Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

NLO tensor reductions, where we are

Jochem Fleischer

Univ. Bielefeld and DESY, Zeuthen

in collaboration with Tord Riemann and Valery Yundin

Introduction	Recursions	Simplifying recursions	Numbers oooooooooo	Summary oo
Outline				

1 Introduction

- **2** Recursions
- **3** Simplifying recursions

4 Numbers

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	00 0000000	00

Introduction

n-point tensor integrals of rank *R*: (n,R)-integrals

$$I_n^{\mu_1\cdots\mu_R} = \int \frac{d^d k}{i\pi^{d/2}} \frac{\prod_{r=1}^R k^{\mu_r}}{\prod_{j=1}^n c_j^{\nu_j}},$$
 (1)

 $d = 4 - 2\epsilon$ and denominators c_j have indices ν_j and chords q_j

$$c_j = (k - q_j)^2 - m_j^2 + i\varepsilon$$
⁽²⁾

tensor integrals due to, e.g.:

- fermion propagators
- three-gauge boson couplings

Tensor reduction

Introduction 0000	Recursions	Simplifying recursions	Numbers 000000000	Summary
Scalar Integrals				

• package for all $n \le 4$ scalar integrals: QCDloop [Ellis:2007 [1]]

• Recent results for scalar integrals (complex masses):

- package for all *n* ≤ 4 scalar integrals:ONELOop [A.van Hameren:2010 [2]]
- Analytic results
- Scalar one-loop 4-point integrals: 1-loop 4pt. [A.Denner and S.Dittmaier:2010 [3]]

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

Status of opensource packages - possibly not complete

- package FF [vanOldenborgh:1990 [4]],
- package LoopTools/FF

[Hahn:1998,2006 [5]] – covers also 5-point functions, rank $R \leq 4$ $1/\epsilon^2$ not covered, and we observed sometimes problems in certain configurations with light-like external particles

- package Golem95 [Binoth:2008 [6]] for $n \le 6$, massive propagators in the test phase
- Mathematica package hexagon.m [Diakonidis:2008 [7, 8]] for $n \le 6$, rank $R \le 4$
- package for all $n \le 4$ scalar integrals: QCDloop [Ellis:2007 [1]]
- OPP methods: CutTools and Samurai

Introduction	Recursions	Simplifying recursions	Numbers	Summary
Other contributio	ons		000000000	00

Crucial contributions [of course, list is incomplete \dots] \Rightarrow

- [Campbell:1996 [9]]
- [Denner:2002,2005 [10, 11]]
- [Binoth:1999,2005 [12, 13]]
- [Bern:1993 [14]]
- [Ossola:2006 [15]]
- [The SM and NLO Multileg Working Group: Summary report.[16]]

In the following, I will describe recent developments based on

• [Davydychev:1991,Tarasov:1996,Fleischer:1999,Diakonidis:2008,2009

[17, 18, 19, 8, 20, 21]] present work: JF and T.Riemann, arXiv:1009.4436

In view of the importance of stable numerics for tensor reductions, it would be welcome to have one or more complete opensource programs for this task. To our knowledge, none is presently available. It is our aim to provide one.

Introduction R	Recursions	Simplifying recursions	Numbers	Summary
0000	00000	000000	000000000	00

Tensors expressed in terms of integrals in higher dimension

Following [Davydychev:1991 [17]] ,also [J.F. et al.:2000 [19]] express tensors by means of scalar integrals in higher dimensions($n_{ij} = \nu_{ij} = 1 + \delta_{ij}, n_{ijk} = \nu_{ij}\nu_{ijk}, \nu_{ijk} = 1 + \delta_{ik} + \delta_{jk}$ etc.):

$$I_n^{\mu} = \int^d k^{\mu} \prod_{r=1}^n c_r^{-1} = -\sum_{i=1}^n q_i^{\mu} I_{n,i}^{[d+1]}$$
(3)

$$I_{n}^{\mu\nu} = \int^{d} k^{\mu} k^{\nu} \prod_{r=1}^{n} c_{r}^{-1} = \sum_{i,j=1}^{n} q_{i}^{\mu} q_{j}^{\nu} n_{ij} I_{n,ij}^{[d+]^{2}} - \frac{1}{2} g^{\mu\nu} I_{n}^{[d+]}$$
(4)

$$I_{n}^{\mu \nu \lambda} = \int^{d} k^{\mu} k^{\nu} k^{\lambda} \prod_{r=1}^{n} c_{r}^{-1} = -\sum_{i,j,k=1}^{n} q_{i}^{\mu} q_{j}^{\nu} q_{k}^{\lambda} n_{ijk} I_{n,ijk}^{[d+]^{3}} + \frac{1}{2} \sum_{i=1}^{n} g^{[\mu \nu} q_{i}^{\lambda]} I_{n,i}^{[d+]^{2}}(\xi)$$

$$I_{n}^{\mu\nu\lambda\rho} = \int^{d} k^{\mu} k^{\nu} k^{\lambda} k^{\rho} \prod_{r=1}^{n} c_{r}^{-1} = \sum_{i,j,k,l=1}^{n} q_{i}^{\mu} q_{j}^{\nu} q_{k}^{\lambda} q_{l}^{\rho} n_{ijkl} I_{n,ijkl}^{[d+]^{4}}$$
$$-\frac{1}{2} \sum_{i,j=1}^{n} g^{[\mu\nu} q_{i}^{\lambda} q_{j}^{\rho]} n_{ij} I_{n,ij}^{[d+]^{3}} + \frac{1}{4} g^{[\mu\nu} g^{\lambda\rho]} I_{n}^{[d+]^{2}}$$
(6)

Introduction		Recursions	Simplifying recursions	Numbers 000000000	Summary 00
	_				

Notations: Integrals

$$I_{p,ij\,k\cdots}^{[d+]',stu\cdots} = \int^{[d+]'} \prod_{r=1}^{n} \frac{1}{c_r^{1+\delta_{rj}+\delta_{rj}+\delta_{rk}+\cdots-\delta_{rs}-\delta_{rt}-\delta_{ru}-\cdots}}, \ \int^d \equiv \int \frac{d^d k}{\pi^{d/2}},$$

where $[d+]^{l} = 4 + 2l - 2\varepsilon$

$$I_{n-1,ab}^{\{\mu_1,\dots,\},s}$$

is obtained from

 $I_n^{\{\mu_1,\cdots\,\}}$

by

- shrinking line s
- raising the powers of inverse propagators *a*, *b*.

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	00000	000000	000000000	00

Notations: modified Cayley determinant [Melrose:1965]

Modified Cayley determinant ()_N of a diagram with N internal lines and chords q_i :

$$()_{N} \equiv \begin{vmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & Y_{11} & Y_{12} & \dots & Y_{1N} \\ 1 & Y_{12} & Y_{22} & \dots & Y_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & Y_{1N} & Y_{2N} & \dots & Y_{NN} \end{vmatrix},$$
(7)

with matrix elements

$$Y_{ij} = -(q_i - q_j)^2 + m_i^2 + m_j^2, \quad (i, j = 1...N)$$
(8)

Gram determinant G_n : $G_n = |2q_iq_j|, i, j = 1, ..., n$

For a choice $q_n = 0$, both determinants are related: ()_N = $-G_{N-1}$

 \Rightarrow The determinant ()_N does not depend on the masses.

