
Transforming Jobs in the Schedd

John (TJ) Knoeller
Center for High Throughput Computing

You want to have a policy about what jobs are allowed,
to require certain attributes, or to make it easy for users

Submit requirements

Submit attributes

Job transforms

Preventing subsequent changes

Motivation

2

Policy: All jobs must have Experiment attribute
Reject jobs at submit time that don't have this attribute

SUBMIT_REQUIREMENT_NAMES = $(SUBMIT_REQUIREMENT_NAMES) CheckExp

SUBMIT_REQUIREMENT_CheckExp = JobUniverse == 7 || Experiment isnt undefined

SUBMIT_REQUIREMENT_CheckExp_REASON = "submissions must have +Experiment"

JobUniverse 7 is Scheduler universe, i.e. DAGMAN.

JobUniverse 12 is Local universe, maybe ignore these jobs also?

Enforce a job policy or schema

3

Configure SUBMIT_ATTRS to add attributes to jobs.

SUBMIT_ATTRS = $(SUBMIT_ATTRS) Experiment

Experiment = "CHTC"

Job ClassAd starts with Experiment="CHTC"
Before the submit file is even processed

Defaulting job attributes

4

Good for setting defaults

Work happens outside of the SCHEDD

-however-

User can override or un-configure

Applies to ALL job types (Grid, VM, DAG)

May not happen with remote submit

SUBMIT_ATTRS is weak

5

Configure JOB_TRANSFORM_*
JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) SetExperiment

JOB_TRANSFORM_SetExperiment = [set_Experiment = "CHTC";]

Experiment="CHTC" written into each job ClassAd
as it is submitted, overriding what user specified!

Job Transforms in the Schedd

6

JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) SetExperiment

JOB_TRANSFORM_SetExperiment @=end

[

Requirements = JobUniverse != 7 && Experiment is undefined;

set_Experiment = "CHTC";

]

@end

Adds Experiment="CHTC" to each job that doesn't
already have that attribute

Transforms can be conditional

7

Job transforms are ClassAds in "new" syntax
[Requirements = <job-match-constraint>;

<verb>_<subject-attr> = object;

…]

Verbs are copy, delete, set & eval_set

Evaluated in that order, copy before delete before set, etc

Evaluation order within each verb group is random

Job transforms are classads (<9.0)

8

JOB_TRANSFORM_Example @=end

[

Requirements = JobUniverse == 5; /* vanilla jobs only */

copy_FromAttr = "ToAttr";

delete_Attr = true;

set_StringAttr = "A";

set_IntAttr = 100;

set_Requirements = Arch != "ARM"; /* replace job req */

eval_set_EnvA = join("=", StringAttr, "B"); /* "A=B" */

eval_set_Environment = join(" ", Environment, EnvA);

]

@end

(there's a problem with the last 2 lines - remember eval_set order is random)

Job transforms look like:

9

How do I assign jobs to accounting groups automatically,
while preventing users from cheating?

Job transforms + Immutable attributes

But doing this in ClassAd language is painful

eval_set_AcctGroup =

IfThenElse(Owner=="Bob","CHTC",

IfThenElse(Owner=="Alice","Math",

IfThenElse(Owner=="Al","Physics","Unknown")

))

The motivation for transforms

10

use FEATURE : AssignAccountingGroup(/path/to/map)

You can run

condor_config_val use feature:AssignAccountingGroup

to see what this configuration template expands to

(/path/to/map. what's that?)

There a (meta) knob for that

11

Map file is text, with 3 fields per line

* <key_or_regex> <result_list>

* Bob CHTC,Security

* Alice CHTC,Math,Physics

* /.*Hat/i Problem

* /.*/ CHTC

The first field is a namespace, * for ‘default’

ClassAd map files

12

CLASSAD_USER_MAPFILE_MyMap = /path/to/mapfile

<or>

CLASSAD_USER_MAPDATA_MyMap @=end

* Bob CHTC,Security

* Alice CHTC,Math,Physics

* /.*Hat$/i Collab

* /.*/ General

@end

control which damons (or tools) load the map

SCHEDD_CLASSAD_USER_MAP_NAMES = MyMap $(SCHEDD_CLASSAD_USER_MAP_NAMES)

TOOL_CLASSAD_USER_MAP_NAMES = MyMap $(TOOL_CLASSAD_USER_MAP_NAMES)

Use userMap("MyMap",…) in Classad expressions in the SCHEDD

Configuring a map

13

result = userMap(mapname, input)

map input to all results (returns the list)

result = userMap(mapname, input, preferred)

map input to preferred or undefined

result = userMap(mapname, input, pref, def)

map input to preferred or default result

userMap has 3 variants

14

IMMUTABLE_JOB_ATTRS - Cannot be changed once set

PROTECTED_JOB_ATTRS - Cannot be changed by user

SECURE_JOB_ATTRS - Can only be changed by Security

IMMUTABLE_JOB_ATTRS = $(IMMUTABLE_JOB_ATTRS) Experiment

Preventing change

15

SCHEDD_CLASSAD_USER_MAP_NAMES = GroupFromOwner $(SCHEDD_CLASSAD_USER_MAP_NAMES)

CLASSAD_USER_MAPFILE_GroupFromOwner = /path/to/mapfile

Assign Accounting groups automatically based on submitting username (Owner attribute)

JOB_TRANSFORM_NAMES = AssignGroup $(JOB_TRANSFORM_NAMES)
JOB_TRANSFORM_AssignGroup @=end
[

copy_AcctGroup = "RequestedGroup";
eval_set_AccountingGroup = join(".", usermap("GroupFromOwner", Owner, RequestedGroup), Owner);
eval_set_AcctGroup = usermap("GroupFromOwner", Owner, RequestedGroup);

]
@end

IMMUTABLE_JOB_ATTRS = $(IMMUTABLE_JOB_ATTRS) AcctGroup AcctGroupUser AccountingGroup
SUBMIT_REQUIREMENT_NAMES = $(SUBMIT_REQUIREMENT_NAMES) CheckGroup
SUBMIT_REQUIREMENT_CheckGroup = AcctGroup isnt undefined && AccountingGroup isnt undefined
SUBMIT_REQUIREMENT_CheckGroup_REASON = strcat("Could not map '", Owner, "' to a group")

Putting it all together

16

Native syntax is similar to config/submit syntax

Statements evaluated in declaration order

Temporary variables

If/then/else

Rename and Delete by attribute name pattern

Transforms are converted from ClassAd syntax on load

New Job transform syntax in 9.0

17

Use job transform to add a pool constraint to vanilla jobs

based on whether the job needs GPUs or not

#

JOB_TRANSFORM_GPUS @=end

REQUIREMENTS JobUniverse == 5

tmp.NeedsGpus = $(MY.RequestGPUs:0) > 0

if $INT(tmp.NeedsGpus)

SET Requirements $(MY.Requirements) && (Pool == "ICECUBE")

else

SET Requirements $(MY.Requirements) && (Pool == "CHTC")

endif

@end

9.0 transform example

18

Any Questions?

19

