\int \mathrm{d}^4 x \sqrt{-g} \left[\frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{2} m^2 \sigma^2 + \dots \right]$

Hierarchies of scales

Hierarchies of times

Probe evolution of extra dof on super-Hubble scales

Imprints of additional degrees of freedom

Local shape

$$f_{\rm NL}^{\rm loc} = -0.9 \pm 5.1$$

Not possible in single-clock inflation

Special role of massless fields they do not decay

Detection via scale-dependent bias

Dalal et al [2008]

Prospects

Huge efforts with CMB-S4 & large-scale structure surveys

(scale-dependent bias, EFT of LSS, position space maps, simulation based inference etc)

Long-term: 21cm radio-astronomy from the far side of the moon! (dark ages)

Cosmological collider physics

4pt

Chen, Wang 2009
Noumi, Yamaguchi, Yokohama 2012
Arkani-Hamed, Maldacena 2015
Lee, Bauman, Pimentel 2016
+ many works

Is that it for theorists?

Beyond what I said: features, excited states ...

The Planck team constrained a high number of shapes

Physics of inflation?

Statistical properties

Fergusson, Shellard modal decomposition

Theorists' task

Building dictionary

Identifying targets worth measuring

Is the dictionary complete?!

Interesting targets not yet identified?!

II. The Cosmological Flow

- Limitations of current methods create theoretical bias
- The Cosmological Flow Approach

Werth, Pinol, Renaux-Petel [2023 a,b]

The Cosmological Flow in a nutshell

Shift from technical considerations to unbiased exploration

Generate theoretical data

Assist theoretical understanding

Well-established procedure (in-in)...

$$oldsymbol{X}^a \equiv (oldsymbol{arphi}^lpha, oldsymbol{p}^eta)$$

Interaction-picture fields evolve with free Hamiltonian

Hamiltonian

$$H(\boldsymbol{X}^a) = H_0(\boldsymbol{X}^a) + H_I(\boldsymbol{X}^a)$$
Free Interacting

... but technical difficulties

In practice, we compute Feynman-Witten diagrams involving complicated time integrals

- Background is time-dependent
- Algebraic complexity
- Starts from solvable free theory

•

Recent Analytical Developments

dS Cosmological Bootstrap

Arkani-Hamed, Baumann, lee, Pimentel, Joyce, Duaso Pueyo
[2019, 2020, 2022]

Pimentel and Wang [2022],
Jazayeri and Renaux-Petel [2022]

Cosmological Potytopes

AdS-inspired Mellin Space

Arkani-Hamed, Benincasa, Postnikov,
McLeod [2017, 2018, 2019, 2020 2022]

Fundamental Principles (Unitarity & Locality)

Pajer, Stefanyszyn, Supeł, Goodhew, Jazayeri, Melville, Gordon Lee, Bonifacio, Wang [2020, 2021, 2022]

Partial Mellin-Barnes Representation

Qin and Xianyu [2022]

Boostless Cosmological Bootstrap

+ Several other approaches and authors

Limitations of Analytical Methods

Weak Quadratic Mixing

$$\mathcal{L}^{(2)} \supset \rho \dot{\pi} \sigma$$
 treated perturbatively

Only Single-Exchange Diagram

Often only 1 or 2 Fields

Aside from isolated examples...

(Near) Scale-Invariance

Large hierarchy of masses/couplings but not the intermediate regimes

Treatment of Equilateral and Squeezed **Configurations Separately**

Why the Cosmological Flow: Break the Vicious Circle

The flow of (tree-level) correlation functions

First used for particular background mechanisms

Dias, Fazer, **Mulryne, Seery**, Ronayne [2010, 2011, 2012, 2013, 2015, 2016, 2018]

Initial conditions automatically known for Bunch-Davies (or make your own choice)

Resumming Quadratic Mixings

Exact treatment of quadratic «interactions»

Comparing to conventional split

$$\mathcal{L}^{(2)} = \mathcal{L}_{\mathrm{diag}}^{(2)} + \mathcal{L}_{\mathrm{mix}}^{(2)}$$