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

Notations: signed minors [Melrose:1965]

We also need signed minors of $()_N$, constructed by deleting *m* rows and *m* columns from $()_N$, and multiplying with a sign factor:

$$\begin{pmatrix} j_1 & j_2 & \cdots & j_m \\ k_1 & k_2 & \cdots & k_m \end{pmatrix}_N \equiv \\ \equiv (-1)^{\sum_l (j_l + k_l)} \operatorname{sgn}_{\{k\}} \begin{vmatrix} \operatorname{rows} j_1 \cdots j_m \text{ deleted} \\ \operatorname{columns} k_1 \cdots k_m \text{ deleted} \end{vmatrix}$$
(9)

where $\text{sgn}_{\{j\}}$ and $\text{sgn}_{\{k\}}$ are the signs of permutations that sort the deleted rows $j_1 \cdots j_m$ and columns $k_1 \cdots k_m$ into ascending order.

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

Following [Tarasov:1996,Fleischer:1999 [18, 19]]:

apply recurrence relations relating scalar integrals of different dimensions in order to get rid of the high dimensions.

$$\nu_{j}\mathbf{j}^{+}I_{n}^{(d+2)} = \frac{1}{()_{n}} \left[-\binom{j}{0}_{5} + \sum_{k=1}^{n} \binom{j}{k}_{n} \mathbf{k}^{-} \right] I_{n}^{d} \qquad (10)$$
$$(d - \sum_{i=1}^{n} \nu_{i} + 1)I_{n}^{(d+2)} = \frac{1}{()_{n}} \left[\binom{0}{0}_{n} - \sum_{k=1}^{n} \binom{0}{k}_{n} \mathbf{k}^{-} \right] I_{n}^{d}, \qquad (11)$$

where the operators $\mathbf{i}^{\pm}, \mathbf{j}^{\pm}, \mathbf{k}^{\pm}$ act by shifting the indices ν_i, ν_j, ν_k by ± 1 .

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

Alternative: Recursions for pentagons

Express any (5, R) pentagon by a (5, R - 1) pentagon plus (4, R - 1) boxes [Fleischer et al., Diakonidis:2010 [22]]

$$I_5^{\mu_1...\mu_{R-1}\mu} = I_5^{\mu_1...\mu_{R-1}} Q_0^{\mu} - \sum_{s=1}^5 I_4^{\mu_1...\mu_{R-1},s} Q_s^{\mu}$$
(12)

auxiliary vectors with inverse Gram determinants

$$Q_{s}^{\mu} = \sum_{i=1}^{5} q_{i}^{\mu} \frac{{s \choose i}_{5}}{()_{5}}, \quad s = 0, \dots, 5$$
 (13)

For e.g. R = 3, again $[1/()_5]^3$ will occur.

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	00000	000000000	00

Algebraic simplifications, 1st step

With the identity

$$\binom{0}{0}_{5}\binom{s}{i}_{5} = \binom{0s}{0i}_{5}()_{5} + \binom{0}{i}_{5}\binom{s}{0}_{5}$$
(14)

we eliminate the inverse Gram determinant from Q_s^{μ} :

$$\binom{0}{0}_{5}I_{5}^{\mu_{1}\dots\mu_{R-1}\mu} = \left[\binom{0}{0}_{5}I_{5}^{\mu_{1}\dots\mu_{R-1}} - \sum_{s=1}^{5}\binom{s}{0}_{5}I_{4}^{\mu_{1}\dots\mu_{R-1},s}\right]Q_{0}^{\mu} - \sum_{s=1}^{5}I_{4}^{\mu_{1}\dots\mu_{R-1},s}\overline{Q}_{s}^{\mu} \quad (15)$$

The auxiliary vectors are

$$Q_{0}^{\mu} = \sum_{i=1}^{5} q_{i}^{\mu} \frac{\binom{0}{i}_{5}}{()_{5}} \text{ and } \overline{Q}_{s}^{\mu} = \sum_{i=1}^{5} q_{i}^{\mu} \binom{0s}{0i}_{5}$$
(16)

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	00000	000000000	00

Start recursion analytically

Have to show for the product $T^{\mu_1...\mu_{R-1}} \times Q_0^{\mu}$ that the Gram determinant cancels.

$$T^{\mu_1\dots\mu_{R-1}} = \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}_5 l_5^{\mu_1\dots\mu_{R-1}} - \sum_{s=1}^5 \begin{pmatrix} s \\ 0 \end{pmatrix}_5 l_4^{\mu_1\dots\mu_{R-1},s} \end{bmatrix}$$
(17)

Vector is known:

$$I_{5}^{\mu} = \sum_{i=1}^{4} q_{i}^{\mu} E_{i}, \qquad (18)$$
$$E_{i} \equiv -I_{5,i}^{[d+]} = (d-4) \frac{\binom{0}{i}_{5}}{\binom{0}{0}_{5}} I_{5}^{[d+]} - \frac{1}{\binom{0}{0}_{5}} \sum_{s=1}^{5} \binom{0i}{0s}_{5} I_{4}^{s}, \quad (19)$$

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	00000	000000000	00

Examples for the use of signed minors

$$\binom{s}{0}_{5}\binom{0s}{is}_{5} = \binom{s}{i}_{5}\binom{0s}{0s}_{5} - \binom{s}{s}_{5}\binom{0s}{0i}_{5}$$
(20)

and

$$\binom{s}{0}_{5}\binom{ts}{is}_{5} = \binom{s}{i}_{5}\binom{ts}{0s}_{5} - \binom{s}{s}_{5}\binom{ts}{0i}_{5}.$$
(21)

Here the $\binom{s}{s}_5$ term cancels and the remaining factor $\binom{ts}{0i}_5$ is antisymmetric in *s*, *t*, yielding a vanishing contribution after summation over *s*, *t*. Result:

$$T^{\mu,s} = \sum_{i=1}^{4} q_i^{\mu} T_i^s, \qquad T_i^s = -\binom{s}{i}_5 l_4^{[d+],s}, \tag{22}$$

Introduction	Recursions	Simplifying recursions	Numbers 000000000	Summary

Higher order tensors I

It is crucial to get the $T_{ij...}^{s}$, i.e.

$$T^{\mu_1\mu_2\dots} = \sum_{i,j\dots=1}^{4} q_i^{\mu_1} q_j^{\mu_2} \cdots T^s_{ij\dots},$$
 (23)

We get for the higher tensors and find a pattern !

$$T_{ij}^{s} = {\binom{s}{j}}_{5} I_{4,j}^{[d+]^{2},s} + {\binom{s}{j}}_{5} I_{4,i}^{[d+]^{2},s}$$
(24)

