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Field Harmonics

• Physical representation of
integrated and homogeneous
fields

• Implying Maxwells equations:
divB = 0, curlH = 0.

• If field is known at some radius,
multipole theory provides scaling
laws to interpolate into the
cross-section

Dipole Quadrupole Sextupole
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3D Field Representation by Boundary Data

Where we care about fringe
fields:

• Spectrometers
• Detector magnets
• Large diameter focusing lenses [1]

What is the benefit of a
representation by boundary
data:

• Reduces the amount of
measurements needed to obtain a
field map

• Smooths out spurious solutions.
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Local Field Measurement
Faraday’s Law Transducers [2][3][4][5]
Rotating Coils

Uind =
∫
∂A (v × B) dr

+ Linear transfer function
+ Long time experience in
calibration
+ High accuracy
- Large active areas

Translating Coils
Hall Effect Sensors

+ Active area ∼ 0.01 mm2

+ 3 component
measurement
- Nonlinear transfer function
- Temperature dependencies
- Elaborate calibration
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Numerical Model
by means of magnetic potential

expressed in coefficients u

B-field
mathematical expression B̃(u)

derived from Model

Predicted Signal
mathematical expression

ỹ = F(u)

Magnetic Field

Raw Signal
voltage generated by sensor

Processed Signal
output of acquisition chain

y

Primary Error Sources
noise, magnet current, temperature
alignment, positioning, vibrations

Secondary Error Sources
integrator drift, approximation errors

Inference
identifying u from y

F(u) = y
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Numerical Model
u = (C1, ..., Cn)T

Az(r, φ) =
∑

n rnCn exp(jnφ)

B-field
B(r, φ, u) = ∇ × A

Predicted Signal
Φ(φ) =

∫
A Bda

yn = F{Φ(φ)} = snCn

Magnetic Field

Raw Signal
Uind =

∫
Γ(v × B)dr

Processed Signal
∆Φk ≈

∫ tk
tk−1

Uinddt
Φk ≈

∑k
j=0 ∆Φk

yn = DFT(Φk)

Primary Error Sources
noise, magnet current, temperature
alignment, positioning, vibrations

Secondary Error Sources
integrator drift, approximation errors

Inference
s1 ... 0
...

. . .
...

0 . . . sN




C1
...

CN

 =


y1
...

yN


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u = (C1, ..., Cn)T

Az(r, φ) =
∑

n rnCn exp(jnφ)

B-field
B(r, φ, u) = ∇ × A

Predicted Signal
Φ(φ) =

∫
A Bda

ỹn = F{Φ(φ)} = snCn

Magnetic Field

Raw Signal
Uind =

∫
Γ(v × B)dr

Processed Signal
∆Φk ≈

∫ tk
tk−1

Uinddt
Φk ≈

∑k
j=0 ∆Φk

yn = DFT(Φk)

Primary Error Sources
noise, magnet current, temperature
alignment, positioning, vibrations

Secondary Error Sources
integrator drift, approximation errors

Inference
s1 ... 0
...

. . .
...

0 . . . sN




C1
...

CN

 =


y1
...

yN


We cannot always find a diagonal

forward operator F(u)

Examples:
- large populated matrices
- nonlinear functions of u
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How do we infer?
• In some cases it might be difficult to find a solution for u = F−1(y)
• Examples:

- Nonlinear F(u)
- Ill conditioned F
- Large dimensional problems

• For this reason we make use of Bayesian inference.

u1
u2

Likelihood Prior

Posterior

x

=

p(y|u)
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How do we infer?
• In some cases it might be difficult to find a solution for u = F−1(y)
• Examples:

- Nonlinear F(u)
- Ill conditioned F
- Large dimensional problems

• For this reason we make use of Bayesian inference.

Linear F, Gaussian p(y), p(u):

p(u|y) ∝ exp

(
−1

2 (u − u1)
TQ−1

1 (u − u1)

)
u1 = u0 + K (y − Fu0)︸ ︷︷ ︸

Innovation

K := Q0F
(

FQ0FT + R
)−1

How to choose the prior?
• Prior Measurements
• Simulations
• ”Smoothing“ priors (zero

mean) Tikhonov
regularisation
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Short Rotating Coil Measurement
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Short Rotating Coil Scanners

Tangential

+ Multiple solid PCB
→ high accuracy track
positioning

- Complicated F(u) due
to Bρ and Bz

Iso-Perimetric [2]

+ ”Sees“ Bρ only
+ F = diagonal matrix

- Flexible PCB
→ challenging track
positioning

Radial
B

dr4

dr3

dr2

B

Bz

Bz

+ Whole coil array on a
single, solid PCB
→ high accuracy track
positioning
→ large bucking ratio

- Complicated F(u) due
to Bρ and Bz
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Measurement Path
Magnetic Field Raw Signal

