NNPDF studies with Heavy Quarks

Maria Ubiali, Juan Rojo

The **NNPDF Collaboration**: R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. R., M. U.

INFN, Sezione di Milano

PDF4LHC, QCD at the LHC workshop ICT Trento 29/09/2010

Outline

What will not be discussed here

- \blacktriangleright Basics of the NNPDF methodology \rightarrow M. U.'s talks
- \blacktriangleright Heavy quarks in DIS Theory and the FONLL GM scheme \rightarrow P. Nason's talk

What we will talk about

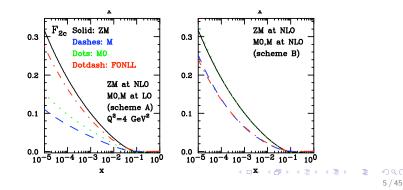
- Impact of heavy quarks on PDFs and LHC observables
- Impact of the values of m_c and m_b
- PDFs in fixed-flavour number schemes

HEAVY QUARK MASS EFFECTS IN THE NNPDF FRAMEWORK

イロン イロン イヨン イヨン 三日

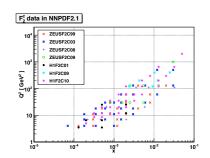
FONLL: treatment of subleading terms

The FONLL F_{2c} structure function reads

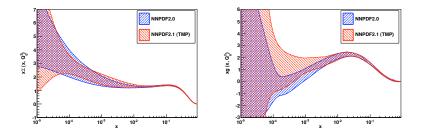

$$\begin{split} F_{2c}^{\text{fonll}}(x,Q^2) &= F_{2c}^{(M)}(x,Q^2) \\ + \Theta \left(Q^2 - m_c^2\right) \left(1 - \frac{m_c^2}{Q^2}\right)^2 \left(F_{2c}^{(ZM)}(x,Q^2) - F_{2c}^{(M,0)}(x,Q^2)\right) \end{split}$$

with $F_{2c}^{(n_l,0)}$ the massless limit of $F_{2c}^{(n_l)}$

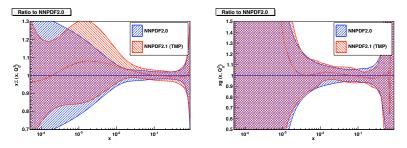
- ► The difference term $\left(F_{2c}^{(ZM)} F_{2c}^{(M,0)}\right)$ is $\mathcal{O}\left(\alpha_s^2\right)$ for $Q^2 \gtrsim m_c^2$, but numerically it turns out to be non-negligible \rightarrow can be suppressed by terms that go to 1 when $Q^2 \gg m_c^2$
- Possible choices are a threshold damping factor, or different forms of the χ -prescription
- This threshold ambiguity is an inherent theoretical uncertainty to any General–Mass VFN scheme.

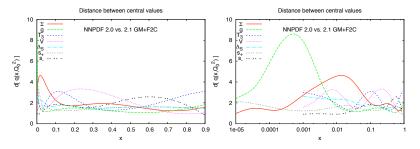

FONLL: treatment of subleading terms

- FONLL allows to combine different perturbative orders in ZM and FFNS terms
- FONLL-A combines the ZM scheme at O(α_s) with the FFNS scheme at O(α_s) → Identical to S-ACOT
- FONLL-B combines the ZM scheme at $\mathcal{O}(\alpha_s)$ with the FFNS scheme at $\mathcal{O}(\alpha_s^2)$
- FONLL-B takes into account consistently O (α²_s) massive contributions, phenomenologically important at small x and Q².



The NNPDF2.1 analysis

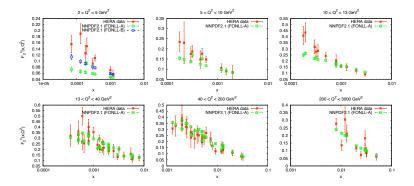

- FONLL-A-Damp as a General Mass scheme for NC and CC DIS observables
- Same dataset as NNPDF2.0 (arXiv:1002.4407), supplemented with HERA F₂^c data
- All results shown still preliminary


 For details on the FONLL GM scheme and its implementation in the NNPDF FastKernel framework, see J. Rojo's talks at PDF4LHC 01/10 and 07/10

- HQ mass effects and F^c₂ data enhance the singlet and the gluon PDFs at moderate and small-x
- NNPDF2.1 always within 1σ of NNPDF2.0 \rightarrow HQ effects important though not dramatic
- Harder small-x gluon partly from constraints of F^c₂(x, Q²) data