With

$$T_5^{\mu \,\nu \,\lambda,s} = \sum_{i,j,k=1}^4 q_i^{\mu} q_j^{\nu} q_k^{\lambda} T_{ijk}^s + \sum_{i=1}^4 g^{[\mu \nu} q_i^{\lambda]} T_{00i}^s,$$
(25)

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	00000	000000000	00

Higher order tensors II

$$T_{00i}^{s} = \frac{1}{2} {\binom{s}{i}}_{5} I_{4}^{[d+]^{2},s}$$
(26)

$$T_{ijk}^{s} = -\left\{ \binom{s}{j} {}_{5} \nu_{jk} l_{4,jk}^{[d+]^{3},s} + \binom{s}{j} {}_{5} \nu_{ik} l_{4,ik}^{[d+]^{3},s} + \binom{s}{k} {}_{5} \nu_{ij} l_{4,ij}^{[d+]^{3},s} \right\}.$$
(27)

$$T_{5}^{\mu\nu\lambda\rho} = \sum_{i,j,k,l=1}^{4} q_{i}^{\mu} q_{j}^{\nu} q_{k}^{\lambda} q_{l}^{\rho} T_{ijkl} + \sum_{i,j=1}^{4} g^{[\mu\nu} q_{i}^{\lambda} q_{j}^{\rho]} T_{00ij} + g^{[\mu\nu} g^{\lambda\rho]} T_{0000},$$
(28)

$$T_{0000}^s = 0.$$
 (29)

$$T_{00ij}^{s} = -\frac{1}{2} \left\{ {\binom{s}{j}}_{5} l_{4,j}^{[d+]^{3},s} + {\binom{s}{j}}_{5} l_{4,i}^{[d+]^{3},s} \right\}$$
(30)

$$T_{ijkl}^{s} = {\binom{s}{j}}_{5} n_{jkl} I_{4,jkl}^{[d+]^{4},s} + {\binom{s}{j}}_{5} n_{ikl} I_{4,ikl}^{[d+]^{4},s} + {\binom{s}{k}}_{5} n_{ijl} I_{4,ijl}^{[d+]^{4},s} + {\binom{s}{j}}_{5} n_{ijk} I_{4,ijk}^{[d+]^{4},s}$$
(31)

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

Algebraic simplifications, 2nd step

The metric tensor

$$\binom{s}{i}_{5}\frac{\binom{0}{j}_{5}}{\binom{1}{5}}=-\binom{0i}{sj}_{5}+\binom{s}{0}_{5}\frac{\binom{j}{j}_{5}}{\binom{1}{5}},$$

J. Fleischer

$$g^{\mu\nu} = 2 \sum_{i,j=1}^{4} \frac{\binom{i}{j}_{5}}{\binom{i}{5}} q_{i}^{\mu} q_{j}^{\nu}$$
 (32)

$$I_{5}^{\mu\nu\lambda} = \sum_{i,j,k=1}^{4} q_{j}^{\mu} q_{j}^{\nu} q_{k}^{\lambda} E_{ijk} + \sum_{k=1}^{4} g^{[\mu\nu} q_{k}^{\lambda]} E_{00k}$$
(33)
$$E_{ijk} = -\frac{1}{\binom{0}{0}_{5}} \sum_{s=1}^{5} \left\{ \left[\binom{0j}{sk}_{5} I_{4,i}^{[d+]^{2},s} + (i \leftrightarrow j) \right] + \binom{0s}{0k}_{5} \nu_{ij} I_{4,ij}^{[d+]^{2},s} \right\}$$
(34)
$$(34)$$

$$E_{00j} = \frac{1}{\binom{0}{0}_5} \sum_{s=1}^5 \left[\frac{1}{2} \binom{0s}{0j}_5 l_4^{[d+],s} - \frac{d-1}{3} \binom{s}{j}_5 l_4^{[d+]^2,s} \right]$$
(35)

Tensor reduction

These presentations are evidently free of inverse G-dets.

Introduction	Recursions	Simplifying recursions	Numbers 000000000	Summary 00
Isolation of inverse sub-Gram det ^s () ₄ I		t ^s () ₄ I		

For scalar higher dimensional integrals

$$I_4^s, I_4^{[d+],s}, I_4^{[d+]^2,s}, \dots$$
 (36)

application of dimension-shifting recurrence relations produces powers of $1/{\binom{s}{s}}_{5}$ (see (11)):

Unwanted sub-Gram-determinants $\binom{s}{s}_{5}$.

We can, however, express in general:

$$I_{4}^{d,s} = \sum_{t=1}^{5} \frac{\binom{ts}{0s}_{5}}{\binom{0s}{0s}_{5}} I_{3}^{d,st}, \text{ for } \binom{s}{s}_{5} = 0$$
(37)

for any $d = [d+]^l$. Add corrections for small $\binom{s}{s}_5$!?

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	00000	000000000	00

Isolation of inverse sub-Gram det^s ()₄ II

Try to have inverse Gram determinants only in boxes $l_4^{[d+]'}$, and hold the l_3 , l_2 , l_1 free of them. Introduce:

$$Z_{4}^{d,s} = \sum_{t=1}^{5} \frac{\binom{ts}{0s}_{5}}{\binom{0s}{0s}_{5}} I_{3}^{d,st}, \quad Z_{4,i}^{(d),s} = \sum_{t=1,t\neq i}^{5} \frac{\binom{ts}{0s}_{5}}{\binom{0s}{0s}_{5}} I_{3,i}^{(d),st} + \frac{\binom{is}{0s}_{5}}{\binom{0s}{0s}_{5}} I_{4}^{(d),s} (38)$$

Special relation needed:

$$\binom{0s}{is}_{5}\binom{ts}{0s}_{5} - \binom{0s}{0s}_{5}\binom{ts}{is}_{5} = -\binom{s}{s}_{5}\binom{0st}{0si}_{5}.$$
 (39)

$$I_{4,i}^{[d+],s} = -\frac{\binom{0s}{is}_{5}}{\binom{0s}{0s}_{5}}\frac{[I_{4}^{s} - Z_{4}^{s}]}{\binom{s}{0s}_{5}} + \frac{1}{\binom{0s}{0s}_{5}}\sum_{t=1}^{5}\binom{0st}{0si}_{5}I_{3}^{st}$$
(40)

