Jets at NNLO at the LHC

Zoltán Trócsányi

University of Debrecen and Institute of Nuclear Research

in collaboration with G. Somogyi and U. Aglietti, P. Bolzoni, V. Del Duca, C. Duhr, S. Moch

Outline

- Motivation
- Recipe for a general subtraction scheme at NNLO
- Integrating the counterterms
- Results
- Conclusions

Motivation

Why jets at NNLO?

 Jets are essential analysis tools at LHC: good understanding is needed
 Status at TeVatron (with midpoint cone):

looks nice, but have a closer look

Why jets at NNLO?

 Jets are essential analysis tools at LHC: good understanding is needed
 Status at TeVatron (with midpoint cone):

Why jets at NNLO?

- Jets are essential analysis tools at LHC: 10% energy-scale uncertainty (G.D.) warrants precision physics
- Precise predictions for 'standard candles': inclusive jet, V (+ jet)
- Missing piece for precise determination of pdf's (W.J.S.)
- NLO is effectively LO: energy distribution inside jets, jet pT asymmetry (G.D.)

Less sophisticated answer:

Matrix elements are known, but not yet used

Problem

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_m^{\text{VV}}$$
$$\equiv \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

- ▶ matrix elements are known for 0→4 parton (for jet production), V+3 parton (for V+jet production) processes
- the three contributions are separately divergent in d = 4 dimensions:
 - in σ^{RR} kinematical singularities as one or two partons become unresolved yielding ϵ -poles at $O(\epsilon^{-j})$, j = 1-4after integration over phase space, no explicit poles
 - in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ -poles at $O(\epsilon^{-j})$ after integration over phase space + explicit ϵ -poles at $O(\epsilon^{-j})$, j =1,2
 - in σ^{VV} explicit ϵ -poles at O (ϵ^{-j}), j=1-4

general solution is not yet available

Approaches

Several options available - why a new one?

Sector Decomposition (residuum subtraction) Binoth, Heinrich, Anastasiou, Melnikov, Petriello

- ✓ First method to yield physical cross sections
- ✓ Calculation is fully numerical
- Cancellation of poles also, and depends on the jet function
- Can it handle final states with many coloured partons?
 M. Czakon 2010: yes

q_T subtraction Catani, Grazzini, Cieri, Ferrara, De Florian ... ✓ Simple concept, explicit documentation ✓ Efficient and fully exclusive calculation –Limited scope: applicable to production of colorless final states Antennae subtraction Gehrmann, Gehrmann-De Ridder, Glover, Weinzierl ...

- Successfully applied to $e^+e^- \rightarrow 2, 3$ jets
- Analytic integration of the antennae over unresolved phase space is understood
- Extension to hadron collisions is well advanced (more later)
- Nonlocal counterterms
- Colour implicit
- Cannot cut on factorized phase space

Approaches

Is agreement between antennae implementations satisfactory? (S. Weinzierl)

Our goal

to devise a subtraction scheme with

- ✓ fully local counterterms
 (efficiency and mathematical rigour)
- ✓ explicit expressions including colour (colour space natation is used)
- ✓ completely algorithmic construction
 (valid in any order of perturbation theory)
- ✓ option to constrain subtraction near singular regions (important check)

Our goal

to devise a subtraction scheme with

- ✓ fully local counterterms
 (efficiency and mathematical rigour)
- ✓ explicit expressions including colour (colour space natation is used)
- ✓ completely algorithmic construction (valid in any order of perturbation theory)
- ✓ option to constrain subtraction near singular regions (important check)