- HQ mass effects and F^c₂ data enhance the singlet and the gluon PDFs at moderate and small-x
- NNPDF2.1 always within 1σ of NNPDF2.0 → HQ effects important though not dramatic
- Harder small-x gluon partly from constraints of F^c₂(x, Q²) data

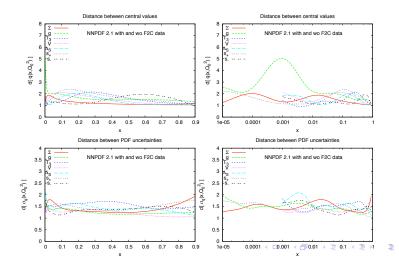
Compute distances between PDF sets to quantify HQ impact

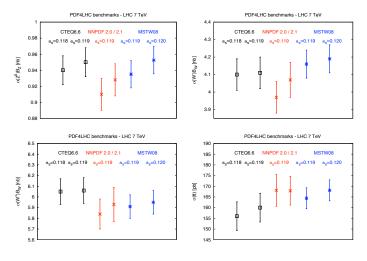

$$d^{2}\left(\langle q^{(1)}\rangle, \langle q^{(2)}\rangle\right) = \frac{\left(\langle q^{(1)}\rangle_{(1)} - \langle q^{(2)}\rangle_{(2)}\right)^{2}}{\sigma_{(1)}^{2}[\langle q^{(1)}\rangle] + \sigma_{(2)}^{2}[\langle q^{(2)}\rangle]}, \quad \sigma_{(i)}^{2}[\langle q^{(i)}\rangle] = \frac{1}{N_{\rm rep}^{(i)}}\sigma_{(i)}^{2}[q^{(i)}]$$
(1)

d ~ 5 for the singlet at *x* ~ 10⁻² at Q₀² = 2 GeV² *d* ~ 8 for the gluon at *x* ~ 10⁻³ at Q₀² = 2 GeV²

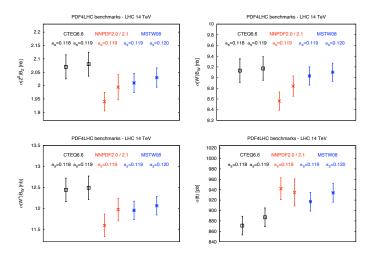
9/45

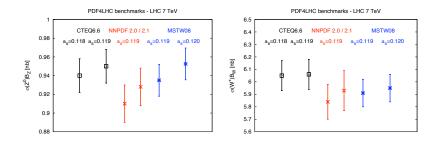
Impact of F_2^c data in NNPDF2.1


Good description of F_2^c data except at the smallest x and Q^2 bins FONLL-A does not account for large $\mathcal{O}(\alpha_s^2)$ corrections to F_2^c in the FFNS


Will update the analysis with Combined HERA F_2^c dataset and with the FONLL-B

Impact of F_2^c data in NNPDF2.1


 F_2^c data lead to an important constraint on the small-x gluon $ightarrow \sim 1/2$ -sigma shift at $x \sim 10^{-3}$


Impact on LHC observables - 7 and 14 TeV

Impact on LHC observables - 7 and 14 TeV

Impact on LHC observables - 7 and 14 TeV

- HQ mass effects and F₂^c data amount to an about ~ 1-sigma shift in LHC observables at 7 TeV and at 14 TeV
- NNPDF2.1 predictions in excellent agreement with MSTW08 for all observables
- Only marginal agreement with CTEQ6.6 for most observables (also Higgs)
- Using common α_s increases the agreement

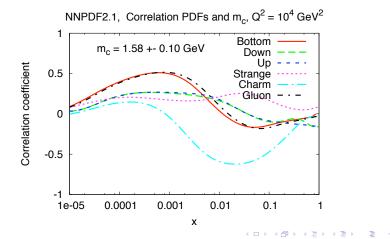
HEAVY QUARK PDFs

<□▶ < □▶ < □▶ < 三▶ < 三▶ 三 のへ() 15/45

Heavy quark PDFs

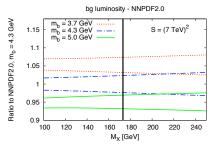
- Heavy quark PDFs, $c(x, Q^2)$ and $b(x, Q^2)$, are much more dependent on the heavy quark mass chosen than on the VFN scheme adopted
- Crucial problem \rightarrow Agree on the best possible estimate of m_c and m_b and their associated uncertainties (analogously to the $\alpha_s(M_Z)$ case)
- ► The issue of the possibility of extracting m_c , m_b from the global fit should be separated from the choice of best m_h and δm_h , determined from many other external measurements

