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Motivation
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‣ Jets are essential analysis tools at LHC: 
good understanding is needed
Status at TeVatron (with midpoint cone):

looks nice, 
but have a 
closer look

Why jets at NNLO?
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‣ Jets are essential analysis tools at LHC: 
10% energy-scale uncertainty (G.D.) warrants 
precision physics

‣ Precise predictions for ‘standard candles’:
inclusive jet, V (+ jet)

‣ Missing piece for precise determination of 
pdf’s (W.J.S.)

‣ NLO is effectively LO: 
energy distribution inside jets, jet pT 
asymmetry (G.D.)

Why jets at NNLO?

Less sophisticated answer: 
Matrix elements are known,but not yet used
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‣ matrix elements are known for 0→4 parton (for jet 
production), V+3 parton (for V+jet production) processes

‣ the three contributions are separately divergent in  d = 4 
dimensions:
- in σRR kinematical singularities as one or two partons 

become unresolved yielding ε-poles at O(ε-j), j = 1-4 
after integration over phase space, no explicit poles

- in σRV kinematical singularities as one parton becomes 
unresolved yielding ε-poles at O(ε-j) after integration 
over phase space + explicit ε-poles at O(ε-j), j =1,2

- in σVV explicit ε-poles at O (ε-j), j=1-4

 general solution is not yet available

Problem

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m

≡
∫

m+2
dσRR

m+2Jm+2 +
∫

m+1
dσRV

m+1Jm+1 +
∫

m
dσVV

m Jm
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Approaches

Sector Decomposition
(residuum subtraction)
Binoth, Heinrich, Anastasiou, 
Melnikov, Petriello

✓ First method to 
yield physical 
cross sections

✓ Calculation is fully 
numerical

- Cancellation of 
poles also, and 
depends on the jet 
function

- Can it handle final 
states with many 
coloured partons?

M. Czakon 2010:  yes

Antennae subtraction
Gehrmann, Gehrmann-De Ridder, 
Glover, Weinzierl ...

✓ Successfully applied to 
e+e- → 2, 3 jets

✓ Analytic integration of 
the antennae over 
unresolved phase 
space is understood

✴ Extension to hadron 
collisions is well 
advanced (more later)

- Nonlocal counterterms 
- Colour implicit
- Cannot cut on factor-

ized phase space

qT subtraction
Catani, Grazzini, Cieri, Ferrara, De 
Florian ...

✓Simple concept, explicit 
documentation
✓Efficient and fully 
exclusive calculation
-Limited scope: applicable 
to production of colorless 
final states

Several options available - why a new one?
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Approaches
Is agreement between antennae implementations 
                          satisfactory?              (S. Weinzierl)
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to devise a subtraction scheme with

✓ fully local counterterms 
(efficiency and mathematical rigour)

✓ explicit expressions including colour 
(colour space natation is used)

✓ completely algorithmic construction 
(valid in any order of perturbation theory)

✓ option to constrain subtraction near singular 
regions (important check)

Our goal
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Recipe for a
general subtraction scheme at NNLO

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042

Z. Nagy, G. Somogyi, ZT hep-ph/0702273
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of subtractions is governed by jet functions

Structure

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

σNNLO
m+2 =

∫

m+2

{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm −

(
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

)}

σNNLO
m+1 =

∫

m+1

{(
dσRV

m+1+
∫

1
dσRR,A1

m+2

)
Jm+1−

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
Jm

}

σNNLO
m =

∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm
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∫

m+1

{(
dσRV

m+1+
∫

1
dσRR,A1

m+2

)
Jm+1−

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
Jm

}

σNNLO
m =

∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm

regularizes the doubly-unresolved limits of dσRR,A2
m+2 dσRR

m+2
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dσRV,A1
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1
dσRR,A1

m+2
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A1
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regularizes the singly-unresolved limits of dσRR,A1
m+2 dσRR

m+2
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∫
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dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
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σNNLO
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∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm

compensates for the double subtraction in               and  dσRR,A2
m+2dσRR,A12

m+2 dσRR,A1
m+2
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regularizes the singly-unresolved limits of 

dσRV,A1
m+1 dσRV

m+1∫

1
dσRR,A1

m+2

( ∫

1
dσRR,A1

m+2

)
A1
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requires three steps

(1) Matching of limits: to avoid multiple subtraction in 
overlapping singular regions of PS; easy to find at NLO:

• collinear limit + soft limit - collinear limit of soft limit
• more cumbersome at NNLO or higher order: requries 

matching of various doubly- and singly-unresolved limits

(2) extension of limit formulae over the whole phase space  
using momentum mappings that respect factorization and 
delicate cancellation of IR singularities

(3) integration of subtractions over the phase space measure 
of the unresolved parton(s)

Definition of subtractions
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Consider step (3) the most important
For analytic results 

✓ use colour-stripped amplitudes

✓ subtraction derived from physical matrix elements 
normalized to two-parton matrix elements
⇒ can use integration techniques developed for 

loop-amplitudes
⇒ part of step (1) comes free

- Price: less numerical control (non-local 
subtractions, adventage is lost if phase space for 
subtractions are constrained)

Antennae subtractions
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Puzzle in testing NNLO antennae for gluon 
scattering: azimuthal correlations in gluon splitting

Pires, Glover  arXiv:1003.2824

  single collinear                               triple collinear

Antennae subtractions
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are based on

✓ universal IR structure of QCD squared matrix elements
• ε-poles of one- and two-loop amplitudes
• soft and collinear factorization of QCD matrix elements

✓ simple and general procedure for separating overlapping 
singularities (using a physical gauge)

‣ extension over phase space using momentum mappings that
• implement exact momentum conservation
• lead to exact phase-space factorization
• use different mappings for collinear and soft-type subtractions
• distribute recoil democratically
⇒ can be generalized to any number of unresolved partons

Our subtractions
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are

✓ given explicitly for processes with colorless particles in the 
initial state (extension to hadronic processes is known at 
NLO)

✓ fully local in color and spin space 
➡ no need to consider color subamplitudes of real emission matrix 

elements
➡ azimuthal correlations in gluon splitting treated exactly
➡ ratio of the sum of counterterms to matrix elements of real 

emission tend to one in kinematically degenerate phase-space 
points

✓ can be constrained to near singular regions 
➡ leads to gain in efficiency
➡ independence of phase space cut provides strong check

Our subtractions
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that need momentum mappings only

Subtractions

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

σNNLO
m+2 =

∫

m+2

{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm −

(
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

)}

σNNLO
m+1 =

∫

m+1

{(
dσRV

m+1+
∫

1
dσRR,A1

m+2

)
Jm+1−

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
Jm

}

σNNLO
m =

∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm
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The tedious part:
Integrating the subtraction terms

G. Somogyi, ZT arXiv:0807.0509
U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514

P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390
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Integrated counterterms

counterterm types of integrals done

tree-level singly-unresolved ✓

one-loop singly-unresolved ✓

tree-level iterated singly-unresolved (1) ✓

tree-level iterated singly-unresolved (2) ✓

tree-level doubly-unresolved ✘dσRR,A2
m+2

dσRR,A12
m+2

dσRV,A1
m+1

( ∫

1
dσRR,A1

m+2

)
A1

dσRR,A1
m+2
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Integrated counterterms
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( ∫
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In this talk
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One of 25 subtraction terms: collinear-double collinear subtraction

Integrating iterated counterterms

CktC
(0)
ir;kt = (8παsµ

2ε)2
1

skt

1
ŝir

〈M(0)
m ({p̃})|P (0)

fkft
(zt,k; ε)P (0)

fifr
(ẑr,i; ε)|M(0)

m ({p̃})〉

× (1− αkt)2d0−2m(1−ε)(1− α̂kt)2d0−2m(1−ε)Θ(α0 − αkt)Θ(α0 − α̂ir)

obtained by an iterated mapping

{p}m+2
Ckt−→ {p̂}m+1

Cîr̂−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp̂1,m][dp1,m+1]

Then we define the function                                                 by

∫
[dp̂1,m][dp1,m+1]CktC

(0)
ir;kt ≡

[
αs

2π
Sε

(
µ2

Q2

)ε ]2

CktC
(0)
ir;ktT

2
ktT

2
ir|M(0)

m ({p̃})|2

CktC
(0)
ir;kt(x̃kt, x̃ir, ε,α0, d0)

27Thursday, September 30, 2010



Use explicit parametrization of               and                   to write 

                                     as a linear combination of basic integrals                       

Integrating iterated counterterms

CktC
(0)
ir;kt(x̃kt, x̃ir, ε,α0, d0)

[dp̂1,m] [dp1,m+1]