Recipe for a general subtraction scheme at NNLO

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

$$\begin{split} \sigma^{\rm NNLO} &= \sigma^{\rm RR}_{m+2} + \sigma^{\rm RV}_{m+1} + \sigma^{\rm VV}_m = \sigma^{\rm NNLO}_{m+2} + \sigma^{\rm NNLO}_{m+1} + \sigma^{\rm NNLO}_m \\ \sigma^{\rm NNLO}_{m+2} &= \int_{m+2} \left\{ {\rm d}\sigma^{\rm RR}_{m+2} J_{m+2} - {\rm d}\sigma^{\rm RR,A_2}_{m+2} J_m - \left({\rm d}\sigma^{\rm RR,A_1}_{m+2} J_{m+1} - {\rm d}\sigma^{\rm RR,A_{12}}_{m+2} J_m \right) \right\} \\ \sigma^{\rm NNLO}_{m+1} &= \int_{m+1} \left\{ \left({\rm d}\sigma^{\rm RV}_{m+1} + \int_1 {\rm d}\sigma^{\rm RR,A_1}_{m+2} \right) J_{m+1} - \left[{\rm d}\sigma^{\rm RV,A_1}_{m+1} + \left(\int_1 {\rm d}\sigma^{\rm RR,A_1}_{m+2} \right) {\rm A}_1 \right] J_m \right\} \\ \sigma^{\rm NNLO}_m &= \int_m \left\{ {\rm d}\sigma^{\rm VV}_m + \int_2 \left({\rm d}\sigma^{\rm RR,A_2}_{m+2} - {\rm d}\sigma^{\rm RR,A_{12}}_{m+2} \right) + \int_1 \left[{\rm d}\sigma^{\rm RV,A_1}_{m+1} + \left(\int_1 {\rm d}\sigma^{\rm RR,A_1}_{m+2} \right) {\rm A}_1 \right] \right\} J_m \\ {\rm d}\sigma^{\rm RR,A_2}_{m+2} \text{ regularizes the doubly-unresolved limits of } {\rm d}\sigma^{\rm RR}_{m+2} \end{split}$$

$$\begin{split} \sigma^{\rm NNLO} &= \sigma^{\rm RR}_{m+2} + \sigma^{\rm RV}_{m+1} + \sigma^{\rm VV}_m = \sigma^{\rm NNLO}_{m+2} + \sigma^{\rm NNLO}_{m+1} + \sigma^{\rm NNLO}_m \\ \sigma^{\rm NNLO}_{m+2} &= \int_{m+2} \left\{ \mathrm{d}\sigma^{\rm RR}_{m+2} J_{m+2} - \mathrm{d}\sigma^{\rm RR,A_2}_{m+2} J_m - \left(\mathrm{d}\sigma^{\rm RR,A_1}_{m+2} J_{m+1} - \mathrm{d}\sigma^{\rm RR,A_{12}}_{m+2} J_m \right) \right\} \\ \sigma^{\rm NNLO}_{m+1} &= \int_{m+1} \left\{ \left(\mathrm{d}\sigma^{\rm RV}_{m+1} + \int_1 \mathrm{d}\sigma^{\rm RR,A_1}_{m+2} \right) J_{m+1} - \left[\mathrm{d}\sigma^{\rm RV,A_1}_{m+1} + \left(\int_1 \mathrm{d}\sigma^{\rm RR,A_1}_{m+2} \right) \mathrm{A}_1 \right] J_m \right\} \\ \sigma^{\rm NNLO}_m &= \int_m \left\{ \mathrm{d}\sigma^{\rm VV}_m + \int_2 \left(\mathrm{d}\sigma^{\rm RR,A_2}_{m+2} - \mathrm{d}\sigma^{\rm RR,A_{12}}_{m+2} \right) + \int_1 \left[\mathrm{d}\sigma^{\rm RV,A_1}_{m+1} + \left(\int_1 \mathrm{d}\sigma^{\rm RR,A_1}_{m+2} \right) \mathrm{A}_1 \right] \right\} J_m \\ \mathrm{d}\sigma^{\rm RR,A_1}_{m+2} \text{ regularizes the singly-unresolved limits of } \mathrm{d}\sigma^{\rm RR}_{m+2} \end{split}$$

$$\begin{split} \sigma^{\rm NNLO} &= \sigma^{\rm RR}_{m+2} + \sigma^{\rm RV}_{m+1} + \sigma^{\rm VV}_m = \sigma^{\rm NNLO}_{m+2} + \sigma^{\rm NNLO}_{m+1} + \sigma^{\rm NNLO}_m \\ \sigma^{\rm NNLO}_{m+2} &= \int_{m+2} \left\{ {\rm d}\sigma^{\rm RR}_{m+2} J_{m+2} - {\rm d}\sigma^{\rm RR,A_2}_{m+2} J_m - \left({\rm d}\sigma^{\rm RR,A_1}_{m+2} J_{m+1} - {\rm d}\sigma^{\rm RR,A_{12}}_{m+2} J_m \right) \right\} \\ \sigma^{\rm NNLO}_{m+1} &= \int_{m+1} \left\{ \left({\rm d}\sigma^{\rm RV}_{m+1} + \int_1 {\rm d}\sigma^{\rm RR,A_1}_{m+2} \right) J_{m+1} - \left[{\rm d}\sigma^{\rm RV,A_1}_{m+1} + \left(\int_1 {\rm d}\sigma^{\rm RR,A_1}_{m+2} \right)^{A_1} \right] J_m \right\} \\ \sigma^{\rm NNLO}_m &= \int_m \left\{ {\rm d}\sigma^{\rm VV}_m + \int_2 \left({\rm d}\sigma^{\rm RR,A_2}_{m+2} - {\rm d}\sigma^{\rm RR,A_{12}}_{m+2} \right) + \int_1 \left[{\rm d}\sigma^{\rm RV,A_1}_{m+1} + \left(\int_1 {\rm d}\sigma^{\rm RR,A_1}_{m+2} \right)^{A_1} \right] \right\} J_m \\ {\rm d}\sigma^{\rm RR,A_{12}}_{m+2} \text{ compensates for the double subtraction in } {\rm d}\sigma^{\rm RR,A_2}_{m+2} \text{ and } {\rm d}\sigma^{\rm RR,A_2}_{m+2} \end{split}$$

