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A fermion in spacetime

Minimal ingredients to describe a free fermion:
® coordinates on spacetime M:

X Xu(p) = Xﬂ(p)xl/(p)v etc.,

®  propagation;-described by Dirac.operator Dy = iv*0,




Noncommutative geometry

® Combination of coordinate algebra and operators is central to the
noncommutative approach [Connes 1994], in terms of spectral triples:

(A, H,D)

® The commutative case (Riemannian spin manifold M):

- the algebra C°>°(M) of smooth functions on M

— the Dirac operator Dy

—  both acting on Hilbert space L2(Sy) of square-integrable spinors.
®  The noncommutative case:

— an algebra A

— a (suitable) self-adjoint operator D

— both acting on a Hilbert space H
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Reconstruction of geometry

® Reconstruction of M in the commutative case [Connes 1989]:
(C(M), L2(Swm), Dm):

d(x,y) = Sl;p{|f(x) — f(y)|: gradient f <1}
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® The gradient of f is given by the commutator [Dy, f] = Dyf — Dy
(eg [Dr,fl=—i%)
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Emerging bosons

Our fermionic starting point induces a bosonic theory:
® “Inner perturbations” by the coordinates [C 1996, CCS 2013]:

Dy~ Dy + Z aj[D/\//, aJ’]
J

for functions a;, aj’- depending on the coordinates x,,.
® Then,
> a[Dm.a] = A (9,x") = Ay,

J

where A* is the electromagnetic 4-potential describing the photon.
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Entering noncommutativity

Consider a finite space F, but with a noncommutative structure:
® Described by block diagonal matrices (“noncommutative
coordinates”)

a2 0 -+ 0
0 a -~ 0
A = . . ’
0 0 ... an
where the aj, as, ..., ay are square matrices of size ny, na, ..., ny.

®  Hence we will consider the matrix algebra
AfF i= My, (C) & Mp,(C) & - - - & M, (C)

where C can be replaced by R or H.
® A finite Dirac operator is given by a hermitian matrix.
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Example: commutative two-point space

F:]_. 20

® Then the algebra of smooth functions

co-{(; 1)

® A finite Dirac operator is given by

DF:<S g); (ceC)

® The distance formula then becomes

0. =m{s el (e, 0 0 )21

)\1,)\2 S (C}
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Example: noncommutative two-point space

Coordinates on F are elements in C ® H

® A complex number z
® A quaternion g = qo + iqxc®; in terms of Pauli matrices:

y (01 A s (10
P=(o) (o) = )

It describes a two-point space, with internal structure:

= @ -=-=-x
o<
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Inner perturbations on nc two-point space

® 'Dirac operator’ D = (g 5 8)
_ 000
® |nner perturbations:
0 C¢y o
Dg ~~ DF+ZQJ[DF, ] = <c¢>1 0 02>

7 0 0
e Distance between the two points is now 1/1/|c¢1|2 + |cha 2.
® We may call ¢; and ¢, the Higgs field.
(]

Indeed, the group of unitary block diagonal matrices is now
U(1) x SU(2) and an element (A, u) therein acts as
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Almost-commutative spacetimes

We now combine mild matrix noncommutativity with spacetime:
® coordinates of the almost-commutative spacetime M x F:

£(p) = (2" (p), 4" (p))]

as elements in C @ H (for each p and each point p of M)
® The combined Dirac operator becomes

‘ Dmxr = Dm + vsDF ‘

Note that D3, r = D%, + D%, which will be useful later on.
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Inner perturbations on M x F

So, we describe M x F by:
M= (z",q9"); Dmxr = Dy + vsDF

As before, we consider inner perturbations of Dy« g by X¥(p):
® The inner perturbations of Dr become scalar fields ¢1, ¢».
® The inner perturbations of D), become matrix-valued:

Z 3j[Dwm, aJ/'] = a,7"(0u8") =t A"
J
with A, taking values in C @ H:

B, 0 0
A=|0o wd wy
— 3
0 W, W

corresponding to hypercharge and the W-bosons.
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What do we have so far?

Noncommutative geometry allows for a description of the particle content
of several models in particle physics (EW, SM, Pati-Salam, etc.):

® at the one-particle level, so essentially classical;

® 5o far, without a prescription on the dynamics of the fields.

We now resolve these questions by introducing a second quantization of
spectral triples.
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Second quantization of (A, #, D)

® The first step is to replace Hilbert space H by Cliffc(Hg), the
complexified Clifford algebra of Hg.

®  There is a one-parameter group of automorphisms o; on this Clifford
algebra, associated to the operator exp(itD) (on Hg).

® We then have that for any 8 > 0 there exists a unique state ¢ = g
on Cliffc(Hg) that satisfies the KMS-condition at inverse
temperature 3:

p(aoe(b))|e=ip = ¢(ba).

Proposition

If the operator exp(—[3|D]) is of trace class, the state gz is of type | and
the associated irreducible representation is given by the fermionic second
quantization associated to the complex structure | := j sign D on Hg.

