
Managing multicore 

machines: pslots, draining 

and more
Center for High Throughput 

Computing



Center for High Throughput 

Computing





My Desktop Computer

8  Cores (Hyper-threaded)

16 Gigabytes RAM



1 core per slot, memory divided evenly

Create static slots from detected resources

HTCondor out of the box

$ condor_status

Name    OpSys Arch   State     Activity LoadAv Mem   ActvtyTime

slot1@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:00

slot2@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot3@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot4@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot5@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot6@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot7@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot8@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

Total   Owner Claimed Unclaimed Matched Preempting Backfill  Drain

X86_64/LINUX     8     0       0         8       0          0        0      0

Total            8     0       0         8       0          0        0      0



You can Lie about Resources!
# HTCondor Config file for startd

# Tell HTCondor I’ve got 6 cores

NUM_CPUS = 6

# Memory for all slots (in Megabytes)

MEMORY = 4096

# Subtract 1GB from whatever memory is detected

RESERVED_MEMORY = 1024

# Tell HTCondor that execute disk size (in KB) is this

DISK = 10240



“Modern machines have lots of cores, so I 

should make all my jobs each use as many 

cores as possible, so they finish as fast as 

possible”

HT Wisdom: “Probably not”

Conventional Wisdom about cores



The fewer resources a job needs,

the more places it can run

But sometimes, you just need more…

Rules of HT Optimization



Slot are where jobs run

$ condor_status

Name    OpSys Arch   State     Activity LoadAv Mem   ActvtyTime

slot1@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:00

slot2@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot3@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot4@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot5@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot6@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot7@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

slot8@c LINUX      X86_64 Unclaimed Idle      0.000 1997  0+00:00:20

Total   Owner Claimed Unclaimed Matched Preempting Backfill  Drain

X86_64/LINUX     8     0       0         8       0          0        0      0

Total            8     0       0         8       0          0        0      0

# Submit file

Executable = calculate

Arguments = 1 2 42

Request_Cpus = 2

Request_Memory = 2048

Request_Disk = 1G

Log = log

queue

Don’t Forget 

These – may be 

required!



What happens if…

# Submit file

Executable = calculate

Arguments = 1 2 42

Request_Cpus = 2

Request_Memory = 2048

Request_Disk = 1G

Log = log

queue

There are no 2 

core slots?



Idle Forever…
$ condor_q

-- Schedd: gthain@c: <10.5.1.1:33601?...       

OWNER  BATCH_NAME    SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS                           

gthain ID: 577      9/16 17:57      _      _      1      1 577.0

Total for query: 1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 

suspended      Total for all users: 1 jobs; 0 completed, 0 removed, 1 idle, 0 

running, 0 held, 0 suspended



What if I lie to HTCondor?

# Submit file

Executable = calculate

Arguments = 1 2 42

Request_Cpus = 1

Request_Memory = 1024

Request_Disk = 1G

Log = log

queue

And it really needs 

2 cores and 4 Gb 

of memory?



Running, but in Jail! 

$ condor_q

-- Schedd: gthain@c: <10.5.1.1:33601?...       

OWNER  BATCH_NAME    SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS                           

gthain ID: 577      9/16 17:57      _      1      _      1 577.0

Total for query: 1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 

suspended      Total for all users: 1 jobs; 0 completed, 0 removed, 1 idle, 0 

running, 0 held, 0 suspended



2 kinds of slots:

partitionable-slots:

always unclaimed

hold unused resources

Dynamic slots

create/destroyed to fit one job

Solution: Partitionable Slots



Enabling partionable slots
# HTCondor Config file for startd

NUM_SLOTS_TYPE_1 = 1

SLOT_TYPE_1_PARTITIONABLE = true

SLOT_TYPE_1 = cpus=100%



Enabling partionable slots
$ condor_status

Name              OpSys Arch   State     Activity LoadAv Mem    ActvtyTime

slot1@c           LINUX      X86_64 Unclaimed Idle      0.000 15976  0+08:46:59

Total Owner Claimed Unclaimed Matched Preempting Backfill  Drain

X86_64/LINUX     1     0       0         1       0          0        0      0

Total     1     0       0         1       0          0        0      0



What’s in the p-slot?
$ condor_status -af Name SlotType Cpus Memory

slot1@c Partitionable 8 15976



Now this job can run…
# Submit file

Executable = calculate

Arguments = 1 2 42

Request_Cpus = 2

Request_Memory = 2048

Request_Disk = 1G

Log = log

queue

This didn’t fit with 

static slots



And this one…
# Submit file

Executable = calculate

Arguments = 1 2 42

Request_Cpus = 3

Request_Memory = 1024

Request_Disk = 1G

Log = log

queue



What’s in the p-slot?
$ condor_status

Name      OpSys Arch   State     Activity LoadAv Mem 

slot1@c   LINUX      X86_64 Unclaimed Idle      0.000 12904

slot1_1@c LINUX      X86_64 Claimed   Busy      0.000  2048

slot1_2@c LINUX      X86_64 Claimed   Busy      0.000  1024

slot1_3@c LINUX      X86_64 Claimed   Busy      0.000  1024 

Total Owner Claimed Unclaimed Matched Preempting Backfill  Drain                                                             

LINUX     4     0       3         1       0          0        0                                                              

Total     4     0       3         1       0          0        0       
Note the underscore

in d-slots
Note non-uniform

Memory sizes



What’s in the p-slot?

$ condor_status -af Name SlotType Cpus Memory

slot1@c   Partitionable 0 11880                                               

slot1_1@c Dynamic 2 2048                                                    

slot1_2@c Dynamic 3 1024                                                    

slot1_3@c Dynamic 3 1024



When a d-slot completes?

$ condor_status -af Name SlotType Cpus Memory

slot1@c   Partitionable 3 12904                                               

slot1_1@c Dynamic 2 2048                                                    

slot1_2@c Dynamic 3 1024           

slot1_3@c Dynamic 3 1024



No – Starvation

If I submit 8 one core jobs

Are we good?



Completely used machine
$ condor_status

Name      OpSys Arch   State     Activity LoadAv Mem

slot1@c   LINUX      X86_64 Unclaimed Idle      0.000 7784

slot1_1@c LINUX      X86_64 Claimed   Busy      0.000 1024

slot1_2@c LINUX      X86_64 Claimed   Busy      0.000 1024

slot1_3@c LINUX      X86_64 Claimed   Busy      0.000 1024

slot1_4@c LINUX      X86_64 Claimed   Busy      0.000 1024

slot1_5@c LINUX      X86_64 Claimed   Busy      0.000 1024

slot1_6@c LINUX      X86_64 Claimed   Busy      0.000 1024

slot1_7@c LINUX      X86_64 Claimed   Busy      0.000 1024

slot1_8@c LINUX      X86_64 Claimed   Busy      0.000 1024

Total Owner Claimed Unclaimed Matched Preempting Backfill

LINUX     9     0       8         1       0          0        0      

Total     9     0       8         1       0          0        0      

Note total slots!



› If there is a supply of one core jobs…

› A two-core job will never match!

Starvation



Need to engineer approach and make tradeoffs

Throughput vs. fairness

Establish policy

Measure performance

No easy solution





First approach: Steering



Works best when 2 sizes (cpus)

Fill 1 core jobs 

“left to right”
Fill 8 core jobs 

“right to left”