$$\begin{split} \sigma^{\text{NNLO}} &= \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}} \\ \sigma_{m+2}^{\text{NNLO}} &= \int_{m+2} \left\{ \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\} \\ \sigma_{m+1}^{\text{NNLO}} &= \int_{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\} \\ \sigma_{m}^{\text{NNLO}} &= \int_{m} \left\{ \mathrm{d}\sigma_{m}^{\text{VV}} + \int_{2} \left(\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_2} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_{1} \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m \\ \mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} \text{ regularizes the singly-unresolved limits of } \mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} \\ \int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right)^{\text{A}_1} \text{ regularizes the singly-unresolved limits of } \int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \\ \end{array}$$

Definition of subtractions

requires three steps

(1) Matching of limits: to avoid multiple subtraction in overlapping singular regions of PS; easy to find at NLO:

- collinear limit + soft limit collinear limit of soft limit
- more cumbersome at NNLO or higher order: requries matching of various doubly- and singly-unresolved limits

(2) extension of limit formulae over the whole phase space using momentum mappings that respect factorization and delicate cancellation of IR singularities

(3) integration of subtractions over the phase space measure of the unresolved parton(s)

Antennae subtractions

Consider step (3) the most important For analytic results

- ✓ use colour-stripped amplitudes
- ✓ subtraction derived from physical matrix elements normalized to two-parton matrix elements
 ⇒ can use integration techniques developed for loop-amplitudes
 - \Rightarrow part of step (1) comes free
- Price: less numerical control (non-local subtractions, adventage is lost if phase space for subtractions are constrained)

Antennae subtractions

Puzzle in testing NNLO antennae for gluon scattering: azimuthal correlations in gluon splitting Pires, Glover arXiv:1003.2824

single collinear

triple collinear

Our subtractions

are based on

✓ universal IR structure of QCD squared matrix elements

- ∈-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
- simple and general procedure for separating overlapping singularities (using a physical gauge)
- extension over phase space using momentum mappings that
 - implement exact momentum conservation
 - lead to exact phase-space factorization
 - use different mappings for collinear and soft-type subtractions
 - distribute recoil democratically
 - \Rightarrow can be generalized to any number of unresolved partons

Our subtractions

are

✓ given explicitly for processes with colorless particles in the initial state (extension to hadronic processes is known at NLO)

 \checkmark fully local in color and spin space

- no need to consider color subamplitudes of real emission matrix elements
- azimuthal correlations in gluon splitting treated exactly
- ratio of the sum of counterterms to matrix elements of real emission tend to one in kinematically degenerate phase-space points
- \checkmark can be constrained to near singular regions
 - leads to gain in efficiency
 - independence of phase space cut provides strong check

Subtractions

that need momentum mappings only

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

The tedious part: Integrating the subtraction terms

G. Somogyi, ZT arXiv:0807.0509 U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514 P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390

Integrated counterterms

counterterm	types of integrals	done
$\mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_1}$	tree-level singly-unresolved	\checkmark
$\mathrm{d}\sigma_{m+1}^{\mathrm{RV},\mathrm{A}_1}$	one-loop singly-unresolved	\checkmark
$\left(\int_{1} \mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}$	tree-level iterated singly-unresolved (1)	\checkmark
$\mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{12}}$	tree-level iterated singly-unresolved (2)	\checkmark
$\mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_2}$	tree-level doubly-unresolved	×