Uind(zm) =
∫
Γ
(v × B)dr

Processed Signal
yn = (Φn(z1), ...,Φn(zM))T

z

y

x

Motor unit

Laser tracker

Movable stages
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Test Example: Rotating Coil Sensor

Standard Radial Coil on PCB
Using a dipole bucking scheme

“Multipoles Extractor”
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The Bessel-Fourier-Fourier Series

ϕm(r, φ, z) =
1
2

∞∑
n=−∞

n̸=0

ϕn(r, z) exp (jnφ)

ϕn(r, z) = C0,nr|n| + 1
2

∞∑
k=−∞

k̸=0

Ck,nI|n|
(

2π|k|
L r

)
exp

(
j2πk

L z
)

Numerical Model

Pros
+ Integrated field harmonics are

encoded in C0,n

+ ”Maxwellian” solution even for
truncated n, k-sum

Cons
- Bad scaling of I|n|(|k|r) for large n

and k → infeasible for high k
- Expensive evaluation of Bessel

functions → Pseudo-multipoles
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Predicted Signal

ỹn(zm) = jnµ0

C0,nI1,n +
1
2

K∑
k=−K

k̸=0

Ck,nI2,n,kI3,k


Geometric factors:

I1,n = l
(rc + w/2)|n| − (rc − w/2)|n|

|n|
,

I2,n,k =

∫ rc+w/2

r′=rc−w/2

I|n|
( 2π|k|

L r′
)

r′
dr′

I3,k =
L
πk

sin

(
πkl
L

)
exp

(
j
2πk

L
zm

)
.

l

w

rc

Numerical Model
ϕm(r, φ, z)

B-field
B̃ = −µ0∇ϕm

Predicted Signal
Φ̃(φ, zm) =

∫
A B da

ỹn(zm) = F{Φ̃(φ, zm)}

ỹ = (Φ̃n(z1), ..., Φ̃n(zM))T
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Inference

• ỹn(zm) is a linear function of
u = (C−K,n, ...,CK,n)

T

• We collect the geometric factors
into a matrix F and obtain the
equation system:

yn = F · u

• We over-sample M >> K and
solve for u by least-squares.

Numerical Model
ϕm(r, φ, z)

B-field
B̃ = −µ0∇ϕm

Predicted Signal
Φ(φ, zm) =

∫
A B da

ỹn(zm) = F{Φ(φ, zm)}

ỹn = (Φn(z1), ...,Φn(zM))T
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Results
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Scaling Laws
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Summary

• Fringe field measurements with classical bucking schemes on solid PCB
→ increase resolution for higher multipole errors
→ cancellation of mechanical vibrations

• Approach can be applied to large diameter quadrupoles
• We can avoid Hall probe measurements for local field measurement

in cylindrical domains
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Translating Fluxmeter Measurement
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Motivation
Large rectangular dipole magnets are often used in spectrometers.
The domain of interest Ω is box-shaped.

Ω

Γ
x

y

z
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Motivation
The translating fluxmeter is specially designed for field homogeneity
measurements in such magnets [5][6].

Ω

x

y

z

v
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The Translating Fluxmeter

Maximum velocity of 0.6 m/s
Linear encoder with 5 um resolution
Compensated signals for homogeneity
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Field Maps from Fluxmeter Measurements

Coils sampling on boundary

+ Direct measurement of boundary data
- Complicated sensor design
- Low field measurement for vertical coils

Sampling By inside the domain

Ω

x

y

z

v

- Measurements are distributed
throughout the domain
+ Vertical positioning can be adapted
with spacers and dowel pins
+ Large signals for all coils
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The Boundary Element Method

Ω

Γ
x

y

z

• The domain of interest is fully inscribed in the magnet bore.
• The magnet is too complex to derive an appropriate field model.

• We replace the magnet an express its effect in Ω by sheets of single and
double layer potential on the domain boundary Γ.

Kirchhoff’s integral equation

ϕm(r) = 1
4π

∫
Γ

ϕm(r′)∂n
1

|r − r′| dr′︸ ︷︷ ︸
Double Layer Potential

− 1
4π

∫
Γ

1
|r − r′|∂nϕm(r′) dr′︸ ︷︷ ︸

Single Layer Potential

.
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The Boundary Element Method

Ω

Γ
x

y

z

• The domain of interest is fully inscribed in the magnet bore.
• The magnet is too complex to derive an appropriate field model.
• We replace the magnet an express its effect in Ω by sheets of single and

double layer potential on the domain boundary Γ.

