HTCondor @ ScotGrid Glasgow Cluster Monitoring

Outline

- Glasgow Tier2 site description
- ARC-CE + HTCondor batch system
- Cluster Monitoring
- Outlook

ScotGrid Glasgow:

Gareth Roy (general admin), Samuel Skipsey (storage), Gordon Stewart (networking) Emanuele Simili (computing)

Group leader:

Prof. David Britton

UKI-SCOTGRID-GLASGOW

- Part of the GridPP collaboration providing resources to the Worldwide LHC Compute Grid (WLCG).
- One of 19 institutions comprising 4 distributed Tier-2 sites (SCOTGRID, NORTHGRID, SOUTHGRID and LT2).
- Part of the SCOTGRID Distributed Tier-2 including Glasgow, Edinburgh and Durham Universities.

Current Capacity

At present (*), ScotGrid Glasgow consists of:

~ 6000 CPU cores

4.9 Pb storage (3.2 Pb CEPH + 1.7 Pb DPM)

160 Gb/s internal network bandwidth

For a rough total HepSpec of about 61 KHS06

(*) we are undergoing a long sought relocation to our new fancy Data Center (Soughfield building) completed in late 2019.

Relocation started slowly in early 2020, then the Covid-19 slowed down our efforts even more ...

Cluster Map (computing)

HTCondor Batch System

Our HTCondor batch system is built on CentOS7

- We use PPE PiXiE for provisioning (https://github.com/danderson/netboot)
- · We use Ansible for all software install and configuration management

Name	Role	HTCondor Daemons	fqdn (int)	IPv4 (int)	fqdn (ext)	IPv4 (ext)
cassowary	Condor Manager	master , collector , negotiator , startd	cassowary.beowulf.cluster	10.x.x.x	no	no
ce01	ARC-CE	master, schedd	ce01.beowulf.cluster	10.x.x.1	ce01.gla.scotgrid.ac.uk	130.x.x.x
ce04	ARC-CE	master, schedd	ce04.beowulf.cluster	10.x.x.4	ce04.gla.scotgrid.ac.uk	130.x.x.x
chocobox	ARGUS		svr029.beowulf.cluster	10.x.x.x	svr029.gla.scotgrid.ac.uk	130.x.x.x
wn001	WorkerNode	master, startd	wn001.beowulf.cluster	10.x.1.1	no	no
wn002	WorkerNode	master, startd	wn002.beowulf.cluster	10.x.1.2	no	no
wn299	WorkerNode	master , startd	wn299.beowulf.cluster	10.x.2.44	no	no

HTCondor daemons installed ...

Node type	Daemons			
Worker Node	MASTER, STARTD			
Manager Node	COLLECTOR, MASTER, NEGOTIATOR, SCHEDD			
CE Node	MASTER, SCHEDD			

Cluster Monitoring

Our monitoring is built on Prometheus and Grafana ...

PROMTAIL

Metrics are exported by node_exporter and collected by Prometheus (on a dedicated VM).

Logs are exported by **PromTail** and collected by **Loki** (dedicated VM).

Grafana pulls data from both servers and provides the tools for querying and building colorful graphs and dashboards.

VictoriaMetrics archives the collected data into a large storage server. Archived data can be queried by Grafana.

HTCondor Monitoring

Nodes provide hardware metrics and job info (from HTCondor):

- node_exporter produces standard and custom metrics

```
syntax: whatever_metric{slot=..., vo=...,...} value
export folder: /var/lib/node exporter/textfile collector/
```

- few custom scripts periodically query HTCondor and format the output as above

```
ce_get_info.sh → runs as cron job on the ARC-Ces
node_get_condorinfo.sh → runs as cron job on every workernode
```

Basically, a call to <u>condor</u> <u>status</u> <u>-startd</u> with <u>-autoformat:t</u> and parse the output ...

(Name CPUs Memory LoadAvg State Activity TotalJobRunTime RemoteUser ClientMachine TotalCPUs TotalMemory)

Grafana Dashboards

I keep this page constantly opened in my browser ...

Grafana Dashboards

Running jobs per slot and

Over 50 graphs about CPU, Memory, Disks, Networking ...

Grafana Dashboards

Other custom dashboards cover specific services (ARC-CE, Squid, NAT) ...

HTCondor Logging

PromTail is installed on every machine and configured to specifically export service logs to a central server running **Loki** ...

```
# PromTail Configuration defines the rules for scraping local logs
    -server:
       http listen port: 9080
       grpc listen port: 0
      # Positions
    -positions:
       filename: /tmp/positions.yaml
     # Loki Server URL
    -clients:
       - url: http://{{ central log server }}:3100/loki/api/vl/push
    --scrape configs:
        ## Common Logs
       - job name: messages
                                 # log messages (/var/log/messages)
         static configs:
           - targets:
               - "{{ inventory hostname }}:9080"
                                                                      General Logs
             labels:
               job: messages
23
               host: "{{ inventory hostname }}"
                 path : /var/log/messages
           ## Service Logs
```

job_name: condor
static configs:

- "{{ inventory hostname }}:9080"

host: "{{ inventory hostname }}"
path : /var/log/condor/*og

targets:

labels:

job: condor

30

31

32

33

34

35

HTCondor logs:

/var/log/condor/

Logs Board

Logs can be queried also from the Grafana web interface (by host, service, content, ...)

ElasticFlow

We also have an **ElasticSearch** instance to analyze network flows from switches (sFlow)

Outlook

The monitoring system is relatively new (early 2020) and still under development:

- We already have an alerting system that can send emails/SMS in case of emergency (e.g., rising temperature).
- Next we are trying to identify more complex alerts based on combinations of metrics and define automated recovery actions (reboot / re-provisioning).
- Eventually, we will experiment with Machine Learning based Anomaly Detection and Recovery.
- We also started engaging other GridPP sites to come up with the best practice for monitoring and automated fault recovery.

And, something completely outside the scope of my talk:

 We have tried to install HTCondor-CE based on the Liverpool use-case, but it did not seem to work in our environment (SCHEDD and NEGOTIATOR located differently).
 Depending on peer pressure, we may give it another try in the future.

END