Integrated counterterms

In this talk

One of 25 subtraction terms: collinear-double collinear subtraction

$$\mathcal{C}_{kt}\mathcal{C}_{ir;kt}^{(0)} = (8\pi\alpha_{s}\mu^{2\epsilon})^{2} \frac{1}{s_{kt}} \frac{1}{\widehat{s}_{ir}} \langle \mathcal{M}_{m}^{(0)}(\{\tilde{p}\}) | P_{f_{k}f_{t}}^{(0)}(z_{t,k};\epsilon) P_{f_{i}f_{r}}^{(0)}(\widehat{z}_{r,i};\epsilon) | \mathcal{M}_{m}^{(0)}(\{\tilde{p}\}) \rangle \\ \times (1 - \alpha_{kt})^{2d_{0} - 2m(1 - \epsilon)} (1 - \widehat{\alpha}_{kt})^{2d_{0} - 2m(1 - \epsilon)} \Theta(\alpha_{0} - \alpha_{kt}) \Theta(\alpha_{0} - \widehat{\alpha}_{ir})$$

obtained by an iterated mapping

 $\{p\}_{m+2} \xrightarrow{\mathsf{C}_{kt}} \{\hat{p}\}_{m+1} \xrightarrow{\mathsf{C}_{\hat{i}\hat{r}}} \{\tilde{p}\}: \ \mathrm{d}\phi_{m+2}(\{p\};Q) = \mathrm{d}\phi_m(\{\tilde{p}\};Q)[\mathrm{d}\hat{p}_{1,m}][\mathrm{d}p_{1,m+1}]$ Then we define the function $\mathbf{C}_{kt}\mathbf{C}_{ir;kt}^{(0)}(\widetilde{x}_{kt},\widetilde{x}_{ir},\epsilon,\alpha_0,d_0)$ by $\int_{[1]\hat{\alpha}} ||\mathbf{1}_{kl}|^2 = ||\mathbf{1}_{kl}|^2 |$

$$\int [\mathrm{d}\widehat{p}_{1,m}] [\mathrm{d}p_{1,m+1}] \mathcal{C}_{kt} \mathcal{C}_{ir;kt}^{(0)} \equiv \left[\frac{\alpha_{\mathrm{s}}}{2\pi} S_{\epsilon} \left(\frac{\mu^2}{Q^2} \right) \right] \mathbf{C}_{kt} \mathbf{C}_{ir;kt}^{(0)} \mathbf{T}_{kt}^2 \mathbf{T}_{ir}^2 |\mathcal{M}_m^{(0)}(\{\widetilde{p}\})|^2$$

Use explicit parametrization of $[\mathrm{d}\widehat{p}_{1,m}]$ and $[\mathrm{d}p_{1,m+1}]$ to write

$$\begin{split} \mathbf{C}_{kt} \mathbf{C}_{ir;kt}^{(0)}(\widetilde{x}_{kt},\widetilde{x}_{ir},\epsilon,\alpha_{0},d_{0}) & \text{as a linear combination of basic integrals} \\ \mathcal{I}_{\mathcal{C}}^{(4)}(x_{k},x_{i};\epsilon,\alpha_{0},d_{0},k,l) &= x_{k}x_{i} \\ & \times \int_{0}^{\alpha_{0}} \mathrm{d}\beta \left(1-\beta\right)^{2d_{0}-2+2} \left[\mathbf{S}_{ir}(\boldsymbol{\beta},\boldsymbol{X}_{i})^{-1-\boldsymbol{\epsilon}} \right] \\ & \times \int_{0}^{\alpha_{0}} \mathrm{d}\alpha \left(1-\alpha\right)^{2d_{0}-1} \left[\mathbf{S}_{kt} \left(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{X}_{k}\right)^{-1-\boldsymbol{\epsilon}} \right] \\ & \times \int_{0}^{1} \mathrm{d}u \, u^{-\boldsymbol{\epsilon}}(1-u)^{-\boldsymbol{\epsilon}} \left(\left[\boldsymbol{Z}_{r;i}(\boldsymbol{\beta},\boldsymbol{X}_{i},\boldsymbol{v})\right] \right)^{l} \\ & \times \int_{0}^{1} \mathrm{d}v \, v^{-\boldsymbol{\epsilon}}(1-v)^{-\boldsymbol{\epsilon}} \left(\left[\boldsymbol{Z}_{k;t} \left(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{X}_{i},\boldsymbol{v}\right)\right] \right)^{k}, \quad k,l = -1, 0, 1, 2 \end{split}$$

