Second quantization of noncommutative spaces: emergence of the Standard Model and gravity

Walter van Suijlekom

A fermion in spacetime

Minimal ingredients to describe a free fermion:

coordinates on spacetime M:

$$x_{\mu}\cdot x_{\nu}(p)=x_{\mu}(p)x_{\nu}(p), etc.,$$

• propagation, described by Dirac operator $D_M=i\gamma^\mu\partial_\mu$

Noncommutative geometry

 Combination of coordinate algebra and operators is central to the noncommutative approach [Connes 1994], in terms of spectral triples:

$$(A, \mathcal{H}, D)$$

- The commutative case (Riemannian spin manifold M):
 - the algebra $C^{\infty}(M)$ of smooth functions on M
 - the Dirac operator D_M
 - both acting on Hilbert space $L^2(S_M)$ of square-integrable spinors.
- The noncommutative case:
 - an algebra ${\cal A}$
 - a (suitable) self-adjoint operator D
 - both acting on a Hilbert space ${\cal H}$

Reconstruction of geometry

• Reconstruction of M in the commutative case [Connes 1989]: $(C^{\infty}(M), L^{2}(S_{M}), D_{M})$:

$$d(x,y) = \sup_{f} \{|f(x) - f(y)| : \text{ gradient } f \le 1\}$$

• The gradient of f is given by the commutator $[D_M, f] = D_M f - f D_M$ (e.g. $[D_{\mathbb{R}}, f] = -i \frac{df}{dt}$)

Emerging bosons

Our fermionic starting point induces a bosonic theory:

• "Inner perturbations" by the coordinates [C 1996, CCS 2013]:

$$D_M \rightsquigarrow D_M + \sum_j a_j [D_M, a_j']$$

for functions a_j , a'_i depending on the coordinates x_μ .

Then,

$$\sum_{i} a_{j}[D_{M}, a'_{j}] = A^{\nu} \gamma^{\mu} (\partial_{\mu} x^{\nu}) = A^{\mu} \gamma_{\mu}$$

where A^{μ} is the electromagnetic 4-potential describing the photon.

Entering noncommutativity

Consider a finite space *F*, but with a *noncommutative* structure:

Described by block diagonal matrices ("noncommutative coordinates")

$$A = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & a_N \end{pmatrix},$$

where the a_1, a_2, \ldots, a_N are square matrices of size n_1, n_2, \ldots, n_N .

Hence we will consider the matrix algebra

$$A_F := M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_N}(\mathbb{C})$$

where \mathbb{C} can be replaced by \mathbb{R} or \mathbb{H} .

A finite Dirac operator is given by a hermitian matrix.

Example: commutative two-point space

$$F = {}_{1} \bullet {}_{2} \bullet$$

• Then the algebra of smooth functions

$$C^{\infty}(F) := \left\{ \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \middle| \lambda_1, \lambda_2 \in \mathbb{C} \right\}$$

A finite Dirac operator is given by

$$D_F = \begin{pmatrix} 0 & \overline{c} \\ c & 0 \end{pmatrix}; \qquad (c \in \mathbb{C})$$

• The distance formula then becomes

$$d(1,2) = \max\left\{|\lambda_1 - \lambda_2| : \left\|\begin{pmatrix} 0 & \overline{c}(\lambda_2 - \lambda_1) \\ c(\lambda_1 - \lambda_2) & 0 \end{pmatrix}\right\| \leq 1\right\} = \frac{1}{|c|}$$

Example: noncommutative two-point space

Coordinates on F are elements in $\mathbb{C} \oplus \mathbb{H}$

- A complex number z
- A quaternion $q = q_0 + iq_k\sigma^k$; in terms of Pauli matrices:

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

It describes a two-point space, with internal structure:

Inner perturbations on nc two-point space

- 'Dirac operator' $D_F = \begin{pmatrix} 0 \ \overline{c} \ 0 \ 0 \ 0 \end{pmatrix}$
- Inner perturbations:

$$D_F \leadsto D_F + \sum_j a_j [D_F, a_j'] = \begin{pmatrix} 0 & \overline{c}\phi_1 & \overline{c}\phi_2 \\ c\phi_1 & 0 & 0 \\ c\phi_2 & 0 & 0 \end{pmatrix}$$