Impact of δm_c on LHC observables - 7 TeV


NNPDF2.1 analysis repeated for different m_c values

	$W^+B_{l u}$	$W^-B_{l\nu}$	$Z^0 B_{l\bar{l}}$	tī
$m_c^2 = 2$	5.93 ± 0.16	4.07 ± 0.10	0.930 ± 0.02	167 ± 7
$m_c^2 = 2.5$	6.04 ± 0.10	4.11 ± 0.07	0.945 ± 0.013	164 ± 5
$m_c^2 = 2.9$	6.10 ± 0.15	4.16 ± 0.10	0.956 ± 0.02	163 ± 7

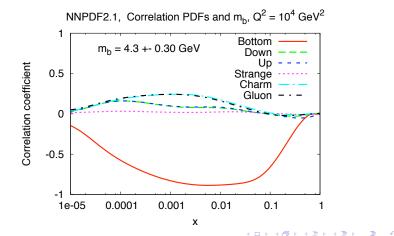
- Non-negligible impact of m_c variations, but not dramatic
- Uncertainties $\delta m_c \sim 0.10$ (PDG uncertainty) induce variations in $\sigma(W^{\pm})$ and $\sigma(Z)$ below the 1-sigma PDF uncertainty
- Similar studies performed by MSTW and HERAPDF
- Crucial problem \rightarrow Agree on the best estimate for δm_c .


Impact of δm_c on LHC observables - 7 TeV

The correlation between cross-sections and m_c can be easily computed in the NNPDF approach

Impact of δm_b on LHC observables - 7 TeV

Taking into account uncertainty induced by m_b (correlated with the *b*-PDF) crucial for important LHC processes: single-top, MSSM Higgs, ... Example: single top t-channel production: m_b -uncertainty \gg PDF uncertainty Differences both from PDF luminosity and from matrix element


NNPDF2.0	$\sigma(t)_{ m t-channel}$
$m_b = 3.7 \text{ GeV}$	46.77 \pm 0.36 pb
$m_b = 4.3 \text{ GeV}$	44.33 \pm 0.32 pb
$m_b = 5.0 \mathrm{GeV}$	$41.04\pm0.32~\textrm{pb}$

The uncertainty in m_b and its correlation with the b PDF are crucial for b-initiated processes at the LHC

Crucial to determine best estimates for m_b , δm_b

Impact of δm_b on LHC observables - 7 TeV

The correlation between cross-sections and m_b can be easily computed in the NNPDF approach

PDF and heavy quark mass uncertainties

NNPDF2.1 sets for a range of different values of m_c and m_b will be provided \rightarrow Combined PDF+ m_h uncertainties, exact error propagation to physical observables

$$\left\langle \mathcal{F} \right\rangle_{\mathrm{rep}} = \frac{1}{N_{\mathrm{rep}}} \sum_{i=1}^{N_{m_c}} \sum_{j=1}^{N_{m_b}} \sum_{k_{ij}=1}^{N_{icp}} \mathcal{F}\left(\mathrm{PDF}^{(k_{ij},i,j)}, m_c^{(i)}, m_b^{(j)} \right) \;,$$

 $\text{PDF}^{(k_{ij},i,j)}$ stands for the replica k_{ij} of the PDF fit obtained using $m_c^{(i)}$ and $m_b^{(j)}$

$$N_{\mathrm{rep}} = \sum_{i}^{N_{m_c}} \sum_{j}^{N_{m_b}} N_{\mathrm{rep}}^{(i,j)} \; ,$$

 $N_{
m rep}^{(i,j)}$ number of PDF replicas randomly selected from the fit obtained with $m_c^{(i)}$, $m_b^{(j)}$

$$N_{
m rep}^{(i,j)} \propto \exp\left(-rac{\left(m_c^{(i)} - m_c^{(0)}
ight)^2}{2\delta_{m_c}^2} - rac{\left(m_b^{(j)} - m_b^{(0)}
ight)^2}{2\delta_{m_b}^2}
ight)$$

