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Context: dark energy and string theory, pt. 1

▶ observations:

• present-day accelerated cosmic expansion
also, see recent DESI analysis: the best fit to data might be for a
time-dependent dark-energy background!

• huge scale hierarchies

▶ string-theoretic considerations: all couplings are dynamical (𝑔 = 𝑔(𝜙))

• Dine-Seiberg problem: hard to find weakly-coupled vacua

𝜑

𝑉
𝑉 (𝜑) ≃ ±𝐴 e−𝜑

𝜑

𝑉

𝑉 (𝜑) ≃ ±𝐴 e−𝜑 ∓ 𝐵 e−2𝜑

𝜑

𝑉

𝑉 (𝜑) ≃ 𝐴 e−𝜑 − 𝐵 e−2𝜑 + 𝐶 e−3𝜑

• small coupling constants:
possibly natural at field-space boundary

𝜙 ∼ ∞
(𝑔 ∼ 0)

|𝜙| ≪ ∞
(𝑔 ≫ 0)
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Context: dark energy and string theory, pt. 2

▶ long-standing proposals for 4-dimensional de Sitter vacua:

- cosmological constant Λ > 0 in KKLT- and LVS-scenarios
Kachru, Kallosh, Linde, Trivedi [hep-th/0301240]

Balasubramanian, Berglund, Conlon, Quevedo [hep-th/0502058]

- however, fully explicit 10-dimensional realizations remain elusive

▶ (refined) de Sitter conjecture:

• effective scalar potentials 𝑉 consistent with quantum gravity
asymptotically bounded as 𝜕𝑉 /𝑉 ≥ 𝜅𝑑𝑐, or 𝜕2𝑉 /𝑉 ≤ −𝜅2

𝑑𝑐′, with 𝑐, 𝑐′ ∼ 1
Obied, Ooguri, Spodyneiko, Vafa [hep-th/1806.08362]

Ooguri, Palti, Shiu, Vafa [hep-th/1810.05506]

• generally speaking, strong obstacle to accelerating cosmologies
- de Sitter minima: ruled out
- rolling-scalar solutions: admitted,

but acceleration hard to get if 𝑐 is not small enough
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Our program

our fundamental goal:
to look for cosmic acceleration in scalar-field cosmological solutions
that asymptotically approach the field-space boundary (quintessence-like theories)

FLRW-metric: 𝑑 ̃𝑠2
1,𝑑−1 = −d𝑡2 + 𝑎2(𝑡) d𝑙2𝔼𝑑−1 ; Hubble parameter: 𝐻 = ̇𝑎

𝑎

• 𝜖-parameter: 𝜖 = − 𝐻̇
𝐻2

- deceleration parameter: 𝑞 = − 𝑎 ̈𝑎
̇𝑎2 = 𝜖 − 1

- equation of state: 𝑤 = 𝑝
𝜌

= −1 + 2𝜖
𝑑 − 1

- note: we are not referring to the slow-roll parameter 𝜖𝑉 = 𝑑 − 2
4

(𝜕𝑉 )2

𝜅2
𝑑𝑉 2

• accelerated expansion if 𝜖 < 1, i.e. ̈𝑎 > 0

disclaimers:
▶ no string-theoretic/swampland assumptions employed:

we study general field theories and obtain model-independent constraints;
then, we assess what such constraints imply for string compactifications

▶ we look for a proof of principle that (semi-)eternal cosmic acceleration is possible
in string compactifications; we do not try to make close contact with observations
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0. Overview and outline:
cosmic acceleration with scalar fields
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Rolling cosmological scalar fields

• cosmological equations for a scalar 𝜑 rolling down a potential 𝑉 = 𝑉 (𝜑):

𝜑

𝑉 (𝜑)

𝜑(𝑡)

𝜑̈ + (𝑑 − 1)𝐻𝜑̇ + 𝜕𝑉
𝜕𝜑

= 0

1
2

𝜑̇2 + 𝑉 = (𝑑 − 1)(𝑑 − 2)
2𝜅2

𝑑
𝐻2

• cosmic acceleration possible if 𝑉 is not too steep:
rolling is not too quick and “resembles” a de Sitter vacuum

• e.g. 𝑉 (𝜑) = Λ e−𝜅𝑑𝛾𝜑, with 𝛾 ≤ 2
√

𝑑 − 1/
√

𝑑 − 2

- power-law scale factor: 𝑎(𝑡) = 𝑎0( 𝑡
𝑡0

)
4

𝑑−2
1

𝛾2

- 𝜖 = 𝑑 − 2
4

𝛾2: acceleration if 𝛾 ≤ 2√
𝑑 − 2 Copeland, Liddle, Wands [gr-qc/9711068]

• note: similar, but more complicated for multiple scalars!
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Scaling cosmologies

• cosmologies with multi-field multi-exponential potentials admit solutions with
power-law scale factor (these are called scaling solutions: more details later on)

𝑎(𝑡) = 𝑎0( 𝑡
𝑡0

)
1
𝜖

Collinucci, Nielsen, Van Riet [hep-th/0407047]

• a shallow exponential provides cosmic acceleration;
the main challenge in string embeddings is to find shallow-enough potentials

these observations give us the motivation to study multi-field multi-exponential
potentials for realizations of late-time cosmic acceleration

note:
- we are talking about the late-time behavior,

i.e. we are not looking for cosmic inflation
- at finite times, the solutions can look very different