- Distance between the two points is now $1/\sqrt{|c\phi_1|^2 + |c\phi_2|^2}$.
- We may call ϕ_1 and ϕ_2 the Higgs field.
- Indeed, the group of unitary block diagonal matrices is now $U(1) \times SU(2)$ and an element (λ, u) therein acts as

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \mapsto \overline{\lambda} u \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}.$$

Almost-commutative spacetimes

We now combine mild matrix noncommutativity with spacetime:

• coordinates of the almost-commutative spacetime $M \times F$:

$$\hat{x}^{\mu}(p)=(z^{\mu}(p),q^{\mu}(p))$$

as elements in $\mathbb{C} \oplus \mathbb{H}$ (for each μ and each point p of M)

• The combined Dirac operator becomes

$$D_{M\times F}=D_M+\gamma_5D_F$$

Note that $D^2_{M \times F} = D^2_M + D^2_F$, which will be useful later on.

Inner perturbations on $M \times F$

So, we describe $M \times F$ by:

$$\hat{x}^{\mu} = (z^{\mu}, q^{\mu}); \qquad D_{M \times F} = D_M + \gamma_5 D_F$$

As before, we consider inner perturbations of $D_{M\times F}$ by $\hat{x}^{\mu}(p)$:

- The inner perturbations of D_F become scalar fields ϕ_1, ϕ_2 .
- The inner perturbations of D_M become matrix-valued:

$$\sum_{j} a_{j}[D_{M}, a_{j}'] = a_{\nu} \gamma^{\mu} (\partial_{\mu} \hat{x}^{\nu}) =: A_{\mu} \gamma^{\mu}$$

with A_{μ} taking values in $\mathbb{C} \oplus \mathbb{H}$:

$$A_{\mu} = \begin{pmatrix} B_{\mu} & 0 & 0 \\ 0 & W_{\mu}^{3} & W_{\mu}^{+} \\ 0 & W_{\mu}^{-} & -W_{\mu}^{3} \end{pmatrix}$$

corresponding to hypercharge and the W-bosons.

What do we have so far?

Noncommutative geometry allows for a description of the particle content of several models in particle physics (EW, SM, Pati–Salam, etc.):

- at the one-particle level, so essentially classical;
- so far, without a prescription on the dynamics of the fields.

We now resolve these questions by introducing a second quantization of spectral triples.

Second quantization of (A, H, D)

- The first step is to replace Hilbert space \mathcal{H} by $\mathsf{Cliff}_{\mathbb{C}}(\mathcal{H}_{\mathbb{R}})$, the complexified Clifford algebra of $\mathcal{H}_{\mathbb{R}}$.
- There is a one-parameter group of automorphisms σ_t on this Clifford algebra, associated to the operator $\exp(itD)$ (on $\mathcal{H}_{\mathbb{R}}$).
- We then have that for any $\beta > 0$ there exists a unique state $\varphi = \varphi_{\beta}$ on Cliff_C($\mathcal{H}_{\mathbb{R}}$) that satisfies the KMS-condition at inverse temperature β :

$$\varphi(a\sigma_t(b))|_{t=i\beta}=\varphi(ba).$$

Proposition

If the operator $\exp(-\beta |D|)$ is of trace class, the state φ_{β} is of type I and the associated irreducible representation is given by the fermionic second quantization associated to the complex structure $I := i \operatorname{sign} D$ on $\mathcal{H}_{\mathbb{R}}$.