Another example: abelian soft-double soft subtraction

$$\begin{bmatrix} \mathcal{S}_t \mathcal{S}_{rt}^{(0,0)} \end{bmatrix}^{\text{ab}} = (8\pi\alpha_{\text{s}}\mu^{2\epsilon})^2 \frac{1}{2} \sum_{i,j,k,l} \frac{s_{\hat{i}\hat{k}}}{s_{\hat{i}\hat{r}}s_{\hat{k}\hat{r}}} \frac{s_{jl}}{s_{jt}s_{lt}} |\mathcal{M}_{m,(i,k)(j,l)}^{(0)}(\{\tilde{p}\}_m^{(\hat{r},t)})|^2 \\ \times (1 - y_{tQ})^{d'_0 - m(1-\epsilon)} (1 - y_{\hat{r}Q})^{d'_0 - m(1-\epsilon)} \Theta(y_0 - y_{tQ}) \Theta(y_0 - y_{\hat{r}Q})$$

obtained by an iterated mapping

$$\begin{split} \{p\} \xrightarrow{\mathbf{S}_t} \{\hat{p}\}_{m+1}^{(t)} \xrightarrow{\mathbf{S}_{\hat{r}}} \{\tilde{p}\}_m^{(\hat{r},t)} : \quad \mathrm{d}\phi_{m+2}(\{p\}) = \mathrm{d}\phi_m(\{\tilde{p}\}_m)[\mathrm{d}\hat{p}_{1,m}][\mathrm{d}p_{1,m+1}] \end{split}$$
Then we define the function $[S_t S_{rt}^{(0)}]_{ikjl}(p_i, p_j, p_k, p_l, \epsilon, y_0, d_0')$ by

$$\int [\mathrm{d}\hat{p}_{1,m}] [\mathrm{d}p_{1,m+1}] \Big[\mathcal{S}_t \mathcal{S}_{rt}^{(0,0)} \Big]^{\mathrm{ab}} \equiv \left[\frac{\alpha_{\mathrm{s}}}{2\pi} S_\epsilon \left(\frac{\mu^2}{Q^2} \right)^\epsilon \right]^2 \sum_{i,j,k,l} [S_t S_{rt}^{(0)}]_{ikjl} |\mathcal{M}_{m,(i,k)(j,l)}^{(0)}(\{\tilde{p}\}_m^{(\hat{r},t)})|^2$$

For simplicity, consider terms with j = i and k = I: $[S_t S_{rt}^{(0)}]_{ikik}$

 $\begin{aligned} \text{kinematical dependence through } \chi_{ik} &= \angle (p_i, p_k), \ \cos \chi_{ik} \equiv 1 - 2Y_{ik,Q} \\ \text{The integrated counterterm is proportional to} \\ Y_{ik,Q} &= \frac{y_{ik}}{y_{iQ}y_{kQ}} \\ \mathcal{I}_{\mathcal{S}}^{(11)}(Y_{ik,Q};\epsilon,y_0,d_0') &= -\frac{4\Gamma^4(1-\epsilon)}{\pi\Gamma^2(1-\epsilon)} \frac{B_{y_0}(-2\epsilon,d_0'+1)}{\epsilon} Y_{ik,Q} \\ &\times \int_0^{y_0} dy \, y^{-1-2\epsilon}(1-y)^{d_0'-1+\epsilon} \int_{-1}^1 d(\cos\vartheta) \, (\sin\vartheta)^{-2\epsilon} \\ &\times \int_{-1}^1 d(\cos\varphi) \, (\sin\varphi)^{-1-2\epsilon} \left[f(\vartheta,\varphi;0) \right]^{-1} \left[f(\vartheta,\varphi;Y_{ik,Q}) \right]^{-1} \\ &\times \left[Y(y,\vartheta,\varphi;Y_{ik,Q}) \right]^{-\epsilon} {}_2F_1 \big(-\epsilon, -\epsilon, 1-\epsilon; 1-Y(y,\vartheta,\varphi;Y_{ik,Q}) \big) \end{aligned}$

$$f(\vartheta,\varphi;Y_{ik,Q}) = 1 - 2\sqrt{Y_{ik,Q}(1 - Y_{ik,Q})}\sin\vartheta\cos\varphi - (1 - 2Y_{ik,Q})\chi\cos\vartheta$$

$$Y(y,\vartheta,\varphi;\chi) = \frac{4(1-y)Y_{ik,Q}}{[2(1-y)+yf(\vartheta,\varphi;0)][2(1-y)+yf(\vartheta,\varphi;Y_{ik,Q})]}$$

This integral is equal to

$$\begin{split} \mathcal{I}_{\mathcal{S}}^{(11)}(Y_{ik,Q};\epsilon,y_0,d_0') &= \frac{1}{\epsilon^4} - 2 \bigg[\ln(Y_{ik,Q}) + \Sigma(y_0,D_0') + \Sigma(y_0,D_0'-1) \bigg] \frac{1}{\epsilon^3} + \mathcal{O}(\epsilon^{-2}) \\ \text{where } D_0' &= d_0'|_{\epsilon=0} \quad \text{and} \\ \Sigma(z,N) &= \ln z - \sum_{k=1}^N \frac{1 - (1-z)^k}{k} \end{split}$$