Radboud University




Fermionic second quantization

Equip Hr with complex structure, e.g. | = isignD ~ Dirac sea e®®
o (liffc(Hg) acts on the Fock space AH,; via

n(v)=aj(v)+a(v),  (veHr)
Proposition (Chamseddine—Connes—vS, 2018)

() The one-parameter group o, is implemented in the (physical) Fock
representation by the one-parameter unitary group \exp(it|D|):

y(oe(A) = A(€Pni(A) \e Py A€ Cliffc(Hg).

(i) If exp(—p|D|) is of trace class the state g is of type | and is given by

03(A) = N ! Trace ( /\exp(—B|D|)fy,(A)> A € Cliffc(Hg)
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Gibbs states and entropy

®  We thus have a density matrix

ps =N N\e 7P

® Note that this is the Gibbs state for a Fermi gas on the
(noncommutative) space that is described by (A, H, D).

Theorem (Chamseddine—Connes—vS, 2018)
The (von Neumann) entropy,

S(ps) = — Trace pg log pg,

of the above Gibbs state pg is given by a spectral action Trace h(8D) for
the function h(x) = E(e™>) where E(y) is the entropy of a partition of
the unit interval in two intervals with size of ratio y (i.e. of size
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Analysis of the function h

®  &(y) is the entropy of a partition of the unit interval in two intervals
with size of ratio y:

1
0

E(y) = —Tracep, logpy;  py = (péy y > .
14y

lo
We have E(y) = log(y + 1) — yy+g1y

hx) = E(e™) = = +log(1+e ™)

and this is applied to the spectrum of 8D.
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Entropy of two-point space
F: 1@ 20

e Distance r := d(1,2) = 1/|c| in terms of Df = <g g)

For r — 0 we have S(pg) = 0;
® For r — oo we have maximum entropy S(pg) = 2log2;

Entropic force F(r) = 3719,5(ps)?

_ _pjer
F(I’) - coshz(ﬁr/2r)
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Laplace transform and heat expansion

Proposition (Chamseddine—Connes—vS, 2018)
The function h is a Laplace transform:

o = [ T g(pe

with
_ e—1/4t.

-1 2
t) = —1)" 2 n :
g( ) 8ﬁt5/2 ;ez( ) nq q

This allows us to use heat asymptotics of e~ tF°D* t5 determine
Trace h(8D).
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Asymptotic expansion of entropy

tD* 37 tkby then

If Tracee™
—2k
S(ps) = Trace h(BD) ~ Zﬂ“ b (k)= mkE(2k)
in terms of the Riemann &-function :
1 s
§(s) = 5s(s = Dr A T(Z)((s)
1(=1) | (=1/2) 7(0) (1/2) (1) 1(3/2)
9%(3) n*/2 log 2 1 1 7¢(3)
2 3 NG 8 8572
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Entropy of the electroweak theory

Use D%, r = D2 + D2 to compute (in 4d)

S(pp) = Trace h(BDumx ) ~ caff~*Vol(M) + c572 / Rve

— / Covpo CH7P7 + / ¢} Trace Fy, F* —c5 32| + cbl@]* + - - -

We now recognize:
® (Higher-derivative) gravity
® The Yang-Mills term F,, F"** for
hypercharge and W-boson
® The Higgs potential
—121o + Aol*
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Beyond the SM with noncommutative geometry

The matrix coordinates of the Standard Model in C @ H & M3(C)
arise naturally as a restriction of the following coordinates

%(p) = (ah(p). 4} (p). m"(p)) € Hg ® Hy & Ma(C)
corresponding to a Pati—Salam unification:
U(1)y x SU(2). x SU(3) — SU(2)g x SU(2). x SU(4)
The 96 fermionic degrees of freedom are structured as
VR UR
Eer d,'
The finite Dirac operator is a 96 x 96-dimensional matrix containing
Yukawa mass matrices, etc.

e d;

v ujL > (1217273)
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Inner perturbations

® |nner perturbations of Dy now give three gauge bosons:

wh, o owE, vk

corresponding to SU(2)r x SU(2); x SU(4).
For the inner perturbations of Dg we distinguish two cases,
depending on the initial form of D:

ST*
| The Standard Model D = (T §>
[l A more general Dr with zero f, — fi-interactions.
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Scalar sector of the spectral Pati—-Salam model

| For a SM Dg, the resulting scalar fields are composite fields,
expressed in scalar fields whose representations are:

| SU(2)r SU(2). SU(4)
g 2 2 1
JANY 2 1 4
Z’J 1 1 15
Il For a more general finite Dirac operator, we have fundamental scalar
fields:
particle | SU(2)r  SU(2). SU(4)
):f;j 2 2 1+15
3 1 10
Héle 1 1 6
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A dictionary and outlook

one-particle |  second-quantized
A oP ot
H Cliffc(HR)
D {oP}; arising from €'l
spectral action entropy of KMS

®  Physical significance of this entropy: “entropic geometry?
® Extension to type |17
® Quantization of inner perturbations
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