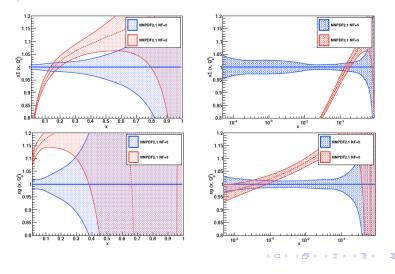
Important advantage: No extra CPU time required! (Set $N_{rep} = 100$) Another advantage: both $m_c^{(0)}$, $m_b^{(0)}$ and δ_{m_c} , δ_{m_b} can be decided by the PDF user

PDFs WITH FIXED-FLAVOR NUMBER

PDFs with Fixed Flavor Number

- ▶ PDF in the Fixed Flavour $N_f = 3$ and $N_f = 4$ schemes important for LHC phenomenology
- FFN sets can easily be obtained from $N_f = 5$ GM PDF sets by matching PDFs and α_s at the HQ mass threshold

$$\begin{aligned} \text{PDFs}^{(N_f)}(Q^2 = m_h^2) &= \text{PDFs}^{(N_f+1)}(Q^2 = m_h^2) \\ \alpha_s^{(N_f)}(Q^2 = m_h^2) &= \alpha_s^{(N_f+1)}(Q^2 = m_h^2) , \end{aligned}$$


23 / 45

and then evolving upwards with fixed N_f

- Bypass problems related to unknown massive FFN coefficient functions for jets and DY
- Same approach adopted by CT and MSTW

NNPDF2.1 $N_f = 3$ PDFs

 $N_f = 3$ and $N_f = 4$ sets of NNPDF2.1 will be provided Compare $N_f = 3$ with $N_f = 5$ PDFs at LHC scale $Q^2 = 10^4$ GeV²

The NNPDF2.1 analysis is based in the FONLL General Mass scheme for heavy quark effects. Will be released in the coming weeks.

- NNPDF2.1 sets with different values of m_c and m_b will be provided
- \triangleright $N_f = 3$ and $N_f = 4$ PDF sets will also be provided
- The impact of m_c variations on LHC observables is comparable in size to GM/ZM differences
- ▶ The b–PDF depends crucial on the value of $m_b \rightarrow$ Important phenomenological impact in b–initiated LHC processes
- Within NNPDF, easy to compute and propagate the correlation between PDFs and heavy quark masses
- The choice of the heavy quark mass m_h can be as important as the ZM/GM difference \rightarrow Crucial problem to converge on a common choice of *best estimates* for m_h and δm_h

- The NNPDF2.1 analysis is based in the FONLL General Mass scheme for heavy quark effects. Will be released in the coming weeks.
- NNPDF2.1 sets with different values of m_c and m_b will be provided
- ▶ $N_f = 3$ and $N_f = 4$ PDF sets will also be provided
- The impact of m_c variations on LHC observables is comparable in size to GM/ZM differences
- ▶ The b–PDF depends crucial on the value of $m_b \rightarrow$ Important phenomenological impact in b–initiated LHC processes
- Within NNPDF, easy to compute and propagate the correlation between PDFs and heavy quark masses
- The choice of the heavy quark mass m_h can be as important as the ZM/GM difference \rightarrow Crucial problem to converge on a common choice of *best estimates* for m_h and δm_h

- The NNPDF2.1 analysis is based in the FONLL General Mass scheme for heavy quark effects. Will be released in the coming weeks.
- NNPDF2.1 sets with different values of m_c and m_b will be provided
- $N_f = 3$ and $N_f = 4$ PDF sets will also be provided
- The impact of m_c variations on LHC observables is comparable in size to GM/ZM differences
- ▶ The b–PDF depends crucial on the value of $m_b \rightarrow$ Important phenomenological impact in b–initiated LHC processes
- Within NNPDF, easy to compute and propagate the correlation between PDFs and heavy quark masses
- The choice of the heavy quark mass m_h can be as important as the ZM/GM difference \rightarrow Crucial problem to converge on a common choice of *best estimates* for m_h and δm_h