(and easily provide cosmic acceleration, e.g. if the field is initially running uphill!
but typically the accelerating phase is too short to be viable for cosmic inflation)

see e.g. Russo [hep-th/0403010]
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Starting setup

field content:

• canonically-normalized scalars 𝜙𝑎, 𝑎 = 1, … , 𝑛
- e.g. string compactifications: dilaton, radions (field space is generally curved,

but for now we may assume that axions are stabilized non-perturbatively)
- typical in phenomenological constructions (no UV-completion)

• multi-exponential potential 𝑉 =
𝑚

∑
𝑖=1

Λ𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎

- e.g. string compactifications:
non-trivial curvature, fluxes, localized sources and generic Casimir-energy terms

for general arguments, see e.g. Ooguri, Palti, Shiu, Vafa [hep-th/1810.05506]
Hebecker, Wrase [hep-th/1810.08182]

- typical in phenomenological constructions (no UV-completion)

𝑉 =
3

∑
𝑖=1

Λ𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎

𝜙𝑎 = 𝜙1, 𝜙2

(𝛾𝑖)𝑎 = 𝛾𝑖𝑎 = ⎛⎜⎜
⎝

𝛾11 𝛾12
𝛾21 𝛾22
𝛾31 𝛾32

⎞⎟⎟
⎠

𝛾∞1

𝛾∞2

𝛾1

𝛾11

𝛾12

𝛾2

𝛾21

𝛾22

𝛾3

𝛾31

𝛾32
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Outline

in this talk, we will see:

1. a universal bound on late-time cosmic acceleration for flat field spaces,
without any need to find an explicit solution (like a scaling solution)

2. a class of theories with a universal cosmological attractor solution, i.e. the
scaling solution, with the possibility to compute explicitly any quantity of interest

3. bonus: a universal bound on cosmic contraction

4. universal bounds on late-time cosmic acceleration for certain curved field spaces,
without any need to find an explicit solution

in all cases, we get model-independent results
- independently of initial conditions
- with no approximations in the field equations
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1. Bounds on cosmic acceleration
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Standard field equations

field-content: canonical scalars 𝜙𝑎, potential 𝑉 =
𝑚

∑
𝑖=1

Λ𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎

▶ cosmological equations:

̈𝜙𝑎 + (𝑑 − 1)𝐻 ̇𝜙𝑎 + 𝜕𝑉
𝜕𝜙𝑎

= 0 (scalar field eqs.)

𝐻2 = 2𝜅2
𝑑

(𝑑 − 1)(𝑑 − 2)
[ 1

2
̇𝜙𝑎

̇𝜙𝑎 + 𝑉] (Friedmann eq. 1)

▶ also imply:

𝐻̇ = − 𝜅2
𝑑

𝑑 − 2
̇𝜙𝑎

̇𝜙𝑎 (Friedmann eq. 2)

notes:
- remember that 𝜖 = −𝐻̇/𝐻2: more kinetic energy means less cosmic acceleration
- finding general time-dependent solutions is extremely hard, but we can look for

universal properties without restricting to explicit solutions
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Cosmological autonomous systems

Copeland, Liddle, Wands [gr-qc/9711068]
new variables:

𝑥𝑎 = 𝜅𝑑√
𝑑 − 1

√
𝑑 − 2

̇𝜙𝑎

𝐻

𝑦𝑖 = 𝜅𝑑
√

2√
𝑑 − 1

√
𝑑 − 2

1
𝐻

√Λ𝑖e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎

with:
𝑓 = (𝑑 − 1)𝐻

𝑐𝑖𝑎 = 1
2

√
𝑑 − 2√
𝑑 − 1

𝛾𝑖𝑎

▶ cosmological equations (autonomous system: 𝛼̇ = 𝜙(𝛼), 𝛼 = 𝛼(𝑡)):

̇𝑥𝑎 = [−𝑥𝑎(𝑦)2 +
𝑚

∑
𝑖=1

𝑐𝑖𝑎(𝑦𝑖)2] 𝑓 (scalar field eqs.)

̇𝑓 = −(𝑥)2𝑓2 (Friedmann eq. 2)

with:
(𝑥)2 + (𝑦)2 = 1 (Friedmann eq. 1)
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Late-time behaviours: an idea, pt. 1

• if (𝑦𝑖)2 > 0, we can write the differential inequality

̇𝑥𝑎 = [−𝑥𝑎(𝑦)2 +
𝑚

∑
𝑖=1

𝑐𝑖𝑎(𝑦𝑖)2] 𝑓 ≥ [−𝑥𝑎(𝑦)2 +
min𝑖 𝑐𝑖𝑎⏟

𝑐𝑎 (𝑦)2] 𝑓

i.e.

