Universal Black Hole Microstates

ROBERTO EMPARAN ICREA+ICC UB COPERNICUS WEBINAR

12 MARCH 2024

WITH ANA CLIMENT JAVIER M. MAGÁN
MARTÍN SASIETA

ALEJANDRO VILAR LÓPEZ

ARXIV 2401.08755

$$
S=\frac{A}{4 G \hbar}
$$

and its discontents

Not counting states

$$
S=\frac{A}{4 G \hbar}
$$

Bekenstein 1973
from phenomenological arguments
Hawking 1975
What microstates?

Not counting states

$$
S=\frac{A}{4 G \hbar}
$$

Gibbons+Hawking 1976 from $Z(\beta)=\int_{\beta} \mathcal{D} g e^{-I[g]} \quad$ Gravitational Path Integral GPI
Entropy from classical saddle point?

Counting states - but not black holes

$$
S=\frac{A}{4 G \hbar}
$$

Strominger+Vafa 1996 from D-branes in String theory
Non-gravitating states that are not black holes

Counting black hole states - with wormholes

$$
S=\frac{A}{4 G \hbar}
$$

Balasubramanian+Lawrence
+Magan+Sasieta 2022
Penington+al (PSSY) 2019
and others
Black hole microstates from GPI-reloaded

$$
\operatorname{dim}(\mathcal{H})=e^{s}
$$

Stochastic overlaps between states: from wormholes

Counting black hole states - with wormholes

$$
S=\frac{A}{4 G \hbar}
$$

Stat-mech interpretation from GPI
Universal construction
Geometric microstates with smooth horizons

Black Hole Microstates

1. Constructing - with the Gravitational Path Integral (GPI)
2. Computing - overlaps from wormholes
3. Counting - the dimension of the black hole Hilbert space

Quantum States from Path Integrals

FROM QUANTUM FIELD THEORY TO EUCLIDEAN QUANTUM GRAVITY

Amplitudes from Path Integral (PI)

$$
\left\langle\phi_{2}\right| e^{-\Delta \tau H}\left|\phi_{1}\right\rangle=\int_{\phi(0)=\phi_{1}}^{\phi(\Delta \tau)=\phi_{2}} \mathcal{D} \phi e^{-I_{E}[\phi]}
$$

Cutting the PI: "State preparation"

$$
|\Phi\rangle=|\phi(\tau)\rangle=e^{-\tau H}|\phi\rangle
$$

$|\Phi\rangle$

State overlaps

Ground state \& States from operators

$$
|0\rangle=\lim _{\tau \rightarrow \infty} e^{-\tau H}|\phi\rangle
$$

$$
|\Psi\rangle=\mathcal{O}(x)|0\rangle
$$

Thermal states

Imaginary time periodicity

$$
Z[\beta]=\int_{\phi(0)=\phi(\beta)} \mathcal{D} \phi e^{-I_{E}[\phi]}
$$

$$
=\sum_{i}\left\langle E_{i}\right| e^{-\beta H}\left|E_{i}\right\rangle
$$

$$
=\operatorname{Tr} e^{-\beta H}
$$

Thermofield Double State - TFD

Cut open the path integral

$$
|\mathrm{TFD}\rangle=\frac{1}{\sqrt{Z}} \sum_{i} e^{-\beta H / 2}\left|E_{i}\right\rangle_{L} \otimes\left|E_{i}\right\rangle_{R}
$$

Maximally entangled state

Partially Entangled Thermal States

PETS

Goel+Lam+Turiaci+Verlinde

$$
\begin{aligned}
& |\Psi\rangle=\frac{1}{\sqrt{Z_{1}}} \sum_{i} e^{-\tilde{\beta} H / 2} O e^{-\widetilde{\beta} H / 2}\left|E_{i}\right\rangle_{L} \otimes\left|E_{i}\right\rangle_{R} \\
& Z_{1}=\operatorname{Tr}\left(e^{-\tilde{\beta} H} O e^{-\widetilde{\beta} H} \mathcal{O}^{\dagger}\right)=
\end{aligned}
$$