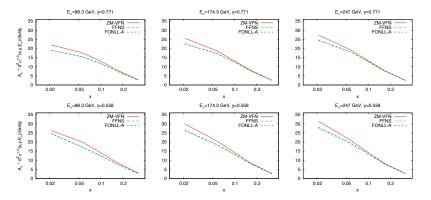
- The NNPDF2.1 analysis is based in the FONLL General Mass scheme for heavy quark effects. Will be released in the coming weeks.
- NNPDF2.1 sets with different values of m_c and m_b will be provided
- $N_f = 3$ and $N_f = 4$ PDF sets will also be provided
- The impact of m_c variations on LHC observables is comparable in size to GM/ZM differences
- ▶ The b–PDF depends crucial on the value of $m_b \rightarrow$ Important phenomenological impact in b–initiated LHC processes
- Within NNPDF, easy to compute and propagate the correlation between PDFs and heavy quark masses
- The choice of the heavy quark mass m_h can be as important as the ZM/GM difference \rightarrow Crucial problem to converge on a common choice of *best estimates* for m_h and δm_h

- The NNPDF2.1 analysis is based in the FONLL General Mass scheme for heavy quark effects. Will be released in the coming weeks.
- NNPDF2.1 sets with different values of m_c and m_b will be provided
- \blacktriangleright N_f = 3 and N_f = 4 PDF sets will also be provided
- The impact of m_c variations on LHC observables is comparable in size to GM/ZM differences
- ▶ The b–PDF depends crucial on the value of $m_b \rightarrow$ Important phenomenological impact in b–initiated LHC processes
- Within NNPDF, easy to compute and propagate the correlation between PDFs and heavy quark masses
- The choice of the heavy quark mass m_h can be as important as the ZM/GM difference \rightarrow Crucial problem to converge on a common choice of *best estimates* for m_h and δm_h

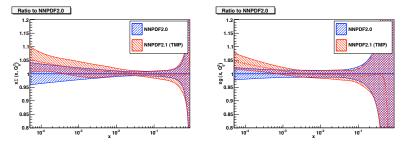
- The NNPDF2.1 analysis is based in the FONLL General Mass scheme for heavy quark effects. Will be released in the coming weeks.
- NNPDF2.1 sets with different values of m_c and m_b will be provided
- \blacktriangleright $N_f = 3$ and $N_f = 4$ PDF sets will also be provided
- The impact of m_c variations on LHC observables is comparable in size to GM/ZM differences
- ▶ The b-PDF depends crucial on the value of $m_b \rightarrow$ Important phenomenological impact in b-initiated LHC processes
- Within NNPDF, easy to compute and propagate the correlation between PDFs and heavy quark masses
- The choice of the heavy quark mass m_h can be as important as the ZM/GM difference \rightarrow Crucial problem to converge on a common choice of *best estimates* for m_h and δm_h

- The NNPDF2.1 analysis is based in the FONLL General Mass scheme for heavy quark effects. Will be released in the coming weeks.
- NNPDF2.1 sets with different values of m_c and m_b will be provided
- \blacktriangleright $N_f = 3$ and $N_f = 4$ PDF sets will also be provided
- The impact of m_c variations on LHC observables is comparable in size to GM/ZM differences
- ▶ The b-PDF depends crucial on the value of $m_b \rightarrow$ Important phenomenological impact in b-initiated LHC processes
- Within NNPDF, easy to compute and propagate the correlation between PDFs and heavy quark masses
- ► The choice of the heavy quark mass m_h can be as important as the ZM/GM difference \rightarrow Crucial problem to converge on a common choice of *best estimates* for m_h and δm_h

- The NNPDF2.1 analysis is based in the FONLL General Mass scheme for heavy quark effects. Will be released in the coming weeks.
- NNPDF2.1 sets with different values of m_c and m_b will be provided
- \blacktriangleright $N_f = 3$ and $N_f = 4$ PDF sets will also be provided
- The impact of m_c variations on LHC observables is comparable in size to GM/ZM differences
- ▶ The b-PDF depends crucial on the value of $m_b \rightarrow$ Important phenomenological impact in b-initiated LHC processes
- Within NNPDF, easy to compute and propagate the correlation between PDFs and heavy quark masses
- ► The choice of the heavy quark mass m_h can be as important as the ZM/GM difference \rightarrow Crucial problem to converge on a common choice of *best estimates* for m_h and δm_h