̇𝑥𝑎 ≥ (−𝑥𝑎 + 𝑐𝑎)(𝑦)2𝑓

• given 𝜑(𝑡) = ∫
𝑡

𝑡0

d𝑠 [𝑦(𝑠)]2𝑓(𝑠), we can write

d
d𝑡

[e𝜑(𝑡) 𝑥𝑎(𝑡)] = e𝜑(𝑡) [𝑥𝑎(𝑡) [𝑦(𝑡)]2𝑓(𝑡) + ̇𝑥𝑎(𝑡)] ≥ 𝑐𝑎 e𝜑(𝑡) [𝑦(𝑡)]2𝑓(𝑡)

i.e.
d
d𝑡

[e𝜑(𝑡) 𝑥𝑎(𝑡)] ≥ 𝑐𝑎
d
d𝑡

e𝜑(𝑡)

which integrates to

e𝜑(𝑡) 𝑥𝑎(𝑡) − 𝑥𝑎(𝑡0) ≥ 𝑐𝑎[e𝜑(𝑡) − 1]

• if lim
𝑡→∞

𝜑(𝑡) = ∞, we find

lim inf
𝑡→∞

𝑥𝑎(𝑡) ≥ 𝑐𝑎
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Late-time behaviours: an idea, pt. 2

• as 𝜖 = (𝑑 − 1)(𝑥)2, we want to see how far from 𝜖 = 0 we are at late times:

- 𝑐𝑎 ≥ 0: useful bound, as 𝑥𝑎 ≥ 𝑐𝑎 implies (𝑥𝑎)2 ≥ (𝑐𝑎)2

𝑥𝑎𝑐𝑎0 +1−1

- 𝑐𝑎 < 0: useless bound, as 𝑥𝑎 ≥ 𝑐𝑎 still only implies (𝑥𝑎)2 ≥ 0

𝑥𝑎𝑐𝑎 0 +1−1

so, including only the terms 𝑐𝑎
∞ = 𝑐𝑎 > 0, at late times we have 𝜖 ≥ (𝑑 − 1)(𝑐∞)2

• if lim
𝑡→∞

𝜑(𝑡) < ∞, we can show that

lim
𝑡→∞

[𝑥(𝑡)]2 = 1

which means that at late times we have 𝜖 = 𝑑 − 1

[all mathematical proofs in the papers]
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Late-time bounds on cosmic acceleration

if all Λ𝑖 > 0, let 𝛾𝑎
∞ = {

𝛾𝑎, 𝛾𝑎 = min𝑖 𝛾𝑖
𝑎 > 0

0, 𝛾𝑎 ≤ 0

then, we have the analytic late-time bounds

𝑑 − 1 ≥ 𝜖 ≥ 𝑑 − 2
4

(𝛾∞)2

note: 𝜖 = 𝑑 − 1 if (𝛾∞)2 ≥ 4 𝑑 − 1
𝑑 − 2

example:

𝑉 =
3

∑
𝑖=1

Λ𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎

𝜙𝑎 = 𝜙1, 𝜙2

(𝛾𝑖)𝑎 = 𝛾𝑖𝑎 = ⎛⎜⎜
⎝

𝛾11 𝛾12
𝛾21 𝛾22
𝛾31 𝛾32

⎞⎟⎟
⎠

𝛾∞1

𝛾∞2

𝛾1

𝛾11

𝛾12

𝛾2

𝛾21

𝛾22

𝛾3

𝛾31

𝛾32

(𝛾∞)2 = (𝛾12)2
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Cosmic-acceleration bound: optimization

• the bound can be optimized by a field-space basis O(𝑛)-transformation:

𝑑 − 1 ≥ 𝜖 ≥ 𝑑 − 2
4

( ̂𝛾∞)2

• ( ̂𝛾∞)2 corresponds to the squared distance of the origin from the coupling convex hull

example:

𝑉 =
3

∑
𝑖=1

Λ𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎

𝜙𝑎 = 𝜙1, 𝜙2

𝛾𝑖𝑎 = ⎛⎜⎜
⎝

𝛾11 𝛾12
𝛾21 𝛾22
𝛾31 𝛾32

⎞⎟⎟
⎠

𝛾∞1

𝛾∞2

𝛾1

𝛾11

𝛾12

𝛾2

𝛾21

𝛾22

𝛾3

𝛾31

𝛾32 ̂𝛾∞1

̂𝛾∞2

( ̂𝛾∞)2
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Cosmic-acceleration bound: physical interpretation

𝑉 =
3

∑
𝑖=1

Λ𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎

𝜙𝑎 = 𝜙1, 𝜙2

(𝛾𝑖)𝑎 = 𝛾𝑖𝑎 = ⎛⎜⎜
⎝

𝛾11 𝛾12
𝛾21 𝛾22
𝛾31 𝛾32

⎞⎟⎟
⎠

𝛾∞1

𝛾∞2

𝛾1

𝛾11

𝛾12

𝛾2

𝛾21

𝛾22

𝛾3

𝛾31

𝛾32 ̂𝛾∞1

̂𝛾∞2

( ̂𝛾∞)2

▶ in the optimal basis:

𝑉 = [
𝑚̂

∑
𝜎=1

Λ𝜎 e−𝜅𝑑𝛾̂𝜎𝑎̌
̂𝜙𝑎̌] e−𝜅𝑑𝛾̂∞

̂𝜙1 +
𝑚

∑
𝜄=𝑚̂+1

Λ𝜄 e−𝜅𝑑𝛾̂𝜄1̂
̂𝜙1−𝜅𝑑𝛾̂𝜄𝑎̌

̂𝜙𝑎̌

- the 1-field 1-term potential ̂𝑉∞ = Λ̂∞ e−𝜅𝑑𝛾̂∞
̂𝜙1 would give 𝜖 = 𝑑 − 2

4
̂𝛾2
∞

- the presence of other fields creates further steepness
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Acceleration bound: an optimistic scenario

observation 1:
on paper, there are plenty of possibilities for late-time acceleration!