Partially Entangled Grand-canonical States

Add charge \& rotation: PEGS

$$
|\Psi\rangle=\frac{1}{\sqrt{Z_{1}}} \sum_{i} e^{-\left(\widetilde{\beta}-\mu_{I} Q_{I}\right) H / 2} O e^{-\left(\widetilde{\beta}-\mu_{I} Q_{I}\right) H / 2}\left|E_{i}\right\rangle_{L} \otimes\left|E_{i}\right\rangle_{R}
$$

Gravitational Partition Function

$$
Z[\beta]=\int_{g(0)=g(\beta)} \mathcal{D} g e^{-I_{E H}[g]}
$$

Euclidean black hole

Black Magic

$$
\begin{array}{r}
Z[\beta]=\int_{g(0)=g(\beta)} \mathcal{D} g e^{-I_{E H}[g]} \approx e^{-I_{E H}\left[g_{c l}\right]} \\
S=\left(\beta \partial_{\beta}-1\right) I_{E H}\left[g_{c l}\right]=\frac{A}{4 G} \quad \begin{array}{l}
\text { semiclassical saddle-point } \\
g_{c l}=\text { Euclidean black hole }
\end{array} \\
\text { Gibbons+Hawking }
\end{array}
$$

- $I_{E H}\left[g_{c l}\right]=$ Euclidean action of classical field configuration: zero-loop
- Not a trace over states: Trace = sum over all states running in a loop: one-loop contribution
- Not a sum over microstates - but still gives non-zero \& correct $S=A / 4 G$

Gravitational Partition Function in AdS

$$
Z_{\mathrm{AdS}}[\beta]=\int_{g(0)=g(\beta)} \mathcal{D} g e^{-I_{E H}[g]}
$$

Euclidean AdS black hole
dAdS

AdS/CFT

$$
Z_{\mathrm{AdS}_{d}}[\beta]=Z_{\mathrm{CFT}_{d-1}}[\beta]
$$

$$
Z_{\mathrm{CFT}_{d-1}}[\beta]=
$$

Thermal quantum states from cut GPI

$$
|\mathrm{TFD}\rangle=\frac{1}{\sqrt{Z}} \sum_{i} e^{-\beta H / 2}\left|E_{i}\right\rangle_{L} \otimes\left|E_{i}\right\rangle_{R}
$$

Thermofield double = Eternal black hole

$|\mathrm{TFD}\rangle=\underbrace{\mathrm{B}^{\mathrm{x}}}$

Lorentzian evolution
AdS black hole

Thermofield double $=$ Eternal black hole

$|\mathrm{TFD}\rangle=\frac{1}{\sqrt{Z}} \sum_{i} e^{-\beta E_{i} / 2}|i\rangle_{L}|i\rangle_{R}$

Eternal black hole

Bell/EPR pair
$|\Psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{L}|0\rangle_{R}+|1\rangle_{L}|1\rangle_{R}\right)$

Correlation/connection, but no communication between sides

Thermal behavior when only one side is probed

ER bridge

Thermofield double

$$
|\mathrm{TFD}\rangle=\frac{1}{\sqrt{Z}} \sum_{i} e^{-\beta H / 2}\left|E_{i}\right\rangle_{L} \otimes\left|E_{i}\right\rangle_{R}
$$

A specific (micro)state of the dual CFT
Dual geometry has a horizon and a singularity

Constructing

black hole microstates from the gravitational path INTEGRAL

Black Hole Microstates

Microscopic pure states $|\Psi\rangle$ that are almost indistinguishable (for simple observables) from thermal state $\rho_{\text {th }}$

$$
\langle\Psi| \mathcal{O}(t)|\Psi\rangle \rightarrow \operatorname{Tr}\left(\rho_{\mathrm{th}} \mathcal{O}\right), \quad\langle\Psi| \mathcal{O}(t) \mathcal{O}(0)|\Psi\rangle \rightarrow \operatorname{Tr}\left(\rho_{\mathrm{th}} \mathcal{O}(t) \mathcal{O}(0)\right)
$$

