
Benchmark tutorial
Prepared to guide towards Benchmark comparisons needed for the LCG EW group.

Preparation

If you have the instructions but not the git repository, clone the files.

I. Running Madgraph

The directory madgraph contains several files prepared for lxplus : (1) setup.sh activates three
needed environments (the LCG View, Madgraph5_aMC@NLO , fastjet), and (2) W-P8.dat is a sample
file for the generator Madgraph5_aMC@NLO . It describes the decay , where .

Run the commands

These programs will produce a directory, specified after the keyword output , namely, test-W-P8 .
This code produces the hard-process events files.

Remarks:

1. The currently activated version is

2. The input file W-P8-lhapdf.dat requests LHAPDF set:

However, they are currently not compatible with the mg5_aMC , and lead to run-time errors.

3. The current contents of madgraph/setup.sh :

cd madgraph

source setup.sh

mg5_aMC W-P8.dat 2>&1 | tee out-w-p8.log

$ which mg5_aMC

/cvmfs/sft.cern.ch/lcg/releases/LCG_96/MCGenerators/madgraph5amc/2.7.2.atlas3/x8

6_64-centos7-gcc8-opt/bin/mg5_aMC

set pdlabel=lhapdf

set lhaid=261000 # NNPDF3

$ cat setup.sh

source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh LCG_96 x86_64-centos7-gcc8-opt

source

/cvmfs/sft.cern.ch/lcg/releases/LCG_96/MCGenerators/madgraph5amc/2.7.2.atlas3/x8

6_64-centos7-gcc8-opt/madgraph5amcenv-genser.sh

source /cvmfs/sft.cern.ch/lcg/releases/LCG_96/fastjet/3.3.2/x86_64-centos7-

gcc8-opt/fastjet-env.sh

af://n0
af://n27
af://n12

II. Running Pythia8

The directory pythia8 contains instructions needed to propagate the generated event towards
the measurable state.

Remark: Since we will need a valid LHE file with events, lets expand the file created in our
previous tutorial. It is located in madgraph/test-W-P8/Events/run_01/ . The file named
events.lhe.gz should be decompressed with gzip -d .

Testing Pythia8

First, lets us check whether we understand how Pythia8 set-up works. Having activated the LCG
environment, lets explicitly activate Pythia8 v.3.02:

Those commands are encapsulated in pythia8/setup.sh . The default pythia8-config points to
v.3.01, therefore we explicitly export PYTHIA8root .

Since we will run the code based on Pythia8 example main31.cc , lets first get its initial version
and compile it:

This code reads the command file main31.cmnd , where the input file powheg-dijets.lhe is
specified. We can either change the definition of the input file in main31.cmnd or simply create a
soft link to our previously-created event file, and run the code:

Our purpose here was to see some meaningful output, containing no error messages.

We could also try to use jet events file (166MB) available on lxplus . Copy the file, expand it,
relink powheg-dijets.lhe and run the code (note that this file contains 100k events, so you
might want to edit main31.cmnd file to limit the processed number of events):

Preparing Pythia8 executable

source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh LCG_96 x86_64-centos7-gcc8-opt

export

PYTHIA8root=/cvmfs/sft.cern.ch/lcg/releases/LCG_96/MCGenerators/pythia8/302/x86_

64-centos7-gcc8-opt

export PYTHIA8DATA=`${PYTHIA8root}/bin/pythia8-config --xmldoc`

mkdir simpleTest1

export src=${PYTHIA8root}/share/Pythia8/examples/

cp $src/main31.cc $src/main31.cmnd $src/Makefile.inc $src/Makefile simpleTest1

cd simpleTest1

make main31

ln -s ../../madgraph/test-W-P8/Events/run_01/events.lhe powheg-dijets.lhe

./main31

cp /afs/cern.ch/user/j/jung/work/public/benchmark/pythia/bin/jet-13TeV-ptj100-

TMDset1-P8-86.lhe.gz ./

gunzip jet*

rm powheg-dijets.lhe

ln -s jet-13TeV-ptj100-TMDset1-P8-86.lhe powheg-dijets.lhe

af://n37
af://n47
af://n111

We will adapt out code to use the HepMC event package. A Pythia8 example is main44.cc . Here
we will outline the adaptation of main31.cc , but the intention is to use the prepared code, as
explained below.