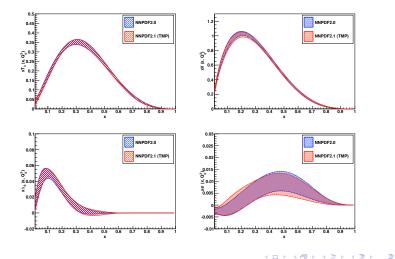

- The NNPDF2.1 analysis is based in the FONLL General Mass scheme for heavy quark effects. Will be released in the coming weeks.
- NNPDF2.1 sets with different values of m_c and m_b will be provided
- \blacktriangleright N_f = 3 and N_f = 4 PDF sets will also be provided
- The impact of m_c variations on LHC observables is comparable in size to GM/ZM differences
- ▶ The b-PDF depends crucial on the value of $m_b \rightarrow$ Important phenomenological impact in b-initiated LHC processes
- Within NNPDF, easy to compute and propagate the correlation between PDFs and heavy quark masses
- ► The choice of the heavy quark mass m_h can be as important as the ZM/GM difference \rightarrow Crucial problem to converge on a common choice of *best estimates* for m_h and δm_h

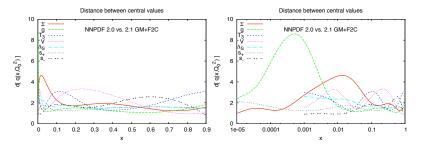
EXTRA MATERIAL


<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 34 / 45

FONLL-A for Charged Current

The FONLL-A GM scheme also applies to CC structure functions In the NuTeV kinematical region \rightarrow FONLL-A very close to FFNS (Les Houches heavy quark benchmark settings)




Compare PDFs at the LHC scale \rightarrow Assess effects of quark-gluon mixing in DGLAP evolution

Note greatly reduced small-x PDF uncertainties NNPDF2.0 and 2.1 always consistent within uncertainties

Large-x valence PDFs consistently unaffected by HQ effects

Compute distances between PDF sets to quantify HQ impact

$$d^{2}\left(\langle q^{(1)}\rangle, \langle q^{(2)}\rangle\right) = \frac{\left(\langle q^{(1)}\rangle_{(1)} - \langle q^{(2)}\rangle_{(2)}\right)^{2}}{\sigma_{(1)}^{2}[\langle q^{(1)}\rangle] + \sigma_{(2)}^{2}[\langle q^{(2)}\rangle]} , \quad \sigma_{(i)}^{2}[\langle q^{(i)}\rangle] = \frac{1}{N_{\rm rep}^{(i)}}\sigma_{(i)}^{2}[q^{(i)}]$$
(2)

d ~ 5 for the singlet at *x* ~ 10⁻² at *Q*₀² = 2 GeV² *d* ~ 8 for the gluon at *x* ~ 10⁻³ at *Q*₀² = 2 GeV²

FONLL in a nutshell

Express the massive result $F^{(n_l)}$ in terms of the massless PDFs and α_s (non trivial from $\mathcal{O}(\alpha_s^2)$)

$$F^{(n_l)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=q,\bar{q},g} B_i\left(\frac{x}{y}, \frac{Q^2}{m^2}, \alpha_s^{(n_l+1)}(Q^2)\right) f_i^{(n_l+1)}(y, Q^2),$$

Define massless limit of the massive computation as

$$F^{(n_l,0)}(x,Q^2) \equiv x \int_x^1 \frac{dy}{y} \sum_{i=q,\bar{q},g} B_i^{(0)}\left(\frac{x}{y},\frac{Q^2}{m^2},\alpha_s^{(n_l+1)}(Q^2)\right) f_i^{(n_l+1)}(y,Q^2),$$

$$\lim_{m \to 0} \left[B_i\left(x, \frac{Q^2}{m^2}\right) - B_i^{(0)}\left(x, \frac{Q^2}{m^2}\right) \right] = 0$$

The FONLL approximation is then

$$F^{\text{FONLL}}(x, Q^2) \equiv F^{(d)}(x, Q^2) + F^{(n_l)}(x, Q^2),$$

$$F^{(d)}(x, Q^2) \equiv \left[F^{(n_l+1)}(x, Q^2) - F^{(n_l, 0)}(x, Q^2)\right]$$

Important technical advantage: PDFs and α_s expressed always in the $(n_t + 1)$ scheme $\gamma_{Q,C}$

FONLL in a nutshell

▶ Far from threshold, $Q^2 \gg m^2 F^{(n_l, 0)}(x, Q^2) \sim F^{(n_l)}(x, Q^2) \rightarrow$ the massless computation recovered

$$F^{\text{FONLL}}(x, Q^2) \sim F^{(n_l+1)}(x, Q^2)$$

Near threshold the "difference term" is formally higher order but unreliable, so one can correct it by mass suppressed terms, using for example a damping factor (FONLL default)

$$F^{(d, th)}(x, Q^2) \equiv f_{thr}(x, Q^2) F^{(d)}(x, Q^2), \quad f_{thr}(x, Q^2) = \Theta(Q^2 - m^2) \left(1 - \frac{Q^2}{m^2}\right)^2,$$