Geometric microstates look like a black hole when probed with simple operations

$$
|\mathrm{TFD}\rangle=\frac{1}{\sqrt{Z}} \sum_{i} e^{-\beta H / 2}\left|E_{i}\right\rangle_{L} \otimes\left|E_{i}\right\rangle_{R}
$$

A black hole microstate, though not very typical

Geometric PEGS

Operator \mathcal{O}_{m} inserted at boundary creates particles in the bulk - a 'shell of dust' matter m
Make it heavy enough to backreact on geometry

Geometric PEGS

Shell moves inside black hole
Creates space within the black hole: 'bag of gold'

Geometric PEGS

Shell mass m can be arbitrarily large for fixed black hole M, Q_{I}
Huge (infinite!) number of states

Shell PEGS are Black Hole Microstates

$\left|\Psi_{m}\right\rangle$

Almost indistinguishable (for simple observables) from grand-canonical state $\rho_{\text {th }}$

$$
\left\langle\Psi_{m}\right| \mathcal{O}(t)\left|\Psi_{m}\right\rangle \rightarrow \operatorname{Tr}\left(\rho_{\mathrm{th}} \mathcal{O}\right)
$$

Looks like a black hole when probed with simple operations

Shell microstates have semiclassical description with horizons and singularities

Heavy-shell Microstates

Shell close to the (would-be) boundary - little sensitivity to bulk black hole

Heavy-shell Microstates

$\left\langle\Psi_{m} \mid \Psi_{m}\right\rangle$ factorizes into $\approx Z\left[\tilde{\beta}, \mu_{I}\right]^{2}$

All calculations simplify a lot

Shell does not affect horizon properties

Dependence on shell m drops out \rightarrow universality

Computing

STATE OVERLAPS FROM WORMHOLES: UNIVERSALITY

How many states?

$$
\left.\left|\Psi_{i}\right\rangle=\bigcup^{\times} \left\lvert\, \begin{array}{l}
m_{i} \\
m_{i}
\end{array}\right.\right)
$$

Too many states?

$$
\left.\left|\Psi_{i}\right\rangle=\left.\bigcup\right|_{m_{i}}\right\rangle
$$

$$
G_{i j}=\left\langle\Psi_{i} \mid \Psi_{j}\right\rangle=\delta_{i j}
$$

Infinite family of orthogonal states

$$
\operatorname{dim}\left(\mathcal{H}_{B H}\right)=\infty!?
$$

Products with Wormholes

Wormholes \Rightarrow Statistical states

$$
\overline{G_{i j}}=0 \text { for } i \neq j \quad \begin{array}{ll}
\text { Not }\left\langle\Psi_{i} \mid \Psi_{j}\right\rangle=0 \\
\overline{G_{i j} G_{j i}} \neq 0 \text { for } i \neq j & \text { but } \overline{\left\langle\Psi_{i} \mid \Psi_{j}\right\rangle}=0
\end{array}
$$

Heavy-Shell Wormholes

$\overline{G_{i j} G_{j i}}=$

$$
=\frac{Z\left(2 \beta, \mu_{I}\right)^{2}}{Z\left(\beta, \mu_{i}\right)^{4}}
$$

Unaffected by shell m_{i}
Given by partition function of BH

Moments of G from wormholes

$$
\overline{G_{i_{1} i_{2}} G_{i_{2} i_{3}} \ldots G_{i_{n} i_{1}}}=\frac{Z\left(n \beta, \mu_{I}\right)^{2}}{Z\left(\beta, \mu_{i}\right)^{2 n}}
$$