CosmoFlow

with Denis Werth and Lucas Pinol soon publicly available

Shift from technical considerations to unbiased exploration

Generate theoretical data

Assist theoretical understanding

III. The Cosmological Collider

- With Flavor Oscillations
- At Strong Mixing
- With Time-Dependent Mixing

Cosmological collider: « a robust probe of field content of inflation »?

$$S \propto \kappa^{1/2} e^{-\pi \mu} \cos(\mu \log(\kappa) + \varphi) P_S(\cos \theta)$$

As robust probe as assumptions are restrictive: unique additional dof, weakly mixed, scale-invariant

Cosmological collider: « a robust probe of field content of inflation »?

$$S \propto \kappa^{1/2} e^{-\pi \mu} \cos(\mu \log(\kappa) + \varphi) P_S(\cos \theta)$$

As robust probe as assumptions are restrictive: unique additional dof, weakly mixed, scale-invariant

Cosmological collider signatures beyond restrictive assumptions

Mass mixing

Strong mixing

Time-dependent mixing

Inflationary flavor oscillations

Breaking degeneracies weak/strong mixing

Soft limits complementary to equilateral to diagnose features

Werth, Pinol, Renaux-Petel [2023 a,b]

Goldstone Boson coupled to Massive Field

quadratic sector

 π quadratic sector

canonically normalised

$$-\lambda_1 \dot{\pi}_c \frac{(\partial_i \pi_c)^2}{a^2} - \lambda_2 \dot{\pi}_c^3 - \mu \sigma^3 - \lambda \dot{\pi}_c \sigma^2 - \frac{1}{\Lambda_1} \frac{(\partial_i \pi_c)^2}{a^2} \sigma - \frac{1}{\Lambda_2} \dot{\pi}_c^2 \sigma$$

$$H/\Lambda_1 \propto \rho/H$$

quadratic mixing

Non-linearly realised symmetry

$$H/\Lambda_1 \propto \rho/H$$

Self-interactions

Assuming weak mixing

CosmoFlow

Correlators for all interactions

Beyond weak mixing and single exchange

Cosmological Collider Signal at Strong Mixing

Super-Hubble behaviour governed by **effective mass** $m^2 \to m_{\rm eff}^2 = m^2 + \rho^2$ An et al, Iyer et al 2017

Frequency $\mu_{\text{eff}}^2 = m_{\text{eff}}^2/H^2 - 9/4$

Werth, Pinol, Renaux-Petel [2023 a,b]

Same frequency of cosmological collider for heavy but weakly mixed and light but strongly mixed field

Resummation of quadratic mixings

CosmoFlow allows complete predictions. Necessary to break degeneracies

Cosmological Collider Flow

Weak mixing

$$\mu_{
m eff}=5,
ho/H=0.1$$

Strong mixing

$$\mu_{
m eff}=5,
ho/H=5$$

Flow of pi correlators

Identification of characteristic times

Werth, Pinol, Renaux-Petel [2023 a,b]

Larger cosmological collider signal allowed at Strong Mixing!

Fixed mass m = 2H

Amplitude ho/H of mixing varies

Cosmological Collider with Features

Werth, Pinol, Renaux-Petel [2023 a,b]

Motivated example:
$$\rho(t) = \rho_0 \left(\frac{a_0}{a}\right)^n \sin\left[\omega_c(t-t_0)\right]$$
 Frequency $\mu_c = \frac{\omega_c}{H}$

IV. The Low Speed Collider

- Motivation
- Non-local single-field EFT
- Low speed collider at strong mixing

Detection of large Equilateral NG, what is the next target?