𝜙𝑎 = 𝜙1, 𝜙2

𝛾𝑖𝑎 = (𝛾11 𝛾12
𝛾21 𝛾22

)

𝛾∞1

𝛾∞2

𝛾1

𝛾11

𝛾12

𝛾2

𝛾21

𝛾22

𝛾3

𝛾31

𝛾32

( ̂𝛾∞)2 = 0

observation 2:
however, it seems hard to find coupling like these, in string theory
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Dilaton obstruction to cosmic acceleration, pt. 1

simple scaling argument:

▶ 𝑑-dim. potentials come from dim. reduction of terms like (𝐾10,𝑟(𝜎) = Λ10,𝑟 e−𝑘𝜎)

𝑆 = − 1
2𝜅2

10
∫

X1,9

[𝐴𝑟 ∧ ⋆1,9𝐴𝑟] 𝐾10,𝑟(𝜎) e−𝜒EΦ

where 𝑔𝑠(Φ) = eΦ and vol𝑠 K10−𝑑 = e(10−𝑑)𝜎 𝑙10−𝑑
𝑠

▶ reduction to 𝑑-dimensional Einstein frame:

• 𝑑-dim. dilaton 𝛿, string-frame radion 𝜎, with e𝛿 = eΦ− 10−𝑑
2 𝜎

• the canonically-normalized fields ̃𝛿 and 𝜎̃ see the potential

𝑉 ( ̃𝛿, ̃𝜙) = Λ e[ 𝑑√
𝑑−2 − 1

2 𝜒E
√

𝑑−2] 𝜅𝑑
̃𝛿−[(1− 1

2 𝜒E)
√

10−𝑑− 2𝑟+𝑘√
10−𝑑 ] 𝜅𝑑𝜎̃

we observe:

• model-dependent 𝜎̃-coupling

• for worldsheet Euler character 𝜒E, universal 𝛾 ̃𝛿 = 𝑑√
𝑑 − 2

− 𝜒E
2

√
𝑑 − 2
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Dilaton obstruction to cosmic acceleration, pt. 2

remember: for worldsheet Euler character 𝜒E, universal 𝛾 ̃𝛿 = 𝑑√
𝑑 − 2

− 𝜒E
2

√
𝑑 − 2

general string-theoretic considerations:

- upper bound on 𝛾 ̃𝛿: 𝜒E ≤ 𝜒E(S2) = 2, so 𝛾 ̃𝛿 ≥ 2√
𝑑 − 2

- lower bound on 𝜖: 𝜖 ≥ 𝑑 − 2
4

(𝛾∞)2 ≥ 𝑑 − 2
4

𝛾 ̃𝛿
2≥ 1

different argument, but related conclusion, in Rudelius [hep-th/2101.11617]

possible ways out (besides field-space curvature):
• theory not at weak string coupling
• stabilized dilaton
• presence of negative-definite potential terms:

bound takes a different form, less obvious but still restrictive!
[preliminary discussion of potentials with terms of both signs in the papers]

[more in upcoming work]
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2. Scaling cosmologies
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Scaling cosmologies: general characterization

▶ scaling cosmologies are solutions with constant positive 𝜖

• power-law scale factor: 𝑎(𝑡) = 𝑎0( 𝑡
𝑡0

)
1
𝜖

▶ complete analytic characterization, if rank 𝛾𝑖𝑎 = 𝑚 (where 𝑀𝑖𝑗 = 𝛾𝑖𝑎𝛾𝑗
𝑎):

• field-space trajectory 𝜙𝑎
∗ (𝑡) = 𝜙𝑎

0 + 2
𝜅𝑑

[
𝑚

∑
𝑖=1

𝑚
∑
𝑗=1

𝛾𝑖
𝑎(𝑀−1)𝑖𝑗] ln 𝑡

𝑡0

• 𝜖-parameter 𝜖 = 𝑑 − 2
4

[
𝑚

∑
𝑖=1

𝑚
∑
𝑗=1

(𝑀−1)𝑖𝑗]
−1

Copeland, Liddle, Wands [gr-qc/9711068]
Collinucci, Nielsen, Van Riet [hep-th/0407047]

▶ notes:

• no slow roll: 𝑤 = 𝑇∗ − 𝑉∗
𝑇∗ + 𝑉∗

= −1 + 2𝜖
𝑑 − 1

, ̈𝜙𝑎
∗ ∝ 𝐻 ̇𝜙𝑎

∗ ∝ 𝜕𝑉
𝜕𝜙∗𝑎

∝ 1
𝑡2

• all scalar-potential terms decay identically: 𝑉𝑖[𝜙𝑎
∗ (𝑡)] = 𝑉𝑖(𝑡0) (𝑡0

𝑡
)

2

▶ also: scaling solutions correspond to critical points of the autonomous system
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Scaling cosmologies: late-time attractors

relevance:

- late-time scale factor is bounded by power-law behaviors,
remember: 𝑑 − 1 ≥ 𝜖 ≥ [(𝑑 − 2)/4] ( ̂𝛾∞)2

- if Λ𝑖 > 0, one of the scaling solutions is
the unique perturbative late-time attractor

see e.g. Hartong, Ploegh, Van Riet, Westra [gr-qc/0602077]

▶ new result:

if all terms in the potential are positive-definite, i.e. if Λ𝑖 > 0, then
we can analyically prove that one of the scaling solutions is the unique universal
late-time attractor, irrespectively of the initial conditions, and that such a solution
saturates the universal bound on cosmic acceleration, i.e.