I(4)
C (xk, xi; ε, α0, d0, k, l) = xkxi

×
∫ α0

0
dβ (1− β)2d0−2+2εβ−1−ε[β + (1− β)xi]−1−ε

×
∫ α0

0
dα (1− α)2d0−1α−1−ε[α + (1− α)(1− β)xk]−1−ε

×
∫ 1

0
du u−ε(1− u)−ε

(
β + (1− β)xiu

2β + (1− β)xi

)l

×
∫ 1

0
dv v−ε(1− v)−ε

(
α + (1− α)(1− β)xkv

2α + (1− α)(1− β)xk

)k

, k, l = −1, 0, 1, 2

sir(β,xi)-1-ε

skt (α,β,xk)-1-ε

Zr;i(β,xi,u)

Zk;t (α,β,xi,v)
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Another example: abelian soft-double soft subtraction

Integrating iterated counterterms

obtained by an iterated mapping

Then we define the function                                                           by

{p} St−→ {p̂}(t)
m+1

Sbr−→ {p̃}(br,t)
m : dφm+2({p}) = dφm({p̃}m)[dp̂1,m][dp1,m+1]

∫
[dp̂1,m][dp1,m+1]

[
StS

(0,0)
rt

]ab
≡

[
αs

2π
Sε

(
µ2

Q2

)ε]2 ∑

i,j,k,l

[StS
(0)
rt ]ikjl|M(0)

m,(i,k)(j,l)({p̃}
(r̂,t)
m )|2

[StS
(0)
rt ]ikjl(pi, pj , pk, pl, ε, y0, d

′
0)

[
StS

(0,0)
rt

]ab
= (8παsµ

2ε)2
1
2

∑

i,j,k,l

sîk̂

sîr̂sk̂r̂

sjl

sjtslt
|M(0)

m,(i,k)(j,l)({p̃}
(r̂,t)
m )|2

×(1− ytQ)d′
0−m(1−ε)(1− yr̂Q)d′

0−m(1−ε)Θ(y0 − ytQ)Θ(y0 − yr̂Q)
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For simplicity, consider terms with j = i and k = l:

kinematical dependence through

Integrating iterated counterterms
[StS

(0)
rt ]ikik

χik = ∠(pi, pk) , cos χik ≡ 1− 2Yik,Q

f(ϑ, ϕ;Yik,Q) = 1− 2
√

Yik,Q(1− Yik,Q) sinϑ cos ϕ− (1− 2Yik,Q)χ cos ϑ

Y (y, ϑ,ϕ;χ) =
4(1− y)Yik,Q

[2(1− y) + y f(ϑ, ϕ; 0)][2(1− y) + y f(ϑ, ϕ;Yik,Q)]

I(11)
S (Yik,Q; ε, y0, d

′
0) = − 4Γ4(1− ε)

πΓ2(1− ε)
By0(−2ε, d′0 + 1)

ε
Yik,Q

×
∫ y0

0
dy y−1−2ε(1− y)d′

0−1+ε

∫ 1

−1
d(cos ϑ) (sinϑ)−2ε

×
∫ 1

−1
d(cos ϕ) (sinϕ)−1−2ε

[
f(ϑ, ϕ; 0)

]−1[
f(ϑ, ϕ;Yik,Q)

]−1

×
[
Y (y, ϑ,ϕ;Yik,Q)

]−ε
2F1

(
− ε,−ε, 1− ε; 1− Y (y, ϑ,ϕ;Yik,Q)

)

Yik,Q =
yik

yiQykQ
The integrated counterterm is proportional to
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This integral is equal to

Integrating iterated counterterms

where                        and

I(11)
S (Yik,Q; ε, y0, d

′
0) =

1
ε4
− 2

[
ln(Yik,Q) + Σ(y0, D

′
0) + Σ(y0, D

′
0 − 1)

]
1
ε3

+ O(ε−2)

D′
0 = d′

0|ε=0

Σ(z, N) = ln z −
∑N

k=1
1−(1−z)k

k

We compute the higher order coefficients numerically (y0 = 1 , D′
0 = 3)
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to compute the integrals:

‣ IBP’s to reduce to master integrals + solution 
of MI’s by differential equations

‣ Mellin-Barnes representations to extract 
poles structure + summation of nested series

‣ Sector decomposition

Three methods
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Three methods

Method Analytical Numerical

IBP

✓ Singly-unresolved 
integrals

-  Bottleneck is the 
proliferation of 
denominators

✓ Evaluating analytical 
expressions

-   No numbers without 
full analytical results

MB

✓ Iterated singly 
unresolved integrals

-  Bottleneck is the 
evaluation of sums

✓ Direct numerical 
evalution of MB 
integrals possible

✓ Fast and accurate

SD
✓  Easy to automate

-  Only in principle, 
except for leading pole

✓ Straightforward

-   In general slower & 
less accurate than MB
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Matter of principle:
‣ Cancellation of poles requires the coefficients of poles in integrated 

counterterms in analytical form

‣ Analytical forms are fast and accurate compared to numerical ones

However:
‣ Analytical results show that the integrated counterterms are 

smooth functions of the kinematic variables

Hence:
‣ Finite terms of integrated counterterms can be given in form of 

interpolating tables or approximating functions. Thus numerical form 
— computed once with required precision — is sufficient.

