
HPC backfill with HTCondor atHPC backfill with HTCondor at
CERNCERN

Pablo Llopis Sanmillán, Nils Høimyr, Ben Jones, Luis Fernández
Álvarez, Laurence Field

HTCondor User Workshop Autumn 2020

1

Agenda / ObjectivesAgenda / Objectives
1. Give a brief intro to why we want to backfill
2. Show how we’re backfilling HPC resources with Grid jobs
3. Demonstrate with practical examples how to correctly map Grid

job attributes to corresponding Slurm parameters. We’ll get down
to the nitty-gritty in the code.

2

(Very brief) Overview of CERN(Very brief) Overview of CERN
Computing InfrastructureComputing Infrastructure
High Throughput Computing (powered by HTCondor)
High Performance Computing (powered by Slurm)
Volunteer Computing (powered by BOINC)
All of these run on OpenStack

3 . 1

HTCondor Batch ServiceHTCondor Batch Service
Provides compute capacity to WLCG Tier-0
Around 250K cores in 2 pools.
One set of CEs for Grid jobs, another set of schedds for local CERN
submissions
No parallel universe submissions
Lots of workernodes, very heterogeneous

3 . 2

Slurm HPC ServiceSlurm HPC Service
Supports Accelerator and Technology Sector and the Theory
Department at CERN
Four distinct clusters with low-latency interconnects
Runs simulations (mostly MPI jobs) that won’t fit on a single node

3 . 3

Motivation: Maximise HPCMotivation: Maximise HPC
resource utilisationresource utilisation

HPC clusters are busy, but rarely to a 100%
Even if there are queued jobs, they may not be able to start
due to size or time requirements.
Also some legitimate low usage periods every now and then
There’s always potential to fill the idle resources.

4 . 1

Backfill opportunitiesBackfill opportunities

4 . 2

Backfill in actionBackfill in action

4 . 3

Objective: HTCondor-C as aObjective: HTCondor-C as a
gateway to Slurmgateway to Slurm

We setup a CE that will be dedicated to backfilling the Slurm HPC
resources
It’s a very good fit, as Grid jobs are plentiful and are all single-
node. Guaranteed to be able to “fill in the holes” of unused HPC
resources.

5 . 1

HTCondor-C - Slurm gateway:HTCondor-C - Slurm gateway:
bird’s eye viewbird’s eye view

5 . 2

Submission works like any of ourSubmission works like any of our
other CEsother CEs

submission

gridjob.sub

voms-proxy-init -voms=myteam
export _condor_SEC_CLIENT_AUTHENTICATION_METHODS=GSI
condor_submit -pool cehost:9619 -remote cehost -spool gridjob.sub

universe = vanilla
use_x509userproxy = true
executable = myjob.sh
arguments = $(ClusterId)$(ProcId)
output = $(ClusterId).$(ProcId).myjob.out
error = $(ClusterId).$(ProcId).myjob.err
log = $(ClusterId).$(ProcId).myjob.log
should_transfer_files = YES
WhenToTransferOutput = ON_EXIT
queue

1
2
3

1
2
3
4
5
6
7
8
9

10

5 . 3

HTCondor-C - Slurm gatewayHTCondor-C - Slurm gateway
detailed viewdetailed view

5 . 4

Inside the CE - JobRouterInside the CE - JobRouter
transformtransform

CE condor_schedd gets the job and it is processed by the
JobRouter
JobRouter applies Transforms to create the Grid job (in the local
condor_schedd)

Note the GridResource line

JOB_ROUTER_ENTRIES @=jre
 [
 MaxIdleJobs = 200;
 MaxJobs = 800;
 name = "Slurm";
 set_PeriodicRemove = JobStatus == 5 ||
 (JobStatus == 1 && (CurrentTime - QDate) > 3600*6);
 set_requirements = true;
 GridResource = "batch slurm";
]
 @jre

1
2
3
4
5
6
7
8
9

10
11

5 . 5

Inside the CE - GridManagerInside the CE - GridManager
launches Grid joblaunches Grid job

GridResource attribute will determine how the
condor_gridmanager launches the job
GridManager launches $(condor_config_val
BATCH_GAHP)
In practice, ends up calling scripts that do job submission/cancel
/status calls to the corresponding batch system.

$ condor_config_val BATCH_GAHP > /usr/libexec
/condor/glite/bin/batch_gahp

5 . 6

Caveats…Caveats…
The Slurm integration (as of today) assumes that SPOOL must be
a shared filesystem between submitter and workernodes.
Some job attributes don’t work with Slurm out of the box, such as
multi-core, time limits, etc.
Difficult to tell which Slurm jobid corresponds to which Condor
jobid.