𝜖 = 𝑑 − 2
4

( ̂𝛾∞)2

[all mathematical proof in the papers]
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Convergence to scaling solutions: physical interpretation

example:

𝑉 =
2

∑
𝑖=1

Λ𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎

𝜙𝑎 = 𝜙1, 𝜙2

𝛾𝑖𝑎 = (𝛾11 𝛾12
𝛾21 𝛾22

)

𝛾∞1

𝛾∞2

𝛾1

𝛾11

𝛾12

𝛾2

𝛾21

𝛾22 ̂𝛾∞1

̂𝛾∞2

( ̂𝛾∞)2

▶ in the optimal basis: 𝑉 = [
𝑚

∑
𝜎=1

Λ𝜎 e−𝜅𝑑𝛾̂𝜎𝑎̌
̂𝜙𝑎̌] e−𝜅𝑑𝛾̂∞

̂𝜙1

- all fields but ̂𝜙1 have positive exponential potentials with couplings
of both signs, and therefore get asymptotically stabilized

- in the field-space asymptotics, effectively we only have the
1-field 1-term potential ̂𝑉∞ = Λ̂∞ e−𝜅𝑑𝛾̂∞

̂𝜙1 , which gives 𝜖 = 𝑑 − 2
4

̂𝛾2
∞
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Scaling cosmologies and coupling convex hull

more examples:

𝛾∞1

𝛾∞2

𝛾1

𝛾11

𝛾12

𝛾2

𝛾21

𝛾22 𝛾3

𝛾31

𝛾32

( ̂𝛾∞)2

𝛾∞1

𝛾∞2

𝛾1

𝛾11

𝛾12

𝛾2

( ̂𝛾∞)2

𝛾21

𝛾22

• if the distance vector from the origin to the convex-hull coupling hyperplane
intersects the convex hull itself too, we analytically find the late-time 𝜖-parameter

𝜖 = 𝑑 − 2
4

( ̂𝛾∞)2 = 𝑑 − 2
4

[
𝑚

∑
𝑖=1

𝑚
∑
𝑗=1

(𝑀−1)𝑖𝑗]
−1

where some of the potential terms might be truncated

• else, the potential is also formally truncated, still leaving 𝜖 = 𝑑 − 2
4

( ̂𝛾∞)2

in all cases, the universal bound is saturated
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Scaling cosmologies: field-space trajectory

field-space trajectory is a straight line

𝜙𝑎

𝜙𝑎

𝜑̂

̂𝜙𝑎̌

𝜃𝑎
∗

original field basis:

𝜙𝑎
∗ (𝑡) = 𝜙𝑎

∞ + 𝛼𝑎

𝜅𝑑
ln 𝑡

𝑡∞

O(𝑛)-transformed field basis:
̂𝜙𝑎̌
∗ (𝑡) = ̂𝜙𝑎̌

∞

𝜑̂∗(𝑡) = 𝜑̂∞ + 1
𝜅𝑑

2
̂𝛾∞

ln 𝑡
𝑡∞

note: on-shell potential ̂𝑉∗ = Λ̂ e−𝜅𝑑𝛾̂∞𝜑̂∗

𝜃𝑎
∗ = 𝛼𝑎

√𝛼𝑏𝛼𝑏

▶ exact relationship between scalar-potential slope and 𝜖-parameter:

− 1
𝑉

𝜃𝑎
∗

𝜕𝑉
𝜅𝑑 𝜕𝜙𝑎 (𝜙∗) = 1

𝜅𝑑𝑉
√ 𝜕𝑉

𝜕𝜙𝑎
𝜕𝑉
𝜕𝜙𝑎

(𝜙∗) = 2
√

𝜖√
𝑑 − 2

= ̂𝛾∞

to compare with Obied, Ooguri, Spodyneiko, Vafa [hep-th/1806.08362]
Ooguri, Palti, Shiu, Vafa [hep-th/1810.05506]

false for generic solution 𝜙𝑎, unless 𝜂, Ω = 0 (𝜂 = − ̇𝜖/(𝜖𝐻), Ω: non-geodesity):

𝛾⋆(𝜖, 𝜂)[𝜙] = − 1
𝑉

̇𝜙𝑎

√ ̇𝜙𝑏
̇𝜙𝑏

𝜕𝑉
𝜅𝑑 𝜕𝜙𝑎 (𝜙) ≤ 1

𝜅𝑑𝑉
√ 𝜕𝑉

𝜕𝜙𝑎

𝜕𝑉
𝜕𝜙𝑎 (𝜙) = 𝛾(𝜖, 𝜂, Ω)[𝜙]

Achúcarro, Palma [hep-th/1807.04390]
see also Andriot, Horer, Tringas [hep-th/2212.04517]
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Scaling cosmologies: non-slow-roll gradient flow

▶ in a scaling cosmology (no slow roll), we have 𝜙𝑎
∗ (𝑡) = 𝜙𝑎

∞ + 𝛼𝑎

𝜅𝑑
ln 𝑡

𝑡∞
, so

• ̈𝜙𝑎
∗ (𝑡) = − 1

𝜅𝑑𝑡2 𝛼𝑎

• (𝑑 − 1)𝐻 ̇𝜙𝑎
∗ (𝑡) = 1

𝜅𝑑𝑡2
𝑑 − 1

𝜖
𝛼𝑎

we can plug these into the scalar-field eq. to find the trajectory, i.e.

