

ALICE – results and heavy-ion overview

for the ALICE collaboration Karel Šafařík, CERN

- Detector status and data taking
- Results on pp collisions
- Ongoing analyses
- Preparation for heavy-ion running

Data taking with pp collisions

delivered integrated luminosity (pb⁻¹)

Physics with pp

- collect 'comparison data' for heavy-ion program
 - many signals measured 'relative' to pp
 - requires ~ 10⁹ minimum-bias events
- comprehensive study of MB@LHC
 - tuning of Monte Carlo

Final Results

- ▷ N_{ch} multiplicity & distributions
 - 900 GeV:
 - 900 GeV, 2.36 TeV:
 - 7 TeV:
- ⇒ pbar/p ratio (900 GeV & 7 TeV)
- ➡ momentum distributions(900 GeV)
- Bose-Einstein correlations (900 GeV)

EPJC: Vol. 65 (2010) 111 EPJC: Vol. 68 (2010) 89 EPJC: Vol. 68 (2010) 345 PRL: Vol. 105 (2010) 072002 PL B: Vol. 693 (2010) 53 PRD: Vol. 82 (2010) 052001

Prepared for submission

- ⇒ Identified particles (π,K,p)
- Strangeness (K⁰,Λ,Ξ,Ω,φ)

Ongoing analyses

⇒ for 7 TeV pp multiplicity, spectra, HBT, identified particles, strangeness

- high multiplicity
- $\Rightarrow \pi^0$ and η transverse momentum spectra
- \Rightarrow Heavy flavour: charm (D⁰,D⁺, D^{*}), c,b $\rightarrow \mu$, e⁻
- ⇔ **J/**ψ -> μμ, **e⁺e**⁻

⇒ pQCD: Event topology, 2-particle correlations, jet fragmentation, …

$dN_{ch}/d\eta$ versus \sqrt{s}

Relative increase in $dN_{ch}/d\eta$

Results:

- $dN_{ch}/d\eta$ well described by power law (\sqrt{s})^{0.2}
- increase with energy significantly stronger in data than MC's
- Alice & CMS agree to within 1 σ (< 3%)

Multiplicity distribution

Multiplicity distribution 900 GeV

Multiplicity distribution 7 TeV

Momentum distribution 900 GeV

10

p_T (Gev/c)

Comparison to MC's

10⁻¹

P_T distribution

Results:

- Finally some (slight) difference !
- Spectrum seems to get harder towards midrapidity
- MC's have hard time to describe the full spectrum

Identified particles

Ratios as a function of p_t

Λ/K_0^{S} ratio @ 900 GeV

- very good agreement between STAR (200 GeV) and ALICE (900 GeV)
- very different from CDF (630/1800) and UA1 (630) for $p_T > 1.5 \text{ GeV}$
- UA1(630) and CDF(630) don't agree either ...

to be further investigated (different triggers, acceptance, feed-down correction ?)

...and much more to come...

HBT 3D radii vs. kt

- Gaussian radii in LCMS grow with multiplicity, fall with *k*_T
- Fall with $k_{\rm T}$ very prominent for $R_{\rm long}$, develops with multiplicity for $R_{\rm out}$, less pronounced for $R_{\rm side}$
- Radii comparable to STAR (EMCICs fit)

ALICE Physics Forum - 1 Sep 2010

π^0 and η from γ conversion

Charm at 7 TeV

 $pp\sqrt{s} = 7$ TeV, 1.4×10^8 events, $p_{\perp}^{D^0} > 2$ GeV/c

Charm at very low p_T

- most of the cross section at low p_T
- shape at low p_T very uncertain
- 10⁹ MB events => measure below 1 GeV

(PID important at low p_T !)

J/ψ @ 7 TeV

n

$J/\psi \rightarrow \mu^+\mu^-$

The acceptance and efficiency corrected distributions are compared to generated MC distribution

Underlying Event Studies

Uncorrected Data 1/N_h dN_{ch}/dΔφ Data PYTHIA (D6T) PHOJET **Charged Particles:** ALICE performance |η|<0.9, p_>0.5 GeV/c 20-05-2010 (Statistical error) 900 GeV -1 0 -2 -3 $\Delta \phi$ (w.r.t. Leading Particle) → data more "spherical" (less back-to-back-ish) than MCs

ALICE Work in Progress

Study of shapes and yields as a function of multiplicity

No $p_{\rm T}$ cut

5 - 6 x <M> , $p_{\tau}>$ 1.5 GeV

First Pb were in LHC in 2009

First beam to re-awaken LHC after the September 2008 incident

Injection region screens

Parameters of LHC Pb–Pb

Parameter set established many years ago (2003) before the main performance limitations were understood, but retained as reference

Parameter	Units	Early Beam	Nominal
Energy per nucleon E_b/A	TeV	2.76	2.76
Initial ion-ion Luminosity L ₀	cm ⁻² s ⁻¹	~ 5 10 ²⁵	1 10 ²⁷
No. bunches, $k_{\rm b}$		62	592
Bunches per batch from SPS		4,3	52, 48, 32
Minimum bunch spacing	ns	1350	99.8
β*	m	1.0	0.5 /0.55
Number of Pb ions/bunch		7 10 ⁷	7 10 ⁷
Transv. norm. RMS emittance	μ m	1.5	1.5
Longitudinal emittance	eV s/charge	2.5	2.5
Luminosity half-life (1,2,3 expts.)	h	14, 7.5, 5.5	8, 4.5, 3
At full energy, luminosity lifet determined mainly by collision ("burn-off" from ultra-periphe electromagnetic interactions) $\sigma \approx 520$ barn	ime is ns eral	Do something like this, but at reduced energy, in 2010	Probably unattainable without new collimators (at least)