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

Reduction of higher tensors I

$$\nu_{ij}l_{4,ij}^{[d+]^2,s} = -\frac{\binom{0s}{is}_5}{\binom{s}{s}_5} \left[\binom{ld+l,s}{4,i} - Z_{4,i}^{[d+],s} \right] + \frac{1}{\binom{0s}{0sj}_5} \left[\binom{0si}{0sj}_5 l_4^{[d+],s} + \sum_{t=1,t\neq i}^5 \binom{0st}{0sj}_5 l_{3,i}^{[d+],st} \right], \tag{41}$$

$$\nu_{ij}\nu_{ijk}l_{4,ijk}^{[d+]^3,s} = -\frac{\binom{0s}{ks}_5}{\binom{0}{5}_5}\nu_{ij}\left[l_{4,ij}^{[d+]^2,s} - Z_{4,ij}^{[d+]^2,s}\right] + \frac{1}{\binom{0s}{0sk}_5}\left[\binom{0si}{6k}_5l_{4,j}^{[d+]^2,s} + \binom{0sj}{0sk}_5l_{4,i}^{[d+]^2,s} + \sum_{t=1,t\neq i,j}^5\binom{0st}{0sk}_5\nu_{ij}l_{3,ij}^{[d+]^2,st}\right] (42)$$

and

$$n_{ijkl}l_{4,ijkl}^{[d+]^{4},s} = -\frac{\binom{0s}{(s)}_{5}}{\binom{s}{s}_{5}}\nu_{ij}\nu_{ijk}\left[l_{4,ijk}^{[d+]^{3},s} - Z_{4,ijk}^{[d+]^{3},s}\right] + \frac{1}{\binom{0s}{0s}_{5}}\left[\binom{0sk}{0sl}_{5}\nu_{ij}l_{4,ij}^{[d+]^{3},s} + \binom{0si}{0sl}_{5}\nu_{jk}l_{4,ik}^{[d+]^{3},s} + \sum_{l=1,l\neq i,j,k}^{5}\binom{0sl}{0sl}_{5}\nu_{ij}\nu_{ijk}l_{3,ijk}^{[d+]^{3},sl}\right].$$
(43)

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	00 0000000	00

Reduction of higher tensors II

For the tensor coefficient of rank 2 we obtain

$$\frac{\binom{0}{0}}{\binom{0}{2}} \left[I_{4,i}^{[d+]} - Z_{4,i}^{[d+]} \right] = -(d-2) \left[\frac{\binom{0}{i}}{\binom{0}{0}} (d-1) I_{4}^{[d+]^{2}} - \frac{1}{\binom{0}{0}} \sum_{t=1}^{4} \binom{0t}{0i} I_{3}^{[d+],t} \right]$$
(44)

and from (41)

$$\nu_{ij}I_{4,ij}^{[d+]^2} = \frac{\binom{0}{i}\binom{0}{j}\binom{0}{0}}{\binom{0}{0}}(d-2)(d-1)I_4^{[d+]^2} + \frac{\binom{0}{0j}}{\binom{0}{0}}I_4^{[d+]} - \frac{\binom{0}{j}\binom{0}{j}\frac{d-2}{\binom{0}{0}}\sum_{t=1}^4\binom{0t}{0i}I_3^{[d+],t} + \frac{1}{\binom{0}{0}}\sum_{t=1}^4\binom{0t}{0j}I_{3,i}^{[d+],t}$$

$$(45)$$

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	00000000	00

Reduction of higher tensors III

Dropping the index s : $\binom{s}{s}_5 \to ()_4$ and $I_5^{[d+],s} \to I_4^{[d+]}$ A lengthy calculation yields

$$\frac{\binom{0}{0}}{0}\nu_{ij}\left[l_{4,ij}^{[d+]^2} - Z_{4,ij}^{[d+]^2}\right] = \frac{\binom{0}{i}}{\binom{0}{0}}\binom{0}{\binom{0}{0}}(d-1)d(d+1)l_4^{[d+]^3} + (d-1)\frac{1}{\binom{0}{0}}\binom{0i}{0j}l_4^{[d+]^2} - \frac{(d-1)d}{\binom{0}{0}}\binom{0}{\binom{0}{0}}\sum_{t=1}^d\binom{0t}{0}l_3^{[d+]^2,t} + \frac{d-1}{\binom{0}{0}}\sum_{t=1}^d\binom{0t}{0j}l_{3,i}^{[d+]^2,t}.$$
(46)

Inserting indexed Integrals ${\it I}_{4,j}^{[d+]^2}$ we finally have

$$\nu_{ij}\nu_{ijk}l_{4,ijk}^{[d+1]^3} = -\frac{\binom{0}{i}}{\binom{0}{0}}\frac{\binom{0}{j}}{\binom{0}{0}}\frac{\binom{0}{k}}{\binom{0}{0}}(d-1)d(d+1)l_4^{[d+1]^3} - \frac{\binom{0}{i}\binom{0}{0}\binom{0}{k} + \binom{0}{(0k)}\binom{0}{j} + \binom{0}{(0k)}\binom{0}{i}}{\binom{0}{0}^2}(d-1)l_4^{[d+1]^2} + \frac{\binom{0}{i}\binom{0}{j}\binom{0}{k}}{\binom{0}{0}}\frac{\binom{0}{i}}{\binom{0}{0}}\frac{d-1}{\binom{0}{i}}l_3^{\frac{1}{i}}(d-1)l_4^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}{\binom{0}{i}}\frac{d-1}{\binom{0}{i}}l_3^{\frac{1}{i}}(d-1)l_4^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}{\binom{0}{i}}\frac{d-1}{\binom{0}{i}}l_3^{\frac{1}{i}}(d-1)l_4^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}{\binom{0}{i}}\frac{d-1}{\binom{0}{i}}l_3^{\frac{1}{i}}(d-1)l_4^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}{\binom{0}{i}}l_3^{\frac{1}{i}}(d-1)l_4^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}{\binom{0}{i}}l_3^{\frac{1}{i}}(d-1)l_4^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}{\binom{0}{i}}l_3^{\frac{1}{i}}(d-1)l_4^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}{\binom{0}{i}}l_3^{\frac{1}{i}}(d-1)l_4^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}{\binom{0}{i}}l_3^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}l_3^{\frac{1}{i}}(d-1)l_4^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}{\binom{0}{i}}l_3^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}}l_3^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}\binom{0}{i}}l_3^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}\binom{0}{i}}l_3^{\frac{1}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}\binom{0}{i}}l_3^{\frac{0}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}\binom{0}{i}}l_3^{\frac{0}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}\binom{0}{i}}l_3^{\frac{0}{i}\binom{0}{i}}l_3^{\frac{0}{i}} + \frac{\binom{0}{i}\binom{0}{i}\binom{0}{i}\binom{0}{i}\binom{0}{i}\binom{0}{i}\binom{0}{i}}l_3^{\frac{0}{i}\binom{0}{$$

Introduction	Recursions	Simplifying recursions	Numbers ••••••••••••••••••••••••••••••••••••	Summary
Reduction of hic	her tensors IV			

We find again a pattern !:

How can we get 47?

Replace in 45 $d \rightarrow d + 2$ and multiply with $-(d-1)\frac{\binom{0}{k}}{\binom{0}{k}}$

Factors (d + i) increase by steps of 1

Then add the second part of (42).