5 . 7

Nitty-GrittyNitty-Gritty
How are the Condor job attributes and requirements translated
into Slurm?
What’s this GAHP/BLAH thing?
How can I run multi-core jobs in Slurm?
How do I get Slurm submissions with specific
options/requirements?

6 . 1

Batch GAHP vs BLAHBatch GAHP vs BLAH
GAHP stands for Grid ASCII Helper Protocol. It’s an abstraction so

that clients can talk a simple protocol with a server that implements
grid/cloud services. Several GAHP protocols and implementations

exist.

Condor’s Batch GAHP consists of the BLAHP
protocol/implementation. The upstream project is called BLAH. Also

referred to as “the blahp”.

Implements scripts for submit/hold/resume/status/cancel for various
batch systems, Slurm included.

6 . 2

Condor BLAH vs upstream BLAHCondor BLAH vs upstream BLAH
Condor runs a forked version of BLAH.

Current Condor releases have renamed it to batch_gahp.

Condor and upstream have evolved in different (incompatible) ways.

There’s an ongoing to merge codebases, so this will get
simplified in the future.
effort

6 . 3

Translation of HTCondor toTranslation of HTCondor to
Slurm parametersSlurm parameters

HTCondor uses classad attributes to describe job properties
Slurm uses #SBATCH lines in a job script to embed desired job
properties.

Job properties: Number of cores, time limit, queue name, etc…

The blahp code is the main part handling the translation of Condor
job attributes to Slurm #SBATCH directives.

6 . 4

Translation of HTCondor toTranslation of HTCondor to
Slurm parameters (2)Slurm parameters (2)

Parameters to be translated need to be supported by the blahp.

Depending on your Condor version, this support will vary.

The blahp server translates supported job classad attributes into
parameters passed on to a blah script.

In some Condor versions, the blahp server (i.e. batch_gahp)
translates parameters that are unused and can be leveraged by
patching the blahp scripts.

This is not thoroughly documented. Use the code, Luke.

6 . 5

Tracking parameters throughTracking parameters through
codecode

Tracking attributes from condor job classads to the final Slurm
submit file involves mostly three different files:

1. blahp server.c. Check the server.c cmd_submit_job function.
Translates condor attributes into blahp script argument options.

2. blahp script blah_common_submit_functions.sh function
bls_parse_submit_options handles argument options and
sets corresponding variables in script.

3. blahp submit script slurm_submit.sh uses values set in
variables to write the final Slurm submit script.

6 . 6

Note

Tracking blahp code for specific Condor versions isn’t very
convenient. While the devel BLAH code in Condor can be

conveniently browsed at , the
code corresponding to a specific Condor version can be tracked
through the different branches at the that

consists of a set of patches to an older upstream BLAH
(not found on GitHub, but).

https://github.com/htcondor/BLAH

externals directory

here

6 . 7

Tracking parameters throughTracking parameters through
code (2)code (2)

6 . 8

Therefore, when tracking the code for parameters, we will have to
browse through either

1. Code in blahp-1.16.5.1’s server.c
2. The patches in externals/bundles/blahp
3. For the slurm blah scripts, you can read them: at either

3.1) In your local installation, under
$(GLITE_LOCATION)/bin.
3.2) Upstream in the gridmanager

6 . 9

Practical example: Selecting a SlurmPractical example: Selecting a Slurm
partitionpartition

7 . 1

Let’s say we want Condor jobs to be able to select a Slurm partition.

Let’s also assume we want to use the latest Condor stable release
(8.8).

7 . 2

To understand how parameter translation works for this version, we
can navigate through the code in two directions:

1. Either start tracking from the slurm_submit.sh which sets the
parameters, working our way backwards until we see which
classad attribute is mapped (or not) to this parameter.

2. Start at the gridmanager and find which classad ends up mapping
to which Slurm parameter in blah’s slurm_submit.sh.

Usually find 1. easier as there is only one way to do select job
attributes in Slurm.

7 . 3

Tracking steps:

1. In the Slurm’s partition parameter (#SBATCH
-p) is being given the value $bls_opt_queue.

2. Which is being set via the blah script parameter -q in
blah_common_submit_functions.sh. This parameter is already
there in the original 1.16.5.1 source code that we .

3. Which is mapped by the cmd_submit_job function in blahp-
1.16.5.1 server.c:

slurm_submit.sh

mentioned

(set_cmd_string_option(&command, cad, "Queue", "-q", NO_QUOTE) 1

7 . 4

Conclusion:

The Queue job classad attribute will map to the Slurm #SBATCH
-p parameter.