If you started from the initial example, add the following lines to Makefile after line, containing
definition for main% :

Note that the second line shall start with <tab> symbol.

Copy the file main31.cc to main31hepmc.cc and edit this file. We will assume that the
environment will have 2 variables set: PYSEED (an integer shift to the random seed) and
HEPMCOUT (name of the file for HepMC output).

Code adaptation steps:

a) Add an additional dependency:

b) Add the following lines after the comment "Load configuration file":

c) After pythia.init() , add the lines:

d) And the following lines before the "End of event loop":

main%hepmc: $(PYTHIA) main%hepmc.cc

 $(CXX) $@.cc -o $@ $(CXX_COMMON) $(HEPMC2_LIB)

#include "Pythia8Plugins/HepMC2.h"

 // Load configuration file

 pythia.readFile("main31hepmc.cmnd");

 pythia.readString("Random:setSeed = on");

 const char * pseed = getenv ("PYSEED");

 if (!pseed) { cout << "env PYSEED is empty" << endl; exit(2); }

 string seed1 = "Random:seed = ";

 string seed2 = pseed ;

 cout << seed1 + seed2 << endl;

 pythia.readString(seed1+seed2);

 // Interface for conversion from Pythia8::Event to HepMC one.

 HepMC::Pythia8ToHepMC ToHepMC;

 // Specify file where HepMC events will be stored.

 const char * outfile = getenv ("HEPMCOUT");

 if (!outfile) { cout << "env HEPMCOUT is empty" << endl; exit(2); }

 HepMC::IO_GenEvent ascii_io(outfile, std::ios::out);

 double sigmaTotal = 0., errorTotal = 0.;

 double sigmaSample = 0., errorSample = 0.;

 double xs = 0.;

 for (int i=0; i < pythia.info.nProcessesLHEF(); ++i)

 xs += pythia.info.sigmaLHEF(i);

 // Get event weight(s).

 double evtweight = pythia.info.weight();

 // Do not print zero-weight events.

Irrespectively of whether you obtained the modified code main31hepmc.cc by doing
modifications yourself or taking the source file from the local example directory SimpleTest2 ,
you can compile is using

(This will work, if the Makefile was updated to link-in libraries defined in $(HEPMC2_LIB) .)

We also need the input file main31hepmc.cmnd . For testing purposes we could use the default file
main31.cmnd or the modified file, obtainable from a directory on lxplus:

(This file is also available in the SimpleTest2 directory.) Note that this input file reads events
from a file named pwgevents.lhe .

The test run on our Madgraph example

produced hepmc.out output file of size of 2MB.

 if (evtweight == 0.) continue;

 // Construct new empty HepMC event.

 HepMC::GenEvent* hepmcevt = new HepMC::GenEvent();

 // Work with weighted (LHA strategy=-4) events.

 double normhepmc = 1.;

 if (abs(pythia.info.lhaStrategy()) == 4)

 normhepmc = 1. / double(1e9*nEvent);

 // Work with unweighted events.

 else

 normhepmc = xs / double(1e9*nEvent);

 // Set event weight

 //hepmcevt.weights().push_back(evtweight*normhepmc);

 // Fill HepMC event

 ToHepMC.fill_next_event(pythia, hepmcevt);

 // Add the weight of the current event to the cross section.

 sigmaTotal += evtweight*normhepmc;

 sigmaSample += evtweight*normhepmc;

 errorTotal += pow2(evtweight*normhepmc);

 errorSample += pow2(evtweight*normhepmc);

 // Report cross section to hepmc

 HepMC::GenCrossSection xsec;

 xsec.set_cross_section(sigmaTotal*1e9, pythia.info.sigmaErr()*1e9);

 hepmcevt->set_cross_section(xsec);

 // Write the HepMC event to file. Done with it.

 ascii_io << hepmcevt;

 delete hepmcevt;

} // End of event loop.

make main31hepmc

cp /afs/cern.ch/user/j/jung/work/public/benchmark/pythia/bin/mcatnlo-P8.cmnd \

 main31hepmc.cmnd

export PYSEED=12314

export HEPMCOUT=hepmc.out

ln -s ../../madgraph/test-W-P8/Events/run_01/events.lhe pwgevents.lhe

./main31hepmc

Running Pythia8 and Rivet on a local file

To make a meaningful comparison using Rivet (http://projects.hepforge.org/rivet/, https://twiki.ce
rn.ch/twiki/bin/viewauth/CMS/Rivet), we shall run the executable on the jet event sample.