We compute the higher order coefficients numerically $(y_0 = 1, D'_0 = 3)$

 \mathbf{k}

to compute the integrals:

- IBP's to reduce to master integrals + solution of MI's by differential equations
- Mellin-Barnes representations to extract poles structure + summation of nested series
- Sector decomposition

Method	Analytical	Numerical
	✓ Singly-unresolved integrals	✓ Evaluating analytical expressions
IBP	 Bottleneck is the proliferation of denominators 	 No numbers without full analytical results
MB	 ✓ Iterated singly unresolved integrals – Bottleneck is the evaluation of sums 	 ✓ Direct numerical evalution of MB integrals possible ✓ Fast and accurate
	✓ Easy to automate	✓ Straightforward
SD	 Only in principle, except for leading pole 	 In general slower & less accurate than MB

Method	Analytical	Numerical
	✓ Singly-unresolved integrals	✓ Evaluating analytical expressions
IBP	 Bottleneck is the proliferation of denominators 	- No numbers without full analytical results
	✓ Iterated singly unresolved integrals	✓ Direct numerical evalution of MB integrals possible
WB	 Bottleneck is the evaluation of sums 	✓ Fast and accurate
	\checkmark Easy to automate	✓ Straightforward
SD	 Only in principle, except for leading pole 	 In general slower & less accurate than MB

Method	Analytical	Numerical
700	✓ Singly-unresolved integrals	✓ Evaluating analytical expressions
IBP	 Bottleneck is the proliferation of denominators 	- No numbers without full analytical results
MB	✓ Iterated singly unresolved integrals Bottleneck is the	✓ Direct numerical evalution of MB integrals possible
	evaluation of sums	✓ Fast and accurate
	✓ Easy to automate	✓ Straightforward
SD	 Only in principle, except for leading pole 	 In general slower & less accurate than MB

Analytical vs. numerical

Matter of principle:

- Cancellation of poles requires the coefficients of poles in integrated counterterms in analytical form
- Analytical forms are fast and accurate compared to numerical ones

However:

 Analytical results show that the integrated counterterms are smooth functions of the kinematic variables

Hence:

 Finite terms of integrated counterterms can be given in form of interpolating tables or approximating functions. Thus numerical form

 computed once with required precision – is sufficient.

Results

After summation over unresolved flavours:

$$\begin{split} &\int_{2} \mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{12}} = \mathrm{d}\sigma_{m}^{\mathrm{B}} \otimes \boldsymbol{I}_{12}^{(0)}(\{p\}_{m};\epsilon) \\ \boldsymbol{I}_{12}^{(0)}(\{p\}_{m};\epsilon) \propto & \left\{ \sum_{i} \left[\mathrm{C}_{12,f_{i}}^{(0)} \boldsymbol{T}_{i}^{2} + \sum_{k} \mathrm{C}_{12,f_{i}f_{k}}^{(0)} \boldsymbol{T}_{k}^{2} \right] \boldsymbol{T}_{i}^{2} \\ &+ \sum_{j,l} \left[\mathrm{S}_{12}^{(0),(j,l)} \boldsymbol{C}_{\mathrm{A}} + \sum_{i} \mathrm{CS}_{12,f_{i}}^{(0),(j,l)} \boldsymbol{T}_{i}^{2} \right] \boldsymbol{T}_{j} \boldsymbol{T}_{l} \\ &+ \sum_{i,k,j,l} \mathrm{S}_{12}^{(0),(i,k)(j,l)} \{ \boldsymbol{T}_{i} \boldsymbol{T}_{k}, \boldsymbol{T}_{j} \boldsymbol{T}_{l} \} \right\} \end{split}$$
The coefficients depend on ϵ (poles starting at

The coefficients depend on ϵ (poles starting at $O(\epsilon^{-4})$), kinematics and PS cut parameters [Same structure, but different coeff's for I_2]

Illustration: $e^+e^- \rightarrow 2$ jets

Born squared matrix element: $|\mathcal{M}_2^{(0)}(1_q,2_{ar{q}})|^2$

Colour and kinematics are trivial:

$$T_1^2 = T_2^2 = -T_1T_2 = C_F, \qquad y_{12} = \frac{2p_1 \cdot p_2}{Q^2} = 1$$