Analytical vs. numerical
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Results
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Integrated iterated counterterms

The coefficients depend on ε (poles starting at 
O(ε-4)), kinematics and PS cut parameters

[Same structure, but different coeff’s for I2]

After summation over unresolved flavours:

I(0)
12 ({p}m; ε) ∝

{ ∑

i

[
C(0)

12,fi
T 2

i +
∑

k

C(0)
12,fifk

T 2
k

]
T 2

i

+
∑

j,l

[
S(0),(j,l)

12 CA +
∑

i

CS(0),(j,l)
12,fi

T 2
i

]
T jT l

+
∑

i,k,j,l

S(0),(i,k)(j,l)
12 {T iT k,T jT l}

}

∫

2
dσRR,A12

m+2 = dσB
m ⊗ I(0)

12 ({p}m; ε)
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Illustration: e+e- →2 jets

Insertion operator I12 

Born squared matrix element:

Colour and kinematics are trivial:

Insertion operator from iterated subtraction:

T 2
1 = T 2

2 = −T 1T 2 = CF , y12 =
2p1 · p2

Q2
= 1

|M(0)
2 (1q, 2q̄)|2

I(0)
12 (p1, p2; ε) =

[
αs

2π
Sε

(
µ2

Q2

)ε ]2

C2
F

{
(3− x)

2
ε4

+
1
6

[
20x + 81− 4yf

+ (36x− 24)Σ(y0, D
′
0) + (24x− 12)Σ(y0, D

′
0 − 1)

]
1
ε3

+ O(ε−2)
}

x =
CA

CF
, yf =

TR

CF
nf
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Illustration: e+e− →2 jets

Insertion operator I12 

We compute higher order expansion coefficients numerically

1 6 76/3 32.09 -87.9 -554.5

x -2 −27/2 -52.4 -150.7 -339.5

yf 0 -1 -6.332 -17.65 1.013

Cx O(ε−4) O(ε−3) O(ε−2) O(ε−1) O(ε0)

Pre
lim

ina
ry

I(0)
12 (p1, p2; ε) =

[
αs

2π
Sε

(
µ2

Q2

)ε ]2

C2
F

0∑

i=−4

1
εi

∑

Cx

CxI(Cx,i)
12,2j + O(ε1)

x =
CA

CF
, yf =

TR

CF
nf
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Illustration: e+e− →3 jets

Insertion operator I12 

Born squared matrix element:

Colour is still trivial:

|M(0)
3 (1q, 2q̄, 3g)|2

Insertion operator from iterated subtraction:

T 2
1 = T 2

2 = CF , T 2
3 = CA , T 1T 2 =

CA − 2CF

2
, T 1T 3 = T 2T 3 = −CA

2

I(0)
12 (p1, p2, p3; ε) =

[
αs

2π
Sε

(
µ2

Q2

)ε ]2

C2
F

{
x2 + 2x + 6

ε4

+
[
11x2

2
+

50x

3
+ 12− 1

3
xyf − x2yf − 4yf

+
(

5x2

2
− x− 8

)
ln y12 −

(
5x2

2
+ 4x

)
(ln y13 + ln y23)

+ (x2 + 12x− 4)Σ(y0, D
′
0) + 4(x− 1)Σ(y0, D

′
0 − 1)

]
1
ε3

+ O(ε−2)
}
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Illustration: e+e− →3 jets

Insertion operator I12 

We compute higher order expansion coefficients numerically

1 6 34.12 82.98 34.59 -543.8

x 2 9.721 1.209 -142.2 -696.6

x2 1 6.497 12.80 15.87 -47.92

yf 0 -13/3 -32.40 -127.9 -355.2

x yf 0 -3/2 -12.01 -46.90 -104.1

Cx O(ε−4) O(ε−3) O(ε−2) O(ε−1) O(ε0)

