
REST API to HTCondor
Mátyás Selmeci

Today, you have two options to talk to HTCondor

● Option 1: Python bindings
○ Python only
○ Need compiled binaries for your platform

● Option 2: Command-line tools
○ Need to fork and exec other processes
○ Need compiled binaries for your platform

This leaves some developers out in the cold...

● Unsupported platforms

● Web developers

● Mobile developers

We need an interface anybody can use.

Solution: make a REST interface

● REST is a generic term for a software architecture whose properties include:
○ Client-server
○ Stateless (no persistent connection)
○ Uniform interface (all queries/commands look similar)

● In practice, this means HTTP; a REST interface will:
○ Listen to HTTP verbs GET, POST, etc.
○ Interpret URIs as queries or commands, not file paths
○ Respond with HTTP response codes (200, 404, etc.) and JSON

(typically)

Benefits of REST

● Statelessness + client-server means you can treat queries as function calls

● Web servers take care of the networking bits

● Libraries widely available for most programming languages (even bash has
curl and jq)

HTCondor-RESTD

● An ‘adapter’ between an HTTP client and HTCondor
daemons

○ Translates HTTP queries into Python bindings calls
○ Translates responses into JSON

● Runs on the Central Manager (as a separate service)

Client

condor_restd

HTTP
GET

Collector.
query()

condor_collector

JSON

Central Manager

Currently, the RESTD allows read-only queries

● GET /v1/jobs/... (condor_q)
● GET /v1/history/… (condor_history)
● GET /v1/status/… (condor_status)
● GET /v1/config/… (condor_config_val)

● Can give it constraints, projections (list of attributes to return)

● Note: done as the user running the RESTD

Example (JavaScript with jQuery)

<script
src="https://code.jquery.com/jquery-3.5.1.min.js">
</script>

<script>
$.getJSON("http://localhost:9680/v1/status?query=startd")
 .done(function(slots) {

 slots.forEach(function(item) {

 var classad = item.classad;

 document.write("name: " + item.name);
 document.write(" mem: " + classad.memory);
 document.write(" load: " + classad.loadavg);
 document.write("
");

 });
});
</script>

name: slot4@10af02a1d3e5 mem: 1808 load: 0
name: slot3@10af02a1d3e5 mem: 1808 load: 0
name: slot2@10af02a1d3e5 mem: 1808 load: 0
name: slot1@10af02a1d3e5 mem: 1808 load: 0.67

(see full example)

https://github.com/htcondor/htcondor-restd/blob/master/examples/condor_status.html

Two ways to try it out

1. Install it with pip as a non-root user on an existing HTCondor host -- see
installation instructions.

2. Run the minicondor (htcondor/mini) container -- see instructions.

Note: this is experimental software (APIs are subject to change); don’t run it in
production!

https://github.com/htcondor/htcondor-restd#readme
https://github.com/htcondor/htcondor/tree/master/build/docker/services#using-the-minicondor-container

Future work

● Authentication and write operations

● (Good) Generated bindings for various languages

● This is experimental software -- we welcome your input!

Thanks and Links

● Greg Thain and the HTCondor Team

● Boris Sadkhin (Argonne National Laboratory)

● htcondor-restd GitHub repository

https://github.com/htcondor/htcondor-restd#readme