Potential peak Pb-Pb luminosity (62 bunches)

Target luminosity in 2010

		Early (2010/11)	Nominal
$\sqrt{s_{_{\rm NN}}}$ (per colliding nucleon pair)	TeV	2.76	5.5
Number of bunches		62	592
Bunch spacing	ns	1350	99.8
<i>β</i> *	m	2 → 3.5	0.5
Pb ions/bunch		7 x 10 ⁷	7x10 ⁷
Transverse norm. emittance	μ m	1.5	1.5
Initial Luminosity (L_0)	cm ⁻² s ⁻¹	(1.25→ 0.7) 10 ²⁵	10 ²⁷
Stored energy (W)	MJ	0.2	3.8
Luminosity half life (1,2,3 expts.)	h	τ _{IBS} =7-30	8, 4.5, 3

Caveat: assumes design emittance

Initial interaction rate: 50-100 Hz (5-10 Hz central collisions b = 0-5 fm)

 $\sim 10^8$ interaction/10⁶s (~ 1 month)

In 2010: integrated luminosity 1-3 $\mu b^{\text{-1}}$

J.M. Jowett, 103rd LHC Experiments Committee, 22/9/2010

New filling schemes for k_b =124, 140 could allow another factor ~2

Pb–Pb running scenario

expected luminosity ~ 2 orders of magnitude below nominal

- $\Rightarrow 10^{27} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1} \rightarrow \sim 10^{25} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
- ⇒ factor ~ 10 from number of bunches
- ⇒ factor ~ 10 from increased beam size (lower energy, less focussing)
- ⇒ 50 100 (– 150) Hz min bias
 - →strategy: low bias trigger
 - >register all events (minimum bias)

expected data sample

- ⇒ estimate : ~ 1 3 µb⁻¹ (@ TH workshop, 03/09/2010)
 - e.g.: 2 μ b⁻¹ = 1.6x10⁷ min bias events
- ➡ for comparison: ALICE per year (4 weeks run) targets:
 - **○**0.5 nb⁻¹ for rare triggers
 - ✿ a few 10⁷ central collisions and similar for minimum bias
- assumption for this year
 - ⇒ ~ 10⁷ minimum-bias events; in that ~ 10⁶ central collisions

Physics reach...

global event properties

- ➡ multiplicity
- ⇒ azimuthal asymmetry (v2)
- ➡ Bose-Einstein correlations (HBT)
- ⇒ bulk strangeness
- with a p_T reach dependent on statistics...
 - ⇒ particle correlations
 - nuclear modification factors
 - ➡ strange, identified particle spectra
- a first glimpse of hard probes...
 - ⇒ jets
 - <mark>⇔</mark> J/ψ
 - ⇒ heavy flavour
- surprises? (so far at each new AA energy always there)

Charged particle multiplicity

- connected to temperature, energy density, parton density, ...
 - \Rightarrow day 1 measurement \rightarrow primary input to models
- considerable spread of predictions...

Charged multiplicity for η =0 in central PbPb at 2.76 TeV

from Néstor Armesto @ CERN TH Institute 3 September 2010

FA - ALICE - LHCC - 22 September 2010

Azimuthal asymmetry (v₂)

 transfer of asymmetry to momentum space measures strength of collective phenomena asymmetry of momentum distribution measured by second coefficient of Fourier expansion (v₂)

v₂ close to hydrodynamic limit at low p_T at RHIC

v₂ measurement studies

Lee-Yang Zero method

 10^7 events \rightarrow approach 20 GeV (is asymmetry still there?)

Nuclear modification factor

 in Au-Au @ RHIC particle production suppressed by factor ~ 5 at high p_T w.r.t. binary-scaled p-p

 e.g.: expected reach in ALICE for 10⁶ central (with no suppression):

medium modifications of mass, widths (needs hadronic and leptonic channels

10⁷ events \rightarrow strange particles' v₂ out to ~ 10 GeV/c

• @ RHIC : as many π^- (K⁻) as p (Λ) at p_T ~ 1.5 ÷ 2.5 GeV

e.g.: identified particles R_{cp}

• @ RHIC: suppression sets on at larger p_T for baryons

Quarkonia

present status:

- very similar suppression at RHIC and SPS...
 - only ψ 'and χ_c melt?
 - J/ψ melting _ compensated by cc recombination?

performance critically dependent on ∫L eg: for 2 µb⁻¹, no suppression, no enhancement
→ a few 1000s J/ψ say 5 centrality bins → significance ~ 15-20 out to 6-7 GeV pT?
→ψ' marginal...
→a few 10s of Y at significance ~ 5?

What about charm?

• for $O(10^6)$ central, ~ multiply errors by 3 \rightarrow marginal...

→ needs as much statistics as possible!

Jets are copiously produced...

Lead-up to lead in LHC involves a lot of work in the ion injectors

At present, we can only anticipate that the "Early Beam" can be delivered to LHC with the design parameters

High-multiplicity event

Conclusions

results with pp collisions

- ➡ multiplicity, spectra
- baryon-antibaryon asymmetry
- identified particles
- event characteristics
- ⇒ open-charm and JL production coming

alyses at 7 TeV and at his

as events at 7 TeV osity using rare triggers / trigger with SPD (low μ ~0.05 – 0.1

trigger) we plan 1-2 weeks "high"

we are waiting for the first heavy-ion run:

- essential information on general features of Pb-Pb events at LHC
 - + a glimpse of harder physics