Applying this pattern we get the next higher tensor coefficient:

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	00000000	00

Corrections for small Gram determinants I

$$Z_4^{[d+]'} = \frac{1}{\binom{0}{0}} \sum_{t=1}^4 \binom{t}{0} I_3^{[d+]',t}.$$
(49)

Recursion and 1 Iteration:

$$I_{4}^{[d+]^{l}} = Z_{4}^{[d+]^{l}} + \frac{()}{\binom{0}{0}} \left[(2l+1) - 2\varepsilon \right] I_{4}^{[d+]^{l+1}}$$

$$= Z_{4}^{[d+]^{l}} + \frac{()}{\binom{0}{0}} \left[(2l+1) - 2\varepsilon \right] \left\{ Z_{4}^{[d+]^{l+1}} + \frac{()}{\binom{0}{0}} \left[(2l+3) - 2\varepsilon \right] I_{4}^{[d+]^{(l+2)}} \right\}$$
(50)
(51)

 $I_4^{[d+]'} = F_4^{[d+]'} + D_4^{[d+]'} \frac{1}{\varepsilon}$ and Z4d' = finite part of $Z_4^{[d+]'}$

J. Fleischer

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	00000000	00

Corrections for small Gram determinants II

$$F_4^{[d+]'} = Z4d' + \frac{\binom{0}{0}}{\binom{0}{0}} \left[(2l+1)F_4^{[d+]^{(l+1)}} - 2D_4^{[d+]^{(l+1)}} \right].$$
(52)

$$\delta Z4d_i^{l} = \frac{\binom{0}{0}}{\binom{0}{0}} \left[(2l+1)Z4d_i^{(l+1)} - 2 D_4^{[d+]^{(l+1)}} \right] \quad i = 0, 1, 2 \cdots (53)$$

$$Z4d'_i = Z4d' + \delta Z4d'_{(i-1)}, \quad i = 1, 2, \cdots$$
 (54)

Start: $F_4^{[d+]^{(l+1)}} = Z4d_0^{(l+1)} = Z4d_{|(l)_4=0}^l$ $l = 1, \dots, l_{max} + 1.$

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	00000000	00

Corrections for small Gram determinants III

Technical detail: iteration also for the divergent part

$$DivZ4d_0^{\prime} = \frac{1}{\binom{0}{0}} \sum_{t=1}^{4} {\binom{t}{0}} D_3^{[d+]^{\prime}}(t); \quad l = 1, \dots, l_{max} + 1$$
 (55)

$$\delta DivZ4d_0^{\prime} = \frac{()}{\binom{0}{0}}(2l+1)DivZ4d_0^{\prime+1}; \ l = 3, \dots, l_{max}$$
 (56)

and

$$DivZ4d_{(i+1)}^{(l-i)} = DivZ4d_{(i)}^{(l-i)} + \delta DivZ4d_{i}^{l}$$

$$\delta DivZ4d_{(i+1)}^{l} = \frac{()}{\binom{0}{0}} 2(l-i)DivZ4d_{(i+1)}^{(l-i)}; \quad (57)$$

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

Corrections for small Gram determinants IV

"Solving" (53) and (54) :

$$Z4d_{i}^{L} = \sum_{j=0}^{i-1} c(j)r^{j}Z4d^{(L+j)} - 2\sum_{j=0}^{i-1} c(j)r^{j+1}D_{4}^{[d+]^{(L+j+1)}} + c(i)r^{i}Z4d_{0}^{(L+i)},$$
(58)

where
$$r = \frac{\binom{0}{0}}{\binom{0}{0}}$$
 and $c(j) = 2^{j} \frac{\Gamma(L+j+\frac{1}{2})}{\Gamma(L+\frac{1}{2})}$.
 $i \to \infty$ and assuming convergence:

$$I_{4}^{[d+]^{L}} = \sum_{j=0}^{\infty} c(j) r^{j} Z 4 d^{(L+j)} - 2 \sum_{j=0}^{\infty} c(j) r^{j+1} D_{4}^{[d+]^{(L+j+1)}}.$$
 (59)

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

Padé approximants

Padé approximants in terms of the ε -algorithm: 1st column is zero, 2^{nd} : sequence $S^i = Z4d_i^L$

$$\varepsilon_{-1}^{(i)} = 0, \tag{60}$$

$$\varepsilon_0^{(i)} = Z4d_i^L, i = 0, \cdots, I_{\max} - L, \tag{61}$$

$$\varepsilon_{k+1}^{(i)} = \varepsilon_{k-1}^{(i+1)} + \frac{1}{\varepsilon_k^{(i+1)} - \varepsilon_k^{(i)}}$$
(62)

Tensor reduction

 ε -table and the Padé table are related:

J. Fleischer

$$\varepsilon_{2k}^{(i)} = [k+i/k], \tag{63}$$

ETC, Trento, Sep. 28, 2010

$$Z4d_{l_{\max}-L}^{L} = \varepsilon_{2k}^{(0)} \equiv [k/k]_{Z4d^{L}}, \quad k = l_{\max} - L \quad (64)$$

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	000000000	00

An example: D_{111} , following A. Denner

A.Denner, plenary talk DESY Theory Workshop 2009, p.69 (backup transparency)

ntroduction	Recursions	Simplifying recur	sions NL oc	umbers Doo€ooooo	Summary 00
	×	Re Duu	α		
	0. [exp 0.0]	2.05969289730 E-10	1.55594910118 E-10		
	10 ⁻⁸ [exp x.2]	2.05969289342 E-10	1.55594909187 E-10		
	[exp 0,2]	2.05969289349 E-10	1.55594909187 E-10		
	10 ⁻⁴ [exp x,5]	2.05965609497 E-10	1.55585605343 E-10		
	[exp 0,5]	2.05965609495 E-10	1.55585605343 E-10		
	0.001 [exp 0,6] [exp x,6]	2.05932484380 E-10 2.05932484381 E-10	1.55501912433 E-10 1.55501912433 E-10		
	$I_{4,2222}^{[d+]^4}$	2.02292295240 E-10	1.54974785467 E-10		
	D ₁₁₁₁	2.01707671668 E-10	1.62587142251 E-10		
	0.005 [exp 0,6]	2.05786054801 E-10	1.55131031024 E-10	5	
	[pade 0,3]	2.05785198947 E-10	1.55131031003 E-10		
	[exp x,6]	2.05786364440 E-10	1.55131031024 E-10		
	[pade x,3]	2.05785199805 E-10	1.55131030706 E-10		
	$I_{4,2222}^{[d+]^4}$	2.05778894114 E-10	1.55135794453 E-10		
	D ₁₁₁₁	2.05779811490 E-10	1.55136343923 E-10		
	0.01 [exp 0,6]	2.05703298143 E-10	1.54669910676 E-10		
	[pade 0,3]	2.05600940065 E-10	1.54669907784 E-10		
	[exp 0,10]	2.05600964693 E-10	1.54669910676 E-10		
	[pade 0,5]	2.05600955381 E-10	1. 54669910676E-10		
	[exp x,10]	2.05600963675 E-10	1.54669910676 E-10		
	[pade x,5]	2.05600955381 E-10	1.54669910676 E-10		
	$I_{4,2222}^{[d+]^4}$	2.05600013702 E-10	1.54670651917 E-10		
	Ď ₁₁₁₁	2.05600239280 E-10	1.54670771210 E-10		

Table: Numerical values for the tensor coefficient D_{1111} . Values marked by D_{1111} are evaluated with LoopTools, the $I_{4,2222}^{[d+1]^4}$ corresponds to (48) The labels [exp 0,2n] and [pade 0,n] denote iteration 2n and Pade approximant [n, n] when the small Gram determinant expansion starts at x = 0, and [exp x,2n] and [pade x,n] are the corresponding numbers for an expansion starting at x.