Pre
lim

ina
ry

I(0)
12 (p1, p2, p3; ε) =

[
αs

2π
Sε

(
µ2

Q2

)ε ]2

C2
F

0∑

i=−4

1
εi

∑

Cx

CxI(Cx,i)
12,3j + O(ε1)

y12 = 0.333333,   y13 = 0.333333,    y23 = 0.333333
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Illustration: e+e− →3 jets

Insertion operator I12 

We compute higher order expansion coefficients numerically

1 6 36.79 106.0 120.6 -431.0

x 2 25.38 143.6 537.3 1505

x2 1 15.24 119.5 660.5 2902

yf 0 -13/3 -31.30 -121.7 -346.0

x yf 0 -3/2 -17.72 -109.1 -470.9

Cx O(ε−4) O(ε−3) O(ε−2) O(ε−1) O(ε0)

Pre
lim

ina
ry

I(0)
12 (p1, p2, p3; ε) =

[
αs

2π
Sε

(
µ2

Q2

)ε ]2

C2
F

0∑

i=−4

1
εi

∑

Cx

CxI(Cx,i)
12,3j + O(ε1)

y12 = 0.238667,   y13 = 0.758153,    y23 = 0.003180
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Illustration: e+e− →3 jets

Insertion operator I12 

We compute higher order expansion coefficients numerically

1 6 25.85 34.59 -84.25 -566.8

x 2 27.79 136.8 330.6 46.20

x2 1 21.02 195.4 1174 5355

yf 0 -13/3 -57.59 -405.2 -2120

x yf 0 -3/2 -24.07 -194.7 -1083

Cx O(ε−4) O(ε−3) O(ε−2) O(ε−1) O(ε0)

Pre
lim

ina
ry

I(0)
12 (p1, p2, p3; ε) =

[
αs

2π
Sε

(
µ2

Q2

)ε ]2

C2
F

0∑

i=−4

1
εi

∑

Cx

CxI(Cx,i)
12,3j + O(ε1)

y12 = 0.937004,   y13 = 0.024207,    y23 = 0.038749
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Integration of the doubly-unresolved 
counterterms in progress (most difficult)

Present status

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

σNNLO
m+2 =

∫

m+2

{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm −

(
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

)}

σNNLO
m+1 =

∫

m+1

{(
dσRV

m+1+
∫

1
dσRR,A1

m+2

)
Jm+1−

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]
Jm

}

σNNLO
m =

∫

m

{
dσVV

m +
∫

2

(
dσRR,A2

m+2 −dσRR,A12
m+2

)
+

∫

1

[
dσRV,A1

m+1 +
( ∫

1
dσRR,A1

m+2

)
A1

]}
Jm
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by numerical Monte Carlo integrations (on a single CPU in 50 h)

Present status
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σNNLO =
∫

m+2
dσNNLO

m+2 +
∫

m+1
dσNNLO

m+1 +
∫

m
dσNNLO

m
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Conclusions
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✓ Matrix elements are known for jet, V + jet 
hadroproduction

• Three different subtraction methods are being 
developed 

• Sector decomposition matched with residuum 
subtraction: a promise

• Antennae subtraction: subtractions and integrated 
subtractions are

✓ known for final-final and initial-final emitter-
spectator configurations

✴ in progress for initial-initial configurations

Conclusions
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Status of integrated antennae

Conclusions

X0
3

X0
4

X0
3 ⊗X0

3
X1

3

final-final initial-final initial-initial
✓ ✓ ✓
✓ ✓ ?
✓ ✓ ?
✓ ✓ ?
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• Our subtraction scheme: completely algorithmic, 

✓ set up for processes with no coloured particles 
in the initial state

• hadroproduction is obtained by crossing

✓ We have investigated various methods to integrate 
the counterterms

✓ We used the MB method to perform the integrat-
ion of all but doubly-unresolved counterterms. The 
SD method was used to provide independent check

✴ The integration of the doubly-unresolved counter-
term is feasible with our methods, and is in progress

Conclusions

50Thursday, September 30, 2010



The end
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Are these integrals known?

for 

two denominators and one or two masses:

three denominators, massless:

Appendix: some angular integrals

Ωjl(cos χ, β1, β2) =
∫ 1

−1
d(cos ϑ) d(cos ϕ) (sinϑ)−2ε(sinϕ)−1−2ε

× (1− β1 cos ϑ)−j
(
1− β2(sinχ sinϑ cos ϕ + cos χ cos ϑ)

)−l

Ωj1...jn =
∫

dΩd−1(!r)
1

(!e1 ·!r)j1 . . . (!e1 ·!r)jn

Ωj1j2j3(cos χ12, cos χ13, cos χ23)
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