̈𝜙𝑎
∗ + (𝑑 − 1)𝐻 ̇𝜙𝑎

∗ = [1 − 𝜖
𝑑 − 1

] (𝑑 − 1)𝐻 ̇𝜙𝑎
∗ = − 𝜕𝑉

𝜕𝜙𝑎
(𝜙∗)

as the proportionality factor between ̇𝜙𝑎
∗ and 𝜕𝑉 /𝜕𝜙∗𝑎 is universal, this happens to

give a non-slow-roll gradient-flow trajectory (note: irrespectively of 𝜖)

▶ in the slow-roll regime, one approximates

̈𝜙𝑎
sr + (𝑑 − 1)𝐻 ̇𝜙𝑎

sr

|𝜙̈𝑎sr|
𝐻|𝜙̇𝑎sr| ≪1

≃ (𝑑 − 1)𝐻 ̇𝜙𝑎
sr = − 𝜕𝑉

𝜕𝜙𝑎
(𝜙sr)

conclusion:
although the field-space trajectory is accidentally the same,
the physics (i.e. the time dependence of fields) is completely different
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A way out for cosmic acceleration?

▶ if the late-time behavior has 𝜖 = 1, it may still take an infinite time to reach it
▶ if the solutions approach the asymptotic value 𝜖 = 1 (not accelerated!) from

below, there is an infinite time where the solutions are at 𝜖 < 1
mechanism recently exploited, if 𝑘 = −1, by Andriot, Tsimpis, Wrase [hep-th/2309.03938]

▶ e.g. single-field single-potential theory
analytic solution: 𝑥(𝑡) = 𝑐 + e−𝜑(𝑡)[𝑥(𝑡0) − 𝑐]

𝑡

𝑥(𝑡)
1

−1

𝑐

𝑡

𝑥2(𝑡)
1

−1

𝑐2

▶ however, we have not found a single string-theoretic potential
such that ( ̂𝛾∞)2 = 4/(𝑑 − 2), which would give 𝜖 = 1!
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3. Bonus: bounds on cosmic contraction
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Contracting universes and ekpyrosis

• relevance of contracting universes:
- with FLRW-space curvature 𝑘, a set of perfect fluids with equation-of-state

parameters 𝑤𝛼 gives the Friedmann equation

𝐻2 = 2𝜅2
𝑑

(𝑑 − 1)(𝑑 − 2)
∑

𝛼
𝜌𝛼,0 ( 𝑎0

𝑎
)

(𝑑−1)(1+𝑤𝛼)

− 𝑘
𝑎2 ,

- if the universe is contracting, all energy-density contributions blow up,
with the fluid with the maximal 𝑤 of all dominating

this the conceptual basis of ekpyrotic scenarios, i.e. proposed solutions to the flatness
and horizon problems, alternative to cosmic inflation: a fundamental element is a
cosmological fluid with a large 𝑤-parameter 𝑤 ≫ 1

Khoury, Ovrut, Steinhardt, Turok [hep-th/0103239]
Khoury, Ovrut, Seiberg, Steinhardt, Turok [hep-th/0108187]

• scalar fields with a negative potential realize a contracting universe:
we are agnostic about the viability of ekpyrosis; yet, our methods allow us to find
analytic bounds on 𝑤 for a universe composed of canonical scalars 𝜙𝑎 under the
potential 𝑉 = − ∑𝑚

𝑖=1 𝐾𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎 , with 𝐾𝑖 > 0
[all mathematical proofs in the papers]
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Universal bound on the cosmological contraction rate

▶ let (Γ̃∞)2 be the largest squared distance of the origin from the rectangular box with
the smallest area that contains all the coupling vectors and let ( ̂𝛾⋄)2 be the squared
distance of the origin from the coupling convex hull

▶ after a finite time, the 𝑤-parameter is universally bounded as

−1 + 1
2

𝑑 − 2
𝑑 − 1

( ̂𝛾⋄)2 ≤ 𝑤 ≤ −1 + 1
2

𝑑 − 2
𝑑 − 1

(Γ̃⋆)2

example:

𝑉 = −
3

∑
𝑖=1

𝐾𝑖 e−𝜅𝑑𝛾𝑖𝑎𝜙𝑎

𝜙𝑎 = 𝜙1, 𝜙2

𝛾𝑖𝑎 = (𝛾𝑖)𝑎 = ⎛⎜⎜
⎝

𝛾11 𝛾12
𝛾21 𝛾22
𝛾31 𝛾32

⎞⎟⎟
⎠

𝛾⋆1

𝛾⋆2

𝛾1

𝛾11

𝛾12

𝛾2

𝛾21

𝛾22

𝛾3

𝛾31

𝛾32

̃𝛾⋆1

̃𝛾⋆2

(Γ̃⋆)2

( ̂𝛾⋄)2
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4. Adding field-space curvature
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Field spaces with negative curvature

from now on, we consider (pseudo)scalar theories with
• kinetic energy with multi-exponential couplings:

𝑇 [𝜙, 𝜁] = 1
2

𝑛
∑
𝑎=1

( ̇𝜙𝑎)2 + 1
2

𝑝

∑
𝑟=1

e−𝜅𝑑 ∑𝑎 𝜆𝑟𝑎𝜙𝑎 ( ̇𝜁𝑟)2 𝛾1

𝛾2

𝛾3

𝜆1
𝜆2

𝜆3

𝜆4

• multi-exponential scalar potentials:

𝑉 [𝜙] =
𝑚

∑
𝑖=1

Λ𝑖 e−𝜅𝑑 ∑𝑎 𝛾𝑖𝑎𝜙𝑎

some perspectives:
- not yet the most general action arising in string compactifications, but it now has a

field space with negative curvature, which may be expected in the asymptotics
see e.g. Ooguri, Vafa [hep-th/0605264]

for instance, any 4-dim. theory with 𝑁4 = 1 supersymmetry with Kähler potential
𝜅2