Introduction	Recursions	Simplifying recur	sions N	umbers ooooeoooo	Summary 00
	X	Re D ₁₁₁₁	Im D ₁₁₁₁		
	0.01 [exp 0,6]	2.05703298143 E-10	1.54669910676 E-10)	
	[pade 0,3]	2.05600940065 E-10	1.54669907784 E-10)	
	[exp 0,10]	2.05600964693 E-10	1.54669910676 E-10)	
	[pade 0,5]	2.05600955381 E-10	1.54669910676E-10)	
	[exp x,10]	2.05600963675 E-10	1.54669910676 E-10)	
	[pade x,5]	2.05600955381 E-10	1.54669910676 E-10)	
	$I_{4,2222}^{[d+]^4}$	2.05600013702 E-10	1.54670651917 E-10)	
	D ₁₁₁₁	2.05600239280 E-10	1.54670771210 E-10)	
	0.05 [exp 0,6]	4.83822963052 E-09	1.51077429118 E-10)	
	[pade 0,3]	2.01518061131 E-10	1.50591643209 E-10)	
	[exp 0,20]	2.04218962072 E-10	1.51077424143 E-10)	
	[pade 0,10]	2.04122727654 E-10	1.51077424149 E-10)	
	[exp x,20]	2.04190274030 E-10	1.51077424143 E-10)	
	[pade x,10]	2.04122727971 E-10	1.51077423985 E-10)	
	$I_{4,2222}^{[d+]^4}$	2.04122726387 E-10	1.51077422901 E-10)	
	D ₁₁₁₁	2.04122726601 E-10	1.51077423320 E-10)	
	0.1 [exp 0,26]	2.20215264409 E-08	1.46815247004 E-10)	
	[pade 0,13]	2.01749674352 E-10	1.46681287362 E-10)	
	[exp x,26]	2.08190721550 E-08	1.46815247004 E-10)	
	[pade x,13]	2.03995221326 E-10	1.46785977364 E-10)	
	$I_{4,2222}^{[d+]^4}$	2.02269485177 E-10	1.46815247061 E-10)	
	Ď ₁₁₁₁	2.02269485217 E-10	1.46815247051 E-10)	
	1. $I_{4,2222}^{[d+]^4}$	1.72115440143 E-10	9.74550747662 E-11		
	Ď ₁₁₁₁	1.72115440148 E-10	9.74550747662 E-11		

Table: Numerical values for the tensor coefficient D_{1111} . Values marked by D_{1111} are evaluated with LoopTools, the $I_{a,2222}^{[d+1]^4}$ corresponds to (48) The labels [exp 0,2n] and [pade 0,n] denote iteration 2n and Pade approximant [n, n] when the small Gram determinant expansion starts at x = 0, and [exp x,2n] and [pade x,n] are the corresponding numbers for an expansion starting at x.

J. Fleischer

Tensor reduction

oduction	Recursions	Simplifying recurs	sions Numb	ers 00●000	Summary 00
		B c D	ά τ D	1	
	0 [exp 0.0]	-3.15407250453 E-10	-3.31837792634 E-10	1	
	10 ⁻⁸ [exp x.1]	-3.15407250057 E-10	-3.31837790700 E-10		
	[exp 0,1]	-3.15407250057 E-10	-3.31837790700 E-10		
	10 ⁻⁴ [exp x,4]	-3.15403282194 E-10	-3.31818461838 E-10	1	
	[exp 0,4]	-3.15403282194 E-10	-3.31818461838 E-10		
	0.001 [exp x,6]	-3.15367545429 E-10	-3.31644587150 E-10		
	[exp 0,6]	-3.15367545429 E-10	-3.31644587150 E-10	_	
	$I_{A 222}^{[d+]^3}$	-3.15372092999 E-10	-3.31645245644 E-10		
	D ₁₁₁	-3.15372823537 E-10	-3.31635736868 E-10		
	0.005 [exp x,6]	-3.15208222856 E-10	-3.30874035862 E-10	1	
	[pade x,3]	-3.15208230282 E-10	-3.30874035931 E-10		
	[exp 0,6]	-3.15208224867 E-10	-3.30874035862 E-10	-	
	[pade 0,3]	-3.15208230411 E-10	-3.30874035867 E-10		
	$l_{4,222}^{[d+]^3}$	-3.15208269791 E-10	-3.30874006110 E-10		
	D ₁₁₁	-3.15208264077 E-10	-3.30874002667 E-10		
	0.01 [exp 0,6]	-3.15006665284 E-10	-3.29915926110 E-10	1	
	[pade 0,3]	-3.15007977830 E-10	-3.29915888075 E-10		
	[exp 0,10]	-3.15007991203 E-10	-3.29915926110 E-10		
	[pade 0,5]	-3.15007991324 E-10	-3.29915926110 E-10		
	[exp x,10]	-3.15007991217 E-10	-3.29915926110 E-10	1	
	[pade x,5]	-3.15007991324 E-10	-3.29915936110 E-10		
	$I_{4,222}^{[d+]^3}$	-3.15008000292 E-10	-3.29915916848 E-10		
	Ď ₁₁₁	-3.15008000292 E-10	-3.29915915368 E-10	J	

Table: Numerical values for the tensor coefficient D_{111} . Values marked by D_{111} are evaluated with LoopTools, the $I_{4,222}^{(d+1)^3}$, defined in (47). The labels [exp 0,2n] and [pade 0,n] denote iteration 2*n* and Pade approximant [*n*, *n*] when the small Gram determinant expansion starts at x = 0, and [exp x,2n] and [pade x,n] are the corresponding numbers for an expansion starting at *x*.