Insertion operator from iterated subtraction:

$$\boldsymbol{I}_{12}^{(0)}(p_1, p_2; \epsilon) = \left[\frac{\alpha_s}{2\pi} S_\epsilon \left(\frac{\mu^2}{Q^2}\right)^\epsilon\right]^2 C_F^2 \left\{ (3-x)\frac{2}{\epsilon^4} + \frac{1}{6} \left[20x + 81 - 4y_f + (36x - 24)\Sigma(y_0, D'_0) + (24x - 12)\Sigma(y_0, D'_0 - 1)\right] \frac{1}{\epsilon^3} + O(\epsilon^{-2}) \right\}$$

$$x = \frac{C_{\mathrm{A}}}{C_{\mathrm{F}}}, \qquad y_f = \frac{T_{\mathrm{R}}}{C_{\mathrm{F}}} n_{\mathrm{f}}$$

Illustration: $e^+e^- \rightarrow 2$ jets

We compute higher order expansion coefficients numerically

$$\boldsymbol{I}_{12}^{(0)}(p_1, p_2; \epsilon) = \left[\frac{\alpha_{\rm s}}{2\pi} S_{\epsilon} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon}\right]^2 C_{\rm F}^2 \sum_{i=-4}^{0} \frac{1}{\epsilon^i} \sum_{\rm C_x} C_x \mathcal{I}_{12,2j}^{(\rm C_x,i)} + O(\varepsilon^1)$$

Cx	O(€ ⁻⁴)	O (€ ⁻³)	O(€ ⁻²)	O(€ ⁻¹)	O(€ ⁰)
	6	76/3	32.09	-87.9	-554.5
X	-2	-27/2	-52.4	-150.7	-339.5
y f	0	-	-6.332 <	-17.65	1.013

$$x = \frac{C_{\mathrm{A}}}{C_{\mathrm{F}}}, \qquad y_f = \frac{T_{\mathrm{R}}}{C_{\mathrm{F}}}n_{\mathrm{f}}$$

Illustration: $e^+e^- \rightarrow 3$ jets

Born squared matrix element: $|\mathcal{M}_3^{(0)}(1_q,2_{ar{q}},3_g)|^2$

Colour is still trivial:

$$T_1^2 = T_2^2 = C_F, \quad T_3^2 = C_A, \quad T_1 T_2 = \frac{C_A - 2C_F}{2}, \quad T_1 T_3 = T_2 T_3 = -\frac{C_A}{2}$$

Insertion operator from iterated subtraction:

$$\begin{aligned} \mathbf{I}_{12}^{(0)}(p_1, p_2, p_3; \epsilon) &= \left[\frac{\alpha_s}{2\pi} S_\epsilon \left(\frac{\mu^2}{Q^2} \right)^\epsilon \right]^2 C_F^2 \left\{ \frac{x^2 + 2x + 6}{\epsilon^4} \right. \\ &+ \left[\frac{11x^2}{2} + \frac{50x}{3} + 12 - \frac{1}{3} x y_f - x^2 y_f - 4y_f \right. \\ &+ \left(\frac{5x^2}{2} - x - 8 \right) \ln y_{12} - \left(\frac{5x^2}{2} + 4x \right) (\ln y_{13} + \ln y_{23}) \\ &+ (x^2 + 12x - 4) \Sigma(y_0, D_0') + 4(x - 1) \Sigma(y_0, D_0' - 1) \left] \frac{1}{\epsilon^3} + \mathcal{O}(\epsilon^{-2}) \right. \end{aligned}$$

Illustration: $e^+e^- \rightarrow 3$ jets

We compute higher order expansion coefficients numerically

$$\boldsymbol{I}_{12}^{(0)}(p_1, p_2, p_3; \epsilon) = \left[\frac{\alpha_{\rm s}}{2\pi} S_{\epsilon} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon}\right]^2 C_{\rm F}^2 \sum_{i=-4}^{0} \frac{1}{\epsilon^i} \sum_{\rm C_x} C_x \mathcal{I}_{12,3j}^{(\rm C_x,i)} + O(\varepsilon^1)$$

Cx	O (€ ⁻⁴)	O (€ ⁻³)	O(€ ⁻²)	O(€ ⁻¹)	O(€ ⁰)
I	6	34.12	82.98	34.59	-543.8
X	2	9.721	I.209	-142.2	-696.6
x ²	I	6.497	12.80	15.87	-47.92
Уf	0	-13/3	-32.40	-127.9	-355.2
x y _f	0	-3/2	-12.01	-46.90	-104.1