Fermionic second quantization

- Equip $\mathcal{H}_{\mathbb{R}}$ with complex structure, e.g. $I = i \operatorname{sign} D \rightsquigarrow \operatorname{Dirac} \operatorname{sea} e^{itD}$
- Cliff $_{\mathbb{C}}(\mathcal{H}_{\mathbb{R}})$ acts on the Fock space $\bigwedge \mathcal{H}_I$ via

$$\gamma_I(v) = a_I^*(v) + a_I(v); \qquad (v \in \mathcal{H}_{\mathbb{R}}).$$

Proposition (Chamseddine-Connes-vS, 2018)

(i) The one-parameter group σ_t is implemented in the (physical) Fock representation by the one-parameter unitary group $\bigwedge \exp(it|D|)$:

$$\gamma_I(\sigma_t(A)) = \bigwedge(e^{it|D|})\gamma_I(A) \bigwedge(e^{-it|D|}) \qquad A \in \mathrm{Cliff}_{\mathbb{C}}(\mathcal{H}_{\mathbb{R}}).$$

(ii) If $\exp(-\beta |D|)$ is of trace class the state φ_{β} is of type I and is given by

$$arphi_{eta}(A) = \mathcal{N}^{-1}\operatorname{Trace}\left(\bigwedge \exp(-eta|D|)\gamma_I(A)
ight) \qquad A \in \operatorname{Cliff}_{\mathbb{C}}(\mathcal{H}_{\mathbb{R}})$$

Gibbs states and entropy

We thus have a density matrix

$$\rho_{\beta} = \mathcal{N}^{-1} \cdot \bigwedge (e^{-\beta|D|})$$

• Note that this is the Gibbs state for a Fermi gas on the (noncommutative) space that is described by (A, H, D).

Theorem (Chamseddine-Connes-vS, 2018)

$$S(\rho_{\beta}) = -\operatorname{Trace} \rho_{\beta} \log \rho_{\beta},$$

of the above Gibbs state ρ_{β} is given by a spectral action Trace $h(\beta D)$ for the function $h(x) = \mathcal{E}(e^{-x})$ where $\mathcal{E}(y)$ is the entropy of a partition of the unit interval in two intervals with size of ratio y (i.e. of size 1/(1+y) and y/(1+y)).

Analysis of the function h

• $\mathcal{E}(y)$ is the entropy of a partition of the unit interval in two intervals with size of ratio y:

$$\mathcal{E}(y) = -\operatorname{Trace}
ho_y \log
ho_y; \qquad
ho_y = \begin{pmatrix} rac{1}{1+y} & 0 \\ 0 & rac{y}{1+y} \end{pmatrix}.$$

We have $\mathcal{E}(y) = \log(y+1) - rac{y \log y}{y+1}$

$$h(x) = \mathcal{E}(e^{-x}) = \frac{x}{1 + e^x} + \log(1 + e^{-x})$$

and this is applied to the spectrum of βD .

Entropy of two-point space

$$F = {}_{1} \bullet {}_{2} \bullet$$

- Distance r:=d(1,2)=1/|c| in terms of $D_F=egin{pmatrix} 0 & \overline{c} \\ c & 0 \end{pmatrix}$.
- For $r \to 0$ we have $S(\rho_\beta) = 0$;
- For $r \to \infty$ we have maximum entropy $S(\rho_{\beta}) = 2 \log 2$;

Entropic force $F(r) = \beta^{-1} \partial_r S(\rho_\beta)$?

$$F(r) = \frac{\beta^3/2r^3}{\cosh^2(\beta/2r)}$$

Laplace transform and heat expansion

Proposition (Chamseddine-Connes-vS, 2018)

The function h is a Laplace transform:

$$h(x) = \int_0^\infty g(t)e^{-tx^2}$$

with

$$g(t) = \frac{-1}{8\sqrt{\pi}t^{5/2}}\sum_{n\in\mathbb{Z}}(-1)^n n^2 q^{n^2}; \qquad q = e^{-1/4t}.$$

This allows us to use heat asymptotics of $e^{-t\beta^2D^2}$ to determine Trace $h(\beta D)$.