Intr

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	troduction	Recursions	Simplifying recur	sions Numb	ers ⊃oo●oo	Summary
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		X	Re D ₁₁₁	Im D ₁₁₁		
$ \begin{bmatrix} \text{pade 0,3} \\ \text{[exp 0,10]} \\ \text{[exp 0,10]} \\ -3.15007991203 E-10 \\ -3.29915926110 E-10 \\ \text{[pade 0,5]} \\ -3.15007991203 E-10 \\ -3.29915926110 E-10 \\ \text{[pade x,5]} \\ -3.15007991217 E-10 \\ -3.29915926110 E-10 \\ \text{[pade x,5]} \\ -3.15007991324 E-10 \\ -3.29915926110 E-10 \\ -3.29915926110 E-10 \\ -3.29915926110 E-10 \\ -3.29915915368 E-10 \\ 0.05 [exp 0,6] \\ -1.34278470211 E-11 \\ -3.22448580722 E-10 \\ \text{[pade 0,6]} \\ -3.13361302214 E-10 \\ -3.22848581032 E-10 \\ -3.22448581032 E-10 \\ \text{[pade 0,10]} \\ -3.1336567500 E-10 \\ -3.22448581032 E-10 \\ \text{[pade x,10]} \\ -3.13365674956 E-10 \\ -3.22448581051 E-10 \\ -3.22448581051 E-10 \\ -3.1336567507 0 E-10 \\ -3.22448581051 E-10 \\ -3.22448581051 E-10 \\ -3.1336567507 0 E-10 \\ -3.22448581051 E-10 \\ -3.1336567507 0 E-10 \\ -3.22448581051 E-10 \\ -3.1336567507 0 E-10 \\ -3.22448581032 E-10 \\ -3.1336567507 0 E-10 \\ -3.22448581051 E-10 \\ -3.1336567507 0 E-10 \\ -3.22448581051 E-10 \\ -3.13582331984 E-10 \\ -3.13582331984 E-10 \\ -3.13582331984 E-10 \\ -3.135823319836 E-10 \\ -3.13582331987 E-10 \\ -3.13582331987 E-10 \\ -3.13582331977 E-10 \\ -3.13582331977 E-10 \\ -3.11226750699 E-10 \\ -3.13582331977 E-10 \\ -3.13582331978 E-10 \\ -3.11226750699 E-10 \\ -3.13582331978 E-10 \\ -3.1358231978 E-10 \\ -3.13$		0.01 [exp 0,6]	-3.15006665284 E-10	-3.29915926110 E-10		
$ \begin{bmatrix} \exp 0, 10 \\ pade 0,5 \\ -3.1500799124 E-10 \\ -3.29915926110 E-10 \\ -3.29915926110 E-10 \\ -3.29915926110 E-10 \\ -3.29915936110 E-10 \\ -3.29915936110 E-10 \\ -3.29915916848 E-10 \\ -3.29915916848 E-10 \\ -3.29915916848 E-10 \\ -3.29915916848 E-10 \\ -3.29915915868 E-10 \\ 0.05 [exp 0,6] \\ -1.34278470211 E-11 \\ -3.22448580722 E-10 \\ [pade 0,3] \\ -3.1336567501 E-10 \\ -3.22448581032 E-10 \\ [pade 0,10] \\ -3.1336567501 E-10 \\ -3.22448581032 E-10 \\ -3.22448581032 E-10 \\ [pade x,10] \\ -3.1336567504 E-10 \\ -3.22448581032 E-10 \\ [pade x,10] \\ -3.1336567508 E-10 \\ -3.22448581032 E-10 \\ -3.1336567508 E-10 \\ -3.22448581032 E-10 \\ -3.22448581032 E-10 \\ -3.1336567507 E-10 \\ -3.22448581032 E-10 \\ -3.1336567508 E-10 \\ -3.22448581084 E-10 \\ -3.1336567508 E-10 \\ -3.22448581084 E-10 \\ -3.13582331984 E-10 \\ -3.135823319836 E-10 \\ -3.135823319836 E-10 \\ -3.135823319836 E-10 \\ -3.135823319836 E-10 \\ -3.13582331983 E-10 \\ -3.13682331983 E-10 \\ -3.13682331983 E-10 \\ -3.13682331983 E-10 \\ -3.13582331983 E-10 \\ -3.1358233197 E-10 \\ -3.135823197 E-10 \\ -$		[pade 0,3]	-3.1500/9//830 E-10	-3.29915888075 E-10		
$ \begin{bmatrix} \text{pade } 0,5 \\ [\text{exp } x,10 \\ [\text{exp } x,10 \\] \\ \text{pade } x,5 \\ \frac{ d^{-+} ^3}{4,22} \\ \frac{ d^{-+} ^3}{4,222} \\ \frac{ d^{-+} ^3}{4,1126750695} \\ \frac{ d^{-+} ^3}{4,222} \\ \frac{ d^{-+} ^3}{4,222} \\ \frac{ d^{-+} ^3}{4,1126750695} \\ \frac{ d^{-+} ^3}{4,222} \\ \frac{ d^{-+} ^3}{4,222} \\ \frac{ d^{-+} ^3}{4,222} \\ \frac{ d^{-+} ^3}{4,222} \\ \frac{ d^{-+} ^3}{4,1126750695} \\ \frac{ d^{-+} ^3}{4,222} \\ \frac{ d^{-+} ^3}{4,22} \\ \frac{ d^{-+} ^3}{4,22} \\ \frac{ d^{-+} ^3}{4,22} \\ d^{-+$		[exp 0,10]	-3.15007991203 E-10	-3.29915926110 E-10		
$ \begin{bmatrix} \exp x, 10 \\ pade x, 5 \\ -3.1500799124 E-10 \\ -3.29915926110 E-10 \\ -3.29915936110 E-10 \\ -3.29915936110 E-10 \\ -3.29915915368 E-10 \\ -3.15008000292 E-10 \\ -3.29915915368 E-10 \\ -3.29248580722 E-10 \\ -3.22448581032 E-10 \\ -3.133254767 E-10 \\ -3.22448581032 E-10 \\ -3.13365675001 E-10 \\ -3.22448581051 E-10 \\ -3.22448581051 E-10 \\ -3.13365675070 E-10 \\ -3.22448581051 E-10 \\ -3.22448581051 E-10 \\ -3.1336567507 E-10 \\ -3.22448581051 E-10 \\ -3.22448581051 E-10 \\ -3.1336567507 E-10 \\ -3.22448581032 E-10 \\ -3.1336567507 E-10 \\ -3.22448581032 E-10 \\ -3.1336567507 E-10 \\ -3.22448581034 E-10 \\ -3.22448581051 E-10 \\ -3.13582331984 E-10 \\ -3.13582331984 E-10 \\ -3.135823319836 E-10 \\ -3.135823319836 E-10 \\ -3.1358233197 E-10 \\ -3.1358231978 E-10 \\ -3.1358231978 E-10 \\ -3.1358231978 E-10 \\ -3.1358231978 E-10 \\ -2.10251973821 E-10 \\ -2.1025$		[pade 0,5]	-3.1500/991324 E-10	-3.29915926110 E-10		