Illustration: $e^+e^- \rightarrow 3$ jets

We compute higher order expansion coefficients numerically

$$\boldsymbol{I}_{12}^{(0)}(p_1, p_2, p_3; \epsilon) = \left[\frac{\alpha_{\rm s}}{2\pi} S_{\epsilon} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon}\right]^2 C_{\rm F}^2 \sum_{i=-4}^{0} \frac{1}{\epsilon^i} \sum_{\rm C_x} C_x \mathcal{I}_{12,3j}^{(\rm C_x,i)} + O(\varepsilon^1)$$

 $y_{12} = 0.238667, y_{13} = 0.758153, y_{23} = 0.003180$

Cx	O (€ ⁻⁴)	O (€ ⁻³)	O(€ ⁻²)	O (€ ⁻¹)	O(€ ⁰)
I	6	36.79	106.0	120.6	-431.0
X	2	25.38	143.6	537.30	1505
x ²	I	15.24	119.5	660.5	2902
y f	0	-13/3	-31.30	-121.7	-346.0
x y _f	0	-3/2	-17.72	-109.1	-470.9

Illustration: $e^+e^- \rightarrow 3$ jets

We compute higher order expansion coefficients numerically

$$\boldsymbol{I}_{12}^{(0)}(p_1, p_2, p_3; \epsilon) = \left[\frac{\alpha_{\rm s}}{2\pi} S_{\epsilon} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon}\right]^2 C_{\rm F}^2 \sum_{i=-4}^{0} \frac{1}{\epsilon^i} \sum_{\rm C_x} C_x \mathcal{I}_{12,3j}^{(\rm C_x,i)} + O(\varepsilon^1)$$

 $y_{12} = 0.937004$, $y_{13} = 0.024207$, $y_{23} = 0.038749$

Cx	O (€ ⁻⁴)	O (€ ⁻³)	O(€ ⁻²)	O (€ ⁻¹)	O (€ ⁰)
I	6	25.85	34.59	-84.25	-566.8
X	2	27.79	136.8	330.60	46.20
x ²		21.02	195.4	1174	5355
y f	0	-13/3	-57.59	-405.2	-2120
x y _f	0	-3/2	-24.07	-194.7	-1083

Present status

Integration of the doubly-unresolved counterterms in progress (most difficult)

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

Present status

 $\sigma^{\text{NNLO}} = \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{NNLO}} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{NNLO}} + \int_{m} \mathrm{d}\sigma_{m}^{\text{NNLO}}$ by numerical Monte Carlo integrations (on a single CPU in 50 h)

- ✓ Matrix elements are known for jet, V + jet hadroproduction
- Three different subtraction methods are being developed
- Sector decomposition matched with residuum subtraction: a promise
- Antennae subtraction: subtractions and integrated subtractions are
 - ✓ known for final-final and initial-final emitterspectator configurations
 - * in progress for initial-initial configurations

Status of integrated antennae

	final-final	initial-final	initial-initial
X_3^0	\checkmark	\checkmark	\checkmark
X_4^0	\checkmark	\checkmark	?
$X_3^0 \otimes X_3^0$	\checkmark	\checkmark	?
X_3^1	\checkmark	\checkmark	?

- Our subtraction scheme: completely algorithmic,
 - ✓ set up for processes with no coloured particles in the initial state
 - hadroproduction is obtained by crossing
- ✓ We have investigated various methods to integrate the counterterms
- ✓ We used the MB method to perform the integration of all but doubly-unresolved counterterms. The SD method was used to provide independent check
- * The integration of the doubly-unresolved counterterm is feasible with our methods, and is in progress

The end

Appendix: some angular integrals

Are these integrals known?

$$\Omega_{j_1\dots j_n} = \int \mathrm{d}\Omega_{d-1}(\vec{r}) \frac{1}{(\vec{e}_1 \cdot \vec{r})^{j_1} \dots (\vec{e}_1 \cdot \vec{r})^{j_n}}$$

for

two denominators and one or two masses: $\Omega_{jl}(\cos \chi, \beta_1, \beta_2) = \int_{-1}^{1} d(\cos \vartheta) d(\cos \varphi) (\sin \vartheta)^{-2\epsilon} (\sin \varphi)^{-1-2\epsilon} \\
\times (1 - \beta_1 \cos \vartheta)^{-j} \left(1 - \beta_2 (\sin \chi \sin \vartheta \cos \varphi + \cos \chi \cos \vartheta) \right)^{-l} \\$ three denominators, massless:

 $\Omega_{j_1 j_2 j_3}(\cos \chi_{12}, \cos \chi_{13}, \cos \chi_{23})$