Assume every startd advertises Longitude:
Longitude = 2.3522

START_ATTRS = Longitude

And in the negotiator, have config like…

NEGOTIATOR_PRE_JOB_RANK = \

RequestCpus == 1 ? Longitude : - Longitude

Pool-wide policy -> negotiator



› Whole talk on negotiator

› Google for 

site:youtube.com center for high throughput 

computing channel

Brief Advertisement



2nd approach: Draining

$ condor_status

Name      OpSys Arch   State     Activity LoadAv Mem 

slot1@c   LINUX      X86_64 Unclaimed Idle      0.000 12904

slot1_1@c LINUX      X86_64 Claimed   Busy      0.000  2048

slot1_2@c LINUX      X86_64 Claimed   Busy      0.000  1024

slot1_3@c LINUX      X86_64 Claimed   Busy      0.000  1024 

Total Owner Claimed Unclaimed Matched Preempting Backfill  Drain                                                             

LINUX     4     0       3         1       0          0        0                                                              

Total     4     0       3         1       0          0        0       



condor_drain command

$ condor_status

Name      OpSys Arch   State     Activity LoadAv Mem 

slot1@c   LINUX      X86_64 Drained   Retiring  0.000 12904

slot1_1@c LINUX      X86_64 Claimed   Retiring  0.000  2048

slot1_2@c LINUX      X86_64 Claimed   Retiring  0.000  1024

slot1_3@c LINUX      X86_64 Claimed   Retiring  0.000  1024 

Total Owner Claimed Unclaimed Matched Preempting Backfill  Drain                                                             

LINUX     4     0       3         1       0          0        0                                                              

Total     4     0       3         1       0          0        0       

$ condor_drain c

Typo:

Should be

“DrainING”

Need admin privs,

May need to run 

from cm machine



How does drain work?

$ condor_status –af:r Requirements

false

false

false

false



condor_drain cancelling

$ condor_status

Name      OpSys Arch   State     Activity LoadAv Mem 

slot1@c   LINUX      X86_64 Unclaimed  Retiring  0.000 12904

slot1_1@c LINUX      X86_64 Claimed   Retiring  0.000  2048

slot1_2@c LINUX      X86_64 Claimed   Retiring  0.000  1024

slot1_3@c LINUX      X86_64 Claimed   Retiring  0.000  1024 

Total Owner Claimed Unclaimed Matched Preempting Backfill  Drain                                                             

LINUX     4     0       3         1       0          0        0                                                              

Total     4     0       3         1       0          0        0       

$ condor_drain –cancel c



› Jobs killed after MaxJobRetirementTime

Default is 0

› This may be most underused knob in HTC

› Machine stays in drained state until cancel

Even after all jobs exit

› (unless –resume-on-complete) is set

How long does drain last?



condor_drain command

$ condor_status

Name      OpSys Arch   State     Activity LoadAv Mem 

slot1@c   LINUX      X86_64 Drained   Retiring  0.000 12904

slot1_1@c LINUX      X86_64 Claimed   Retiring  0.000  2048

slot1_2@c LINUX      X86_64 Claimed   Retiring  0.000  1024

slot1_3@c LINUX      X86_64 Claimed   Retiring  0.000  1024 

Total Owner Claimed Unclaimed Matched Preempting Backfill  Drain                                                             

LINUX     4     0       3         1       0          0        0                                                              

Total     4     0       3         1       0          0        0       

$ condor_drain –start 'BackfillableJob == true' c



condor_drain with backfill

$ condor_status

Name      OpSys Arch   State     Activity LoadAv Mem 

slot1@c   LINUX      X86_64 Drained   Retiring  0.000 12904

slot1_1@c LINUX      X86_64 Claimed   Retiring  0.000  2048

slot1_2@c LINUX      X86_64 Claimed   Retiring  0.000  1024

slot1_3@c LINUX      X86_64 Claimed   Retiring  0.000  1024

slot1_4@c LINUX      X86_64 Claimed   Busy      0.000  1024

Total Owner Claimed Unclaimed Matched Preempting Backfill  Drain                                                             

LINUX     4     0       3         1       0          0        0                                                              

Total     4     0       3         1       0          0        0       

$ condor_submit backfillable_job.sub



› Optional, can be enabled (often on CM)

› Just runs condor_drain and –cancel

› Never looks at queues, just at condor_status
DEFRAG_DRAINING_MACHINES_PER_HOUR

DEFRAG_MAX_WHOLE_MACHINES

DEFRAG_REQUIREMENTS

Defrag daemon



Questions?

Please see htcondor.readthedocs.io

Thank you

40