New discovery channel of heavy fields with $m < H/c_s$ (only possibility anyway)

Goldstone Boson coupled to Massive Field

canonically normalised

$$-\lambda_1 \dot{\pi}_c \frac{(\partial_i \pi_c)^2}{a^2} - \lambda_2 \dot{\pi}_c^3 - \mu \sigma^3 - \lambda \dot{\pi}_c \sigma^2 - \frac{1}{\Lambda_1} \frac{(\partial_i \pi_c)^2}{a^2} \sigma - \frac{1}{\Lambda_2} \dot{\pi}_c^2 \sigma$$

$$H/\Lambda_1 \propto \rho/H$$

Self-interactions

Bootstrap results in simplest situation

Wang, Pimentel [2022] Jazayeri, Renaux-Petel [2022]

quadratic mixing

Non-linearly realised

symmetry

+ Cosmological Flow in all situations

But transparent physical understanding with non-local single-field EFT

Non-local single-field EFT

$$(\partial_t^2 + 3H\partial_t - \tilde{\partial}_i^2 + m^2)\sigma = \rho \dot{\pi}_c$$

$$\sim H^2 \qquad \sim \frac{k^2}{a^2} \sim \frac{H^2}{c_s^2}$$

$$c_s^2 \ll 1$$

$$\sigma_{
m EFT}=
ho {\cal D}^{-1}\dot\pi_c$$
 ${\cal D}^{-1}=(- ilde\partial_i^2+m^2)^{-1}$ ${
m Crucial\ for}\ \ lpha=c_srac{m}{H}<1$

Low sound speed

Instantaneous response of supersonic field to dynamics of π

Single-field EFT

$$S_{\text{eff}} = \int d^4x \sqrt{-g} \left(\frac{1}{2} \dot{\pi}_c \left[1 + \rho^2 \mathcal{D}^{-1} \right] \dot{\pi}_c - \frac{c_s^2}{2} (\tilde{\partial}_i \pi_c)^2 - \lambda_1 \dot{\pi}_c (\tilde{\partial}_i \pi_c)^2 - \lambda_2 \dot{\pi}_c^3 \right)$$
$$- \frac{\rho}{\Lambda_1} (\tilde{\partial}_i \pi_c)^2 \mathcal{D}^{-1} \dot{\pi}_c - \frac{\rho}{\Lambda_2} \dot{\pi}_c^2 \mathcal{D}^{-1} \dot{\pi}_c - \lambda \rho^2 \dot{\pi}_c \left[\mathcal{D}^{-1} \dot{\pi}_c \right]^2 - \mu \rho^3 \left[\mathcal{D}^{-1} \dot{\pi}_c \right]^3 \right)$$

Non-local in space

Interactions delocalized in time

Weak mixing

All interactions contact —— Simple analytical results for all interactions

Simple factorizable template

$$S^{\alpha}(k_1, k_2, k_3) = S^{\text{eq}}(k_1, k_2, k_3) + \frac{1}{3} \frac{k_1^2}{k_2 k_3} \left[1 + \left(\alpha \frac{k_1^2}{k_2 k_3} \right)^2 \right]^{-1} + 2 \text{ perms}$$

Resonance comparable to self-interactions when pushing

$$\rho \sim m$$

Non-perturbative treatment of mixing required

Strong mixing

Interesting new shapes with large amplitude and perturbative control, e.g.

Self-interactions

Interactions with heavy field

Total shape

Conclusions

• Cosmological collider beyond vanilla models: several new motivated signals when restrictive assumptions are released

• Next target after equilateral NG discovery(?): low speed collider resonance

NG is a mature field but limited and biased by technical difficulties

Cosmological Flow program

Efficient and systematic

Generate theoretical data to explore rich physics of inflation

Assist theoretical understanding

Outlook

Natural extensions:

Wavefunction

Loop level (not straightforward)

Path integral formulation

Thank you!

undergraduate & graduate textbook, 4 authors:

- 1. A Thermal History of the Universe and Primordial Nucleosynthesis, Pierre Salati.
- 2. Cosmological Microwave Background, Julien Lesgourgues.
 - 3. Cosmological Inflation, Sébastien Renaux-Petel.
 - 4. Dark Matter, Richard Taillet.

Oct 22, 348 pages