Heavy-shell universality
Depends only on BH partition function

Counting

the dimension of the black hole hilbert space

Dimension of set of states

$$
\begin{aligned}
F_{\Omega} & =\left\{\left|\Psi_{i}\right\rangle \in \mathcal{H}, i=1, \ldots, \Omega\right\} \\
d_{\Omega} & =\operatorname{dim} F_{\Omega}=\min \{\Omega, \operatorname{dim} \mathcal{H}\} \\
& =\operatorname{rank} G_{i j} \quad G_{i j}=\left\langle\Psi_{i} \mid \Psi_{j}\right\rangle
\end{aligned}
$$

Gram-Schmidt fails for BH microstates: $\overline{G_{i j}}=\delta_{i j}$

Statistical counting

From statistical moments $\overline{G^{n}}$

Statistics forced by GPI wormholes

Borrow from random matrix techniques: resolvent

$$
R(\lambda)=\frac{\Omega}{\lambda}+\sum_{n=1}^{\infty} \frac{\operatorname{Tr} \overline{G^{n}}}{\lambda^{n+1}} \rightarrow \overline{d_{\Omega}}
$$

Moments

From grand-canonical to microcanonical BH window

$$
\left.\begin{array}{l}
\left.\overline{G_{i_{1} i_{2}} G_{i_{2} i_{3}} \ldots G_{i_{n} i_{1}}}\right|_{\text {grcan }}=\frac{Z\left(n \beta, \mu_{I}\right)^{2}}{Z\left(\beta, \mu_{i}\right)^{2 n}} \\
\left.\overline{G_{i_{1} i_{2}} G_{i_{2} i_{3}} \ldots G_{i_{n} i_{1}}}\right|_{\text {micro }}=e^{-(n-1) \frac{A}{4 G}}
\end{array}\right) \text { inverse Laplace transform }
$$

How many black hole states? $\exp A / 4 G$

We had $d_{\Omega}=\operatorname{dim} F_{\Omega}=\min \{\Omega, \operatorname{dim} \mathcal{H}\}$

Resolvent for $\overline{G^{n}}$ gives $\overline{d_{\Omega}}=\min \left\{\Omega, e^{A / 4 G}\right\}$

$$
\Rightarrow \operatorname{dim} \mathcal{H}=e^{A / 4 G}
$$

How many black hole states? $\exp S_{B H}$

More generally

$$
\operatorname{dim} \mathcal{H}=e^{S_{B H}}
$$

where $S_{B H}$ is the value from Gibbons-Hawking GPI Partition Function (through black magic)

Universality of $\operatorname{dim} \mathcal{H}=\exp S_{B H}$

Heavy shells can be constructed for

- Rotating and charged black holes
- Near-extremal, susy or not
- Quantum-corrected: $\log A$ and $\log T$
- Higher-curvature theories

Heavy-shell microstates $\Rightarrow \operatorname{dim} \mathcal{H}=e^{S_{B H}}$

Outlook

GPI BLACK MAGIC RELOADED - WITH WORMHOLE STATISTICS

Gravitational Path Integral can do a lot

- Construct microstate families and count their dimension
- Heavy-shell microstates $\Rightarrow \operatorname{dim} \mathcal{H}=e^{S_{B H}}$
- Works for all cases where Gibbons-Hawking gives an entropy

Universality: double-edged sword

- Extremely general, simple construction and result
- Hides all microscopic distinctions
- Works even when it should not (eg in the swampland)

Geometry and randomness

- Wormholes are how gravity knows about finite $\operatorname{dim} \mathcal{H}_{B H}$
- But they introduce intrinsic randomness
- Semiclassical BH geometry seems to need chaotic microscopics

Is this all one needs/can do for (non-susy) BH microscopics?

Thank you

Backup material

Near-extremal Microstates

near-extremal AdS $_{2}$ throat (JT Schwarzian)

In-throat microstates (one JT Schwarzian) Sensitive to throat

Out-throat microstates (two Schwarzians)
Universal