Create a new subdirectory tutorial/pythia8/rivetTest3 . Here it is assumed that this directory
is parallel to previously created tutorial/pythia8/simpleTest1 . Copy the code file and compile
it, obtain the data file and create a soft-link to it:

The contents of the current directory shall look like

We shall also activate Rivet environment:

(This sourcing is included in setup.sh , but we remind about this necessity.)

We may want to increase the number of input events defined in main31hepmc.cmnd .

We shall also export environment variables PYSEED and HEPMCOUT :

Lets run our analysis code and Rivet's analysis on CMS jet data:

don't forget to activate the environment

cd tutorial/pythia8

source setup.sh

create a new directory for the rivet tutorial

mkdir rivetTest3

cd rivetTest3

copy previously prepared source file and compile it

cp ../simpleTest2/main31hepmc.c* ../simpleTest2/Makefile* ./

make main31hepmc

obtain the jet sample

cp /afs/cern.ch/user/j/jung/work/public/benchmark/pythia/bin/jet-13TeV-ptj100-

TMDset1-P8-86.lhe.gz ./

gunzip jet*

ln -s jet-13TeV-ptj100-TMDset1-P8-86.lhe pwgevents.lhe

$ ls -la

drwxr-xr-x. 2 andriusj zh 2048 Jul 13 11:50 .

drwxr-xr-x. 10 andriusj zh 2048 Jul 13 11:45 ..

-rw-r--r--. 1 andriusj zh 116493207 Jul 13 11:49 jet-13TeV-ptj100-TMDset1-P8-

86.lhe

-rwxr-xr-x. 1 andriusj zh 138640 Jul 13 11:48 main31hepmc

-rw-r--r--. 1 andriusj zh 5098 Jul 13 11:47 main31hepmc.cc

-rw-r--r--. 1 andriusj zh 4648 Jul 13 11:47 main31hepmc.cmnd

-rw-r--r--. 1 andriusj zh 5398 Jul 13 11:47 Makefile

-rw-r--r--. 1 andriusj zh 3047 Jul 13 11:47 Makefile.inc

lrwxr-xr-x. 1 andriusj zh 34 Jul 13 11:50 pwgevents.lhe -> jet-13TeV-

ptj100-TMDset1-P8-86.lhe

source /cvmfs/sft.cern.ch/lcg/releases/MCGenerators/rivet/3.1.2-aa7e1/x86_64-

centos7-gcc8-opt/rivetenv.sh

export PYSEED=12314

export HEPMCOUT=hepmc.out

af://n127
http://projects.hepforge.org/rivet/
https://twiki.cern.ch/twiki/bin/viewauth/CMS/Rivet

5000 events produced a file hepmc.out of 534MB.

Remark: If rivet gives you a message

you forgot to activate Rivet's environment.

The command

shall report that the rivet file Rivet.yoda was produced in current directory.

We can run the Rivet code to create the plots:

It reports that 14 plots are created. (Note: If the code seems to be stuck, you forgot to activate the
Rivet environment. This might easily happen, if you logout and login again.)

 If you are at CERN or have a fast internet connection to lxplus, you can inspect them by
launching a browser:

Running Pythia8 and Rivet on a named pipe

New files are not needed for this tutorial. You may work in rivetTest3 . The only difference from
the previous tutorial step is using a named pipe to transfer information from main31hepmc to
rivet .

Since $HEPMCOUT file gets large, as the number of processed event increases, we can take
advantage of the named pipe. It can be created only on a special file system:

Here we added our username to the named pipe to distinguish it from others. The last command
is used to verify that the pipe exists (information line shall start with 'p').