Representation by Surface Currents [7]

A(r) = 1
4π

∫
Γ

curlΓν(r′)
|r − r′| dr′
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Measurement Path

Magnetic Field

Raw Signal

Uind =
∫
Γ
(v × B)dr

Processed Signal

∆Φj ≈
∫ tj

tj−1
Uinddt

Φ(zk) ≈
∑k

j=0 ∆Φj
y = (Φ(z1), ...,Φ(zM))
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Predicted Signal
Numerical Model

A(r) = 1
4π

∑N
n=1 un

∫
Γ

curlΓφ(r′)
|r−r′| dr′

B-field

B̃ = curlA

Predicted Signal

ỹ(rm) =
∫
A B̃ da

ỹ(rm) =
∫
Γ

A dr

ỹ(rm) =
N∑

n=1
un

∫
∂Am

∫
Γ

curlΓφn(r)
4π|r − r′| dr′dr︸ ︷︷ ︸

geometric factors
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Inference
• We collect the geometric factors in a matrix F:

y = F · u
• F is ill conditioned, due to the “blind eye” of the Sensor

• We apply Bayesian inference for regularisation
• In this case (linear F), Bayesian inference boils down to the Kálmán

update:
u1 = u0 + K (y − Fu0)

K := Q0F
(

FQ0FT + R
)−1

with an estimated noise covariance matrix R and Gaussian prior
u ∼ (u,Q0).
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Example: Measurements in Reference Dipole
• Fluxmeter is placed in C-shaped

dipole
• Vertical position is modified by

spacers between sledge and PCB
• Measurements at 5 vertical, and

13 horizontal positions
y ∈ (0 , 5 , 10 , 15 , 23) mm

Ω

x

y

z

v

z
x

y
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Example: Processed Data
• Measuremets in the center of the magnet

Flux measurements Standard deviation

• Gaussian covariance matrix is estimated from 200 runs

Δ� Δ� Δ� Δ� Δ�

z = 0.8 z = 1.2 z = 1.7 z = 2.5 z = 3.2
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Example: Results
• Boundary data after Kálmán update:

Mean: Variance:

• Comparing field reconstruction with NMR in the homogeneous region

prior

NMR

BEM

July 28, 2020 Translating Fluxmeter Measurement 36



Reconstruction of Field Maps
At any position in Ω (here in the magnets center))

x

160 mm- 160 mm 0 mm

y

23 mm

0 mm

-0.21-1.02
By [T]

July 28, 2020 Translating Fluxmeter Measurement 37



Summary
• We can use the translating fluxmeter to extract field maps
• BEM allows us to interpolate between the measurement positions
• Bayesian inference provides a regularisation of the ill-posed inference

problem
• Coil layout can be optimised to improve sensitivity for higher frequency

components
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The Hall Probe Mapper System
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The 3 axes Hall probe

x y

z

nx

ny

nz

φxz φyz

φxy

Mapper

x

y

z

nx

ny

nz

• Nonlinearities of individual axes are out calibrated in the measurement
range at signal processing stage

• Three axes suffer from large orientation errors of ∼ 2 deg
• The calibrated axis orientation is encoded by the unit vectors nx, ny and

nz in our model
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The FASER Permanent Dipole Magnets

July 28, 2020 The Hall Probe Mapper System 41



Measurement Procedure

x

y

z

ᵠ

L 
=

 1
612 m

m

• We map along a cylindrical surface
• Moves are performed along z-axis
• Acquisition is done “one-the-fly” with 1

mm stepsize
• φ = 3◦ yielding 120 moves along z
• Total number of measurements

3 × 120 × 1612 = 583 560
• The amount of data is too large to

handle in a single inference step

We infer the measurements ”move-by-move“, in successive Bayesian
updates
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Measurement Path (each move)

Raw Signal

Ux(rm) = sx(B)
Uy(rm) = sy(B)
Uz(rm) = sz(B)

Processed Signal

Ux(rm) ≈ sxnx · B(rm) + U0,x
Uy(rm) ≈ syny · B(rm) + U0,y
Uz(rm) ≈ sznz · B(rm) + U0,z
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Predicted Signal (each move)
Numerical Model

A(r) = 1
4π

∑N
n=1 un

∫
Γ

curlΓφ(r′)
|r−r′| dr′

B-field

B̃ = curlA

Predicted Signal

Ũx(rm) = sx nx · B̃(rm) + U0,x
Ũy(rm) = sy ny · B̃(rm) + U0,y
Ũz(rm) = sz nz · B̃(rm) + U0,z

Inference
Fi encodes the geometric factors of
sj nj · B̃ + U0,j for j = x, y, z

Prior u0, Q0

ui−1, Qi−1

Measure along z at φi

Kálmán update
ui = ui−1 + Ki (yi − Fiui−1)

yi

ui Qi
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Field Reconstruction
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Summary

• Bayesian inference allows us to infer large amounts of data
iteratively

• Total measurement time is reduced since only the boundary
needs to be measured

• Bayesian updates are faster than measurements. Updates can be
implemented on the measurement bench.

• Noise is smoothed out in the field reconstruction
• Bayesian inference comes with uncertainty quantification “for

free”
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