4𝐾 = −𝑛 ln [−i(𝜉 − 𝜉)] for a chiral multiplet 𝜉 = 𝜃 + i e𝑙𝜑 gives the kinetic action

𝑇 = 𝑛
4𝜅2

4
[𝑙2𝜑̇2 + e−2𝑙𝜑 ̇𝜃2] = 1

2
̇𝜙2 + 1

2
e−𝜅𝑑

2
√

2√
𝑛 𝜙 ̇𝜁2

e.g. STU-models (𝑛 = 𝑝, diagonal 𝜆𝑟𝑎-matrix)
e.g. complex-structure moduli asymptotics
in type-II compactifications on Calabi-Yau orientifolds

e.g. Grimm, Li, Valenzuela [hep-th/1910.09549]

- this action can be used for richer model-building, independently of UV-completions
32 / 39



State of the art and our results

• existing phase-space analyses for 1 or 2 scalars and 1 axion
Sonner, Townsend [hep-th/0608068]

Russo, Townsend [hep-th/2203.09398]

• existing studies of the critical points for
diagonal kinetic couplings and single-term potentials

Cicoli, Dibitetto, Pedro [hep-th/2002.02695]
Cicoli, Dibitetto, Pedro [hep-th/2007.11011]

Brinkmann, Cicoli, Dibitetto, Pedro [hep-th/2206.10649]
Revello [hep-th/2311.12429]

extremely concise summary (𝑑 = 4): the perturbatively-stable attractor has

- 𝜖 = 3𝛾
𝛾 + 𝜆

, if √ 𝜆2

4
+ 6 − 𝜆

2
< 𝛾 < 𝜆 and 𝜆 > 0

- 𝜖 = 𝛾2

2
, else

▶ we can prove bounds on the late-time 𝜖-parameter,
beyond the analysis of linear stability,
for non-diagonal kinetic couplings and multi-term potentials

▶ for certain arrangements of the coupling vectors, we can prove that
the same kinds of bounds as for flat field spaces are still in place

[all mathematical proofs in the papers]
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Case A: axion-scalar antialignment

if 𝛾∞ ⋅ 𝜆𝑟 < 0, then at late-enough times we have 𝜖 = 𝑑 − 2
4

(𝛾∞)2

𝛾1

𝛾2
𝛾3

𝜆1

𝜆2 𝜆3

𝜆4

𝛾∞
𝛾1

𝛾2
𝛾3

𝜆1

𝜆2 𝜆3

𝜆4

𝛾∞

in particular:
late-time attractor is the scaling solution associated to the
truncated potential fixing 𝛾∞, with zero axion kinetic energy

note: if (𝛾∞)2 ≥ 4 𝑑 − 1
𝑑 − 2

, then at late times we have 𝜖 = 𝑑 − 1
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Case B: axion-scalar alignment

▶ pedagogical case: diagonal coupling matrices in one (hyper)quadrant

𝛾1𝜆1

𝜆2

𝛾2

𝜆⟂
1

𝜆⟂
2

Γ̃ = Γ
for Γ𝑎 = max𝑖 𝛾𝑖𝑎, at late-enough times:

𝜖 ≤ 𝑑 − 2
4

(Γ)2

▶ general statement:
- 𝜆1,2 in same quadrant
- 𝛾1,2 in the convex cone C(𝜆1, 𝜆2)

• define 𝜆⟂
1,2 such that:

- 𝜆1,2 ⋅ 𝜆⟂
1,2 = 1

- 𝜆1,2 ⋅ 𝜆⟂
2,1 = 0

• define Γ̃𝑎 =
2

∑
𝑟=1

(max
𝑖

(𝛾𝑖 ⋅ 𝜆⟂
𝑟 ))𝜆𝑟𝑎

(note: Γ̃𝑎 = Γ𝑎 for orthogonal couplings, as above)

Γ

Γ̃

𝛾1

𝛾2

𝛾∞

𝜆1

𝜆2

𝜆⟂
1

𝜆⟂
2

at late-enough times:

𝜖 ≤ 𝑑 − 2
4

(Γ ⋅ Γ̃)
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Case C: partial axion-scalar alignment

- let 𝛾𝑎 = min𝑖 𝛾𝑖𝑎 and Λ𝑎 = max𝑟 𝜆𝑟𝑎

- if Λ𝑎 ≤ 0 and 𝛾𝑎 + Λ𝑎 ≥ 2√ 𝑑 − 1
𝑑 − 2

for at least one field 𝜙𝑎,
then at late-enough times we have 𝜖 = 𝑑 − 1

𝛾1

𝛾2

𝛾3

𝜆1

𝜆2

note:
to sum up, we singled out several geometric configurations for the potential and
kinetic couplings in which the universal bounds for flat field spaces are still in place
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5. Conclusions
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Recap

▶ analytic model-independent results, independently of the initial conditions
and with no approximations in the field equations:

• universal bound for cosmic acceleration and convex-hull criterion
1-field 1-potential case: see also Rudelius [hep-th/2208.08989]

• string-theoretic dilaton obstruction to cosmic acceleration and ways out
compatible with strong de Sitter conjecture in Rudelius [hep-th/2101.11617]

related conclusions in Hertzberg, Kachru, Taylor, Tegmark [hep-th/0711.2512]
Hebecker, Skrzypek, Wittner [hep-th/1909.08625]