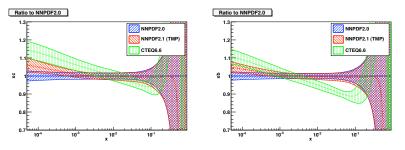
or some form of χ -scaling,

$$F^{(d,\chi)}(x,Q^2) \equiv F^{(d)}(x,Q^2) = x \int_{\chi(x,Q^2)} \frac{dy}{y} C\left(\frac{\chi(x,Q^2)}{y}, \alpha(Q^2)\right) f(y,Q^2),$$

$$F^{(d, \chi, \nu 2)}(x, Q^2) \equiv F^{(d)}(\chi(x, Q^2), Q^2), \quad \chi = x \left(1 + \frac{4m^2}{Q^2}\right).$$

The choice of threshold prescription represent an intrinsic ambiguity of the matching procedure. Can this ambiguity be minimized?

Perturbative ordering in FONLL

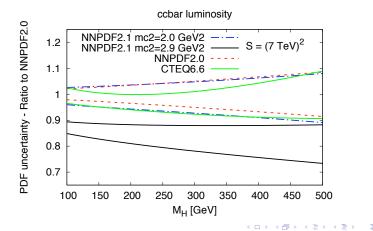

Three FONLL schemes for different ordering of the perturbative expansion can be defined:

- 1. Scheme A $\rightarrow \mathcal{O}(\alpha_s)$ in massless and in massive
- 2. Scheme B $\rightarrow \mathcal{O}(\alpha_s)$ in massless and $\mathcal{O}(\alpha_s^2)$ in massive
- 3. Scheme C $\rightarrow \mathcal{O}(\alpha_s^2)$ in massless and in massive

In any of the three schemes, any threshold prescription can be implemented These schemes can be related to existing approaches

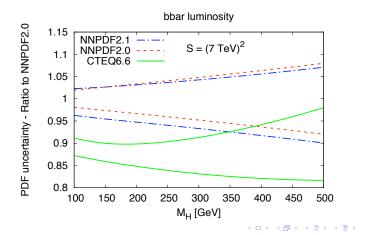
- 1. Scheme A is identical to S-ACOT
- 2. Scheme B was formulated with similar scope as TR (use the information from the $\mathcal{O}(\alpha_s^2)$ massive computation in a NLO GM-VFN scheme), but they turn to be different
- 3. Scheme C should be S-ACOT at NNLO?

Heavy quark PDFs Ratio to NNPDF2.0 at $Q^2 = 10^4 \text{ GeV}^2$

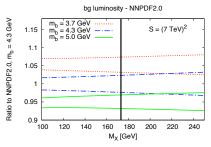


- Same pattern for $c(x, Q^2)$ and $b(x, Q^2)$ (Common evolution from singlet and gluon)
- Systematic discrepancy in b PDF for x ∈ [0.01, 0.1] unrelated to ZM/GM differences, rather to different choices for m_b

Heavy quark PDFs


Luminosity $c\bar{c}$ at 7 TeV, Dependence on the charm quark mass and the GM scheme

The value of m_c more important than ZM/GM difference


The b PDF

The $b(x, Q^2)$ PDF is anticorrelated with m_b Different values of m_b lead to very different $b\bar{b}$ luminosities The differences in m_b much larger than the GM-ZM differences

The b PDF

Taking into account uncertainty induced by m_b (correlated with the *b*-PDF) crucial for important LHC processes: single-top, MSSM Higgs, ... Example: single top t-channel production: m_b -uncertainty \gg PDF uncertainty Differences both from PDF luminosity and from matrix element

NNPDF2.0	$\sigma(t)_{ m t-channel}$
$m_b = 3.7 \text{ GeV}$	46.77 \pm 0.36 pb
$m_b = 4.3 \text{ GeV}$	44.33 \pm 0.32 pb
$m_b = 5.0 { m GeV}$	41.04 \pm 0.32 pb

The uncertainty in m_b and its correlation with the b PDF are crucial for binitiated processes at the LHC Crucial to determine best estimates for m_b , δm_b