7 . 5

Practical example: Runtime limitPractical example: Runtime limit

8 . 1

Same assumptions as before: Condor 8.8 and we’ll track parameters
backwards starting at slurm_submit.sh.

1. The slurm_submit.sh sets #SBATCH -t to
$((bls_opt_runtime / 60)).

2. Which corresponds to the -t blah script parameter in
blah_common_submit_functions.sh.

3. Which is mapped by the blahp server via the BatchRuntime
classad.

Note that this code is not in the original 1.16.5.1 sources, but is
contained in a instead.patch

8 . 2

Practical example: multi-corePractical example: multi-core
jobsjobs

9 . 1

Grid jobs traditionally use the xcount job classad attribute for
the number of desired cpu cores.
The Slurm equivalent to allocate cores is --cpus-per-task.

Let’s assume the latest Condor stable release (8.8)

9 . 2

In the script there is no trace of using anything like
--cpus-per-task.

But wait! There is mention of :

slurm_submit.sh

number of nodes

Simple support for multi-cpu attributes
if [[$bls_opt_mpinodes -gt 1]] ; then

echo "#SBATCH -N $bls_opt_mpinodes" >> $bls_tmp_file
fi

1
2
3
4

9 . 3

In Slurm -N is multi-node, not multi-cpu or multi-core. We could re-
use this by rewriting it:

(Note: this is actually how it will work in future releases)

if [[$bls_opt_mpinodes -gt 1]] ; then
echo "#SBATCH --nodes=1" >> $bls_tmp_file
echo "#SBATCH --ntasks=1" >> $bls_tmp_file
echo "#SBATCH --cpus-per-task=$bls_opt_mpinodes" >> $bls_tmp_file

fi

1
2
3
4
5

9 . 4

But how is $bls_opt_mpinodes set? In the argument parsing
done in blah_common_submit_functions.sh we can see that

it corresponds to the blah parameter -n:

And in the blahp server.c, it’s the classad attribute NodeNumber
which maps to option -n:

(Except for the changes described for slurm_submit.sh, this is all found
in the original blahp-1.16.5.1 sources.)

n) bls_opt_mpinodes="$OPTARG";;

(set_cmd_int_option (&command, cad, "NodeNumber", "-n", INT_NOQUOTE) ..

1

1

9 . 5

Therefore: All we need is to make sure that our jobs use
NodeNumber. But we had established that we’d use the xcount

attribute, I hear you say?

We can use the JobRouter transforms to set NodeNumber to
whatever xcount is set.

Actually, it looks like this transform is already included!
(In our JOB_ROUTER_DEFAULTS_GENERATED)

Therefore we “only” need to patch the slurm_submit.sh (if using
<= 8.8) for this to work.

9 . 6

Job Parameters Summary (Job Parameters Summary ())

htcondor 8.8 htcondor 8.9 Slurm

RequestMemory RequestMemory --mem

BatchRuntime BatchRuntime --time

BatchProject BatchProject --account

Unsupported Unsupported --cpus-per-task

Queue Queue --partition

Unsupported Queue --clusters

docs PRdocs PR

[1] [1:1]

[1:2] [2]

1. Usable via classad NodeNumber by patching slurm_submit.sh.

2. Queue parameter syntax: “queue@cluster”

↩
↩ ↩

↩

10 . 1

Additional tipsAdditional tips
In addition, to add constant sbatch lines or any other preamble that

you need to include in every slurm submit script, use
slurm_local_submit_attributes.sh.

This script will be sourced and its output redirected into the slurm
submit script, so echo the contents you wish to add.

e.g.

echo “#SBATCH --time=1-0”
echo “#SBATCH --partition=backfill”

11 . 1

Additional tips (2)Additional tips (2)
You can track which Grid job maps to which Vanilla job using:

RoutedToJobId in the Vanilla job (CE schedd)
RoutedFromJobId in the Grid job (local schedd)

There is no built-in mapping to the Slurm jobid. You can add the
following towards the end of slurm_submit.sh to map CE schedd’s

jobid to Slurm jobid:

logger "Running SLURM job $jobID in $PWD"1

11 . 2

Additional tips (3)Additional tips (3)

On the Slurm side, we don’t want to increase queueing time for HPC
users: Partition-based preemption.

Our backfill partition encompasses all other partitions, with the
following options:

Or priority/multifactor config has a big value for
PriorityWeightPartition to ensure HPC job priority.

PreemptType=preempt/partition_prio
PreemptMode=CANCEL

PriorityTier=0 GraceTime=300

11 . 3

Questions?Questions?

12