Cicoli, Cunillera, Padilla, Pedro [hep-th/2112.10779]
Andriot, Horer [hep-th/2208.14462]

• side result: universal bound on cosmic contraction
see also Bernardo, Brandenberger [hep-th/2104.00630]

Andriot, Horer, Tringas [hep-th/2212.04517]

• scaling cosmologies: universal proof of convergence
• bounds on cosmic acceleration with negatively-curved field spaces,

for specific arrangements of the coupling vectors

▶ analytic handle on swampland conjectures:

• relationship between cosmic acceleration and scalar-potential derivatives
to compare with Obied, Ooguri, Spodyneiko, Vafa [hep-th/1806.08362]

Ooguri, Palti, Shiu, Vafa [hep-th/1810.05506]

• precise handle on attempts for string-theoretic accelerated expansion
Calderón-Infante, Ruiz, Valenzuela [hep-th/2209.11821]

Cremonini, Gonzalo, Rajaguru, Tang, Wrase [hep-th/2306.15714]

• asymptotic acceleration implies higher-dimensional de Sitter spacetime
Hebecker, Schreyer, Venken [hep-th/2306.17213]
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Our method and future directions

we saw that, sometimes, a study of geometric relations of the coupling space is
enough to assess whether late-time acceleration is possible in certain corners of string
compactifications: this is easier than a study of the solutions to the field equations,
and it can be done in a fully analytic way

further steps include:
▶ incorporating into our analytic description:

• more general kinetic couplings
• barotropic fluids with constant equation of state

▶ improving our analytic description in the simultaneous
presence of both positive and negative potential terms:

we aim to look for cosmic acceleration with the help of negative potentials,
or to prove more general no-go conclusions

related: Van Riet [hep-th/2308.15035]

▶ discussing with our language and looking for new accelerated solutions
in FLRW-backgrounds with negative spatial curvature

Marconnet, Tsimpis [hep-th/2210.10813]
Andriot, Tsimpis, Wrase [hep-th/2309.03938]

Andriot, Parameswaran, Tsimpis, Wrase, Zavala [hep-th/2405.09323]
Alestas, Delgado, Ruiz, Akrami, Montero, Nesseris [hep-th/2406.09212]

Thank you!
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6. Backup material
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Example

4-dimensional potential: 𝑉 = Λ1 e𝜅4
√

2 ̃𝜙1−𝜅4 √ 2
3

̃𝜙2
+ Λ2 e−𝜅4

√
2 ̃𝜙1+𝜅4

√
6 ̃𝜙2

Calderón-Infante, Ruiz, Valenzuela [hep-th/2209.11821]

- convex-hull hyperplane: 𝛾2 = − 2
√

3
3

𝛾1 −
√

6
3

- orthogonal line: 𝛾2 =
√

3
2

𝛾1, intersection at (𝛾1, 𝛾2) = (− 2
√

2
7

, −
√

6
7

)

𝜙𝑎 = 𝜙1, 𝜙2

𝛾𝑖𝑎 = (𝛾11 𝛾12
𝛾21 𝛾22

) = (−
√

2 √ 2
3√

2 −
√

6
)

𝜖 = 1
2

[(− 2
√

2
7

)
2

+ (−
√

6
7

)
2
] = 1

7

𝛾∞1

𝛾∞2

𝛾2 = − 2
√

3
3 𝛾1 −

√
6

3

𝛾2 = −
√

3
2 𝛾1

𝛾1

𝛾11

𝛾12

𝛾2

𝛾21

𝛾22

( ̂𝛾∞)2 = 𝛾2
CH
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Scaling cosmologies
Scalar-potential derivatives and cosmic acceleration

▶ exact relationship between scalar-potential slope and 𝜖-parameter:

− 1
𝑉

𝜃𝑎
∗

𝜕𝑉
𝜅𝑑 𝜕𝜙𝑎 (𝜙∗) = 1

𝜅𝑑𝑉
√ 𝜕𝑉

𝜕𝜙𝑎
𝜕𝑉
𝜕𝜙𝑎

(𝜙∗) = 2
√

𝜖√
𝑑 − 2

= ̂𝛾∞

to compare with Obied, Ooguri, Spodyneiko, Vafa [hep-th/1806.08362]
Ooguri, Palti, Shiu, Vafa [hep-th/1810.05506]

▶ the potential directional derivative and gradient norm
are not necessarily related to 𝜖 for non-scaling solutions
a generic solution 𝜙𝑎(𝑡), gives (𝜂 = − ̇𝜖/(𝜖𝐻), Ω: non-geodesity factor)

𝛾⋆(𝜙) = − 1
𝑉

̇𝜙𝑎

√ ̇𝜙𝑏
̇𝜙𝑏

𝜕𝑉
𝜅𝑑 𝜕𝜙𝑎 (𝜙) = 2

√
𝜖√

𝑑 − 2
[1 − 𝜂

(𝑑 − 1) − 𝜖
]

𝛾(𝜙) = 1
𝜅𝑑𝑉

√ 𝜕𝑉
𝜕𝜙𝑎

𝜕𝑉
𝜕𝜙𝑎 (𝜙) = √𝛾2

⋆ + 4𝜖
𝑑 − 2

1
[(𝑑 − 1) − 𝜖]2

Ω2

𝐻2

Achúcarro, Palma [hep-th/1807.04390]
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