When utilising the named pipe, the program that writes to the named pipe and the program that
reads from the named pipe have to be run in parallel. Try:

./main31hepmc

rivet $HEPMCOUT -a CMS_2016_I1459051

All analyses were incompatible with the first event's beams

Exiting, since this probably wasn't intentional!

rivet $HEPMCOUT -a CMS_2016_I1459051

rivet-mkhtml Rivet.yoda

firefox rivet-plots/index.html &

export HEPMCOUT=/tmp/`whoami`-hepmc.out

mkfifo $HEPMCOUT

ls -la $HEPMCOUT

./main31hepmc & # ampersend `&` is very important here

rivet $HEPMCOUT -a CMS_2016_I1459051

af://n317

If we would like to have log files for inspection, we should add redirection of the streams to the
output stream (2>&1):

If we run the task interactively and would like to see some activity on screen, we can run the
second output through stream divider tee :

Running Pythia8 and Rivet on a batch system

To process a large number of events, we shall use the batch system on lxplus. The batch system
requires a wrapper script that tells what should be done once the job is launched on the cluster,
and the configuration file that tells how to handle the job.

Assuming that this directory will be useful later, when we will do actual analysis, lets create a
clone of rivetTest3 and name it rivetTest4 . Create the executable main31hepmc . Make sure,
there is the event file pwgevents.lhe.gz (either physically or a link to it).

Since many names are interconnected in the wrapper script and the configuration file, there are
some partially adapted examples in rivetTest4.tmp directory. The wrapper script prototype is
pythia-aMC-bird.sub (it assumes the executable main31hepmc with its configuration file
main31hepmc.cmnd) and the configuration file is condor-mcatnlo.conf . There is also an auxiliary
script prepare-condor.sh that adapts the wrapper script to the local directory.

We have already created the executable main31hepmc . Copy the other needed files:

The last command will adapt pythia-aMC-bird.sub file to current directory and create a file
work.sub that is referenced in condor-mcatnlo.conf .

The work directory should look like

./main31hepmc 2>&1 > out-main.log &

rivet $HEPMCOUT -a CMS_2016_I1459051 > out-rivet.log 2>&1

./main31hepmc 2>&1 > out-main.log &

rivet $HEPMCOUT -a CMS_2016_I1459051 2>&1 | tee rivet.lot

cp ../rivetTest4.tmp/condor-mcatnlo.conf .

cp ../rivetTest4.tmp/pythia-aMC-bird.sub .

cp ../rivetTest4.tmp/prepare-condor.sh .

./prepare-condor.sh

$ ls -la

total 16346

drwxr-xr-x. 3 andriusj zh 2048 Jul 13 15:12 .

drwxr-xr-x. 11 andriusj zh 2048 Jul 13 13:34 ..

-rw-r--r--. 1 andriusj zh 1375 Jul 13 13:42 condor-mcatnlo.conf

-rw-r--r--. 1 andriusj zh 16564008 Jul 13 15:10 jet-13TeV-ptj100-TMDset1-P8-

86.lhe.gz

-rwxr-xr-x. 1 andriusj zh 138744 Jul 13 15:12 main31hepmc

-rw-r--r--. 1 andriusj zh 5274 Jul 13 13:38 main31hepmc.cc

-rw-r--r--. 1 andriusj zh 4648 Jul 13 13:38 main31hepmc.cmnd

-rw-r--r--. 1 andriusj zh 5398 Jul 13 13:37 Makefile

-rw-r--r--. 1 andriusj zh 3047 Jul 13 13:37 Makefile.inc

drwxr-xr-x. 2 andriusj zh 2048 Jul 13 15:09 out

-rwxr-xr-x. 1 andriusj zh 231 Jul 13 14:57 prepare-condor.sh

af://n15

Submit the job:

The task status can be checked by

The output will be written to the directory out . Including Rivet.yoda file.

Since these are the tutorial instructions, no further fine-tuning in names is discussed.

Acknowledgements

This tutorial file was prepared by A.Juodagalvis, who followed the LCG EW tutorial by H.Jung.

lrwxr-xr-x. 1 andriusj zh 37 Jul 13 15:11 pwgevents.lhe.gz -> jet-13TeV-

ptj100-TMDset1-P8-86.lhe.gz

-rwxr-xr-x. 1 andriusj zh 1388 Jul 13 15:04 pythia-aMC-bird.sub

-rw-r--r--. 1 andriusj zh 1536 Jul 13 15:09 work.sub

condor_submit condor-mcatnlo.conf

condor_q

af://n347

	Benchmark tutorial
	Preparation
	I. Running Madgraph
	II. Running Pythia8
	Testing Pythia8
	Preparing Pythia8 executable
	Running Pythia8 and Rivet on a local file
	Running Pythia8 and Rivet on a named pipe

	Running Pythia8 and Rivet on a batch system
	Acknowledgements