Asymptotic expansion of entropy

If Trace $e^{-tD^2} \sim \sum_k t^k b_k$ then

$$S(
ho_eta) = \operatorname{Trace} h(eta D) \sim \sum_k eta^{2k} \gamma(k) b_k \qquad \gamma(k) = rac{1 - 2^{-2k}}{k} \pi^{-k} \xi(2k)$$

in terms of the Riemann ξ -function :

$$\xi(s) := rac{1}{2} s(s-1) \pi^{-rac{s}{2}} \Gamma(rac{s}{2}) \zeta(s)$$

$\gamma(-1)$	$\gamma(-1/2)$	$\gamma(0)$	$\gamma(1/2)$	$\gamma(1)$	$\gamma(3/2)$
$\frac{9\zeta(3)}{2}$	$\frac{\pi^{3/2}}{3}$	log 2	$\frac{1}{2\sqrt{\pi}}$	1/8	$\frac{7\zeta(3)}{8\pi^{5/2}}$

Entropy of the electroweak theory

Use
$$D_{M \times F}^2 = D_M^2 + D_F^2$$
 to compute (in 4d)

$$S(\rho_{\beta}) = \text{Trace } h(\beta D_{M \times F}) \sim c_{4}\beta^{-4} \text{Vol}(M) + c_{2}\beta^{-2} \int R \sqrt{g}$$
$$-c_{0} \int C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} + \int c'_{0} \text{Trace } F_{\mu\nu} F^{\mu\nu} - c'_{2}\beta^{-2} |\phi|^{2} + c'_{0} |\phi|^{4} + \cdots$$

We now recognize:

- (Higher-derivative) gravity
- The Yang–Mills term $F_{\mu\nu}F^{\mu\nu}$ for hypercharge and W-boson
- The Higgs potential $-\mu^2 |\phi|^2 + \lambda |\phi|^4$

Beyond the SM with noncommutative geometry

• The matrix coordinates of the Standard Model in $\mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$ arise naturally as a restriction of the following coordinates

$$\hat{x}^{\mu}(p)=(q_R^{\mu}(p),q_L^{\mu}(p),m^{\mu}(p))\in\mathbb{H}_R\oplus\mathbb{H}_L\oplus M_4(\mathbb{C})$$

corresponding to a Pati-Salam unification:

$$U(1)_Y \times SU(2)_L \times SU(3) \rightarrow SU(2)_R \times SU(2)_L \times SU(4)$$

• The 96 fermionic degrees of freedom are structured as

$$\begin{pmatrix}
\nu_R & u_{iR} & \nu_L & u_{iL} \\
e_R & d_{iR} & e_L & d_{iL}
\end{pmatrix} \qquad (i = 1, 2, 3)$$

• The finite Dirac operator is a 96 × 96-dimensional matrix containing Yukawa mass matrices, etc.

Inner perturbations

• Inner perturbations of D_M now give three gauge bosons:

$$W_R^\mu, \qquad W_I^\mu, \qquad V^\mu$$

corresponding to $SU(2)_R \times SU(2)_L \times SU(4)$.

- For the inner perturbations of D_F we distinguish two cases, depending on the initial form of D_F :
 - I The Standard Model $D_F = \begin{pmatrix} S & T^* \\ T & \overline{S} \end{pmatrix}$
 - II A more general D_F with zero $\overline{f}_L f_L$ -interactions.

Scalar sector of the spectral Pati-Salam model

I For a SM D_F , the resulting scalar fields are composite fields, expressed in scalar fields whose representations are:

	$SU(2)_R$	$SU(2)_L$	<i>SU</i> (4)
$\phi_{\dot{a}}^{b}$	2	2	1
$\Delta_{\dot{a}I}$	2	1	4
Σ_J^I	1	1	15

II For a more general finite Dirac operator, we have fundamental scalar fields:

particle	$SU(2)_R$	$SU(2)_L$	SU(4)
$\Sigma_{\dot{a}J}^{bJ}$	2	2	1 + 15
LI S	3	1	10
$H_{\dot{a}\dot{l}\dot{b}J}ig\{$	1	1	6

A dictionary and outlook

one-particle	second-quantized	
$\overline{\mathcal{A}}$	$\sigma_t^D \mapsto \sigma_t^{D_A}$	
${\cal H}$	$Cliff_{\mathbb{C}}(\mathcal{H}_{\mathbb{R}})$	
D	$\{\sigma_t^D\}_t$ arising from e^{itD}	
spectral action	entropy of KMS	

- Physical significance of this entropy: "entropic geometry"?
- Extension to type II?
- Quantization of inner perturbations