$ \begin{bmatrix} \text{pade x, 5} \\ l_{4,222}^{(d+1)^3} \\ -3.15008000292 \text{ E} \cdot 10 \\ -3.299159136848 \text{ E} \cdot 10 \\ -3.29915915868 \text{ E} \cdot 10 \\ -3.22848580722 \text{ E} \cdot 10 \\ \text{[pade 0,3]} \\ -3.13359445767 \text{ E} \cdot 10 \\ -3.22488580722 \text{ E} \cdot 10 \\ \text{[pade 0,10]} \\ -3.1335657501 \text{ E} \cdot 10 \\ -3.22448581032 \text{ E} \cdot 10 \\ \text{[pade x, 20]} \\ -3.1336567501 \text{ E} \cdot 10 \\ -3.22448581032 \text{ E} \cdot 10 \\ \text{[pade x, 10]} \\ -3.1336567501 \text{ E} \cdot 10 \\ -3.22448581032 \text{ E} \cdot 10 \\ \text{[pade x, 10]} \\ -3.1336567504 \text{ E} \cdot 10 \\ -3.22448581032 \text{ E} \cdot 10 \\ -3.22448581032 \text{ E} \cdot 10 \\ -3.13365675084 \text{ E} \cdot 10 \\ -3.22448581084 \text{ E} \cdot 10 \\ -3.13365675084 \text{ E} \cdot 10 \\ -3.22448581110 \text{ E} \cdot 10 \\ -3.13565675084 \text{ E} \cdot 10 \\ -3.13582331984 \text{ E} \cdot 10 \\ 0.1 [\text{exp 0,26]} \\ -2.49466252165 \text{ E} \cdot 0 \\ -3.135823319836 \text{ E} \cdot 10 \\ \text{[pade 0,13]} \\ -3.11144777695 \text{ E} \cdot 10 \\ -3.135823319836 \text{ E} \cdot 10 \\ -3.135823319836 \text{ E} \cdot 10 \\ -3.135823319836 \text{ E} \cdot 10 \\ -3.13582331977 \text{ E} \cdot 10 \\ -3.10806582023 \text{ E} \cdot 10 \\ -3.13582331977 \text{ E} \cdot 10 \\ -3.11226750699 \text{ E} \cdot 10 \\ -3.13582331978 \text{ E} \cdot 10 \\ 1. \frac{l_{4,222}}{l_{4,222}} \\ -2.70193791372 \text{ E} \cdot 10 \\ -2.10251973821 \text{ E} \cdot 10 \\ -2.$		[exp x,10]	-3.15007991217 E-10	-3.29915926110 E-10		
$ \begin{vmatrix} l^{d+1^3}_{d,222} & -3.15008000292 \text{ E-10} & -3.29915916848 \text{ E-10} \\ \hline D_{111} & -3.15008000292 \text{ E-10} & -3.29915915368 \text{ E-10} \\ \hline 0.05 [exp 0.6] & -1.34278470211 \text{ E-11} & -3.22448580722 \text{ E-10} \\ \hline [pade 0.3] & -3.1332516570 \text{ E-10} & -3.22580791799 \text{ E-10} \\ \hline [exp 0.20] & -3.13359445767 \text{ E-10} & -3.22448581032 \text{ E-10} \\ \hline [pade 0.10] & -3.13365675001 \text{ E-10} & -3.22448581032 \text{ E-10} \\ \hline [pade 0.10] & -3.13365675001 \text{ E-10} & -3.22448581032 \text{ E-10} \\ \hline [pade 0.10] & -3.13365675084 \text{ E-10} & -3.22448581032 \text{ E-10} \\ \hline [pade 0.1] & -3.13365675084 \text{ E-10} & -3.22448581051 \text{ E-10} \\ \hline D_{111} & -3.13365675070 \text{ E-10} & -3.22448581084 \text{ E-10} \\ \hline 0.1 [exp 0.26] & -2.49466252165 \text{ E-09} & -3.135823319836 \text{ E-10} \\ \hline [pade 0.1] & -3.11144777695 \text{ E-10} & -3.135823319836 \text{ E-10} \\ \hline [pade 0.1] & -3.11226750699 \text{ E-10} & -3.135823319836 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791372 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} & -2.10251973821 \text{ E-10} \\ \hline 1. l^{[d+1]^3}_{4,222} & -2.70193791373 \text{ E-10} &$		[pade x,5]	-3.15007991324 E-10	-3.29915936110 E-10		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$I_{4,222}^{[d+]^3}$	-3.15008000292 E-10	-3.29915916848 E-10		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ď ₁₁₁	-3.15008000292 E-10	-3.29915915368 E-10		
$ \begin{bmatrix} [pade 0, 3] \\ [exp 0, 20] \\ [exp 0, 20] \\ -3.13359445767 E-10 \\ -3.22448581032 E-10 \\ -3.13365675001 E-10 \\ -3.22448581032 E-10 \\ [exp x, 20] \\ -3.13365675001 E-10 \\ -3.22448581032 E-10 \\ -3.22448581032 E-10 \\ -3.22448581032 E-10 \\ -3.22448581051 E-10 \\ -3.22448581084 E-10 \\ 0.1 [exp 0, 26] \\ -2.49466252165 E-09 \\ -3.13562331984 E-10 \\ [pade 0, 13] \\ -3.11144777695 E-10 \\ -3.135823319836 E-10 \\ [pade x, 13] \\ -3.10806582023 E-10 \\ -3.135823319836 E-10 \\ -3.1358233197 E-10 \\ -3.11226750699 E-10 \\ -3.13582331978 E-10 \\ 1. \frac{ d^{-+ }^3}{4,222} \\ -2.70193791372 E-10 \\ -2.10251973821 E-10 \\ -2.10251973$		0.05 [exp 0,6]	-1.34278470211 E-11	-3.22448580722 E-10		
$ \begin{bmatrix} \exp 0.20 \\ -3.13359445767 E-10 \\ -3.22448581032 E-10 \\ -3.22448581032 E-10 \\ -3.13365675001 E-10 \\ -3.22448581032 E-10 \\ -3.133656750214 E-10 \\ -3.22448581032 E-10 \\ -3.13365675056 E-10 \\ -3.22448581051 E-10 \\ -3.22448581051 E-10 \\ -3.22448581051 E-10 \\ -3.22448581051 E-10 \\ -3.22448581084 E-10 \\ -3.22448581084 E-10 \\ -3.13365675070 E-10 \\ -3.22448581084 E-10 \\ -3.13582331984 E-10 \\ -3.13582331984 E-10 \\ -3.13582331984 E-10 \\ -3.13582331984 E-10 \\ -3.135823319836 E-10 \\ -3.135823319836 E-10 \\ -3.135823319836 E-10 \\ -3.135823319836 E-10 \\ -3.1358233197 E-10 \\ -3.11226750699 E-10 \\ -3.13582331977 E-10 \\ -3.13582331978 E-10 \\ -3.13582331978 E-10 \\ -2.10251973821 E-10 \\ -2.1$		[pade 0,3]	-3.13432516570 E-10	-3.22580791799 E-10		
$ \begin{bmatrix} [pade 0, 10] \\ [exp x, 20] \\ -3.13365675001 E-10 \\ -3.22448581032 E-10 \\ -3.22448581032 E-10 \\ -3.13365675084 E-10 \\ -3.13365675084 E-10 \\ -3.13365675070 E-10 \\ -3.22448581084 E-10 \\ 0.1 [exp 0,26] \\ -2.49466252165 E-09 \\ -3.13582331984 E-10 \\ [pade 0,13] \\ -3.11144777695 E-10 \\ -3.13589283949 E-10 \\ [exp x,26] \\ -2.34010823441 E-09 \\ -3.13582319836 E-10 \\ -3.13582319836 E-10 \\ -3.13582319836 E-10 \\ -3.1358233197 E-10 \\ -3.13582331977 E-10 \\ -3.1326750695 E-10 \\ -3.13582331978 E-10 \\ -3.13582331978 E-10 \\ -3.11226750695 E-10 \\ -3.13582331978 E-10 \\ -3.1358231978 E-10 \\ -3.11226750695 E-10 \\ -3.1358231978 E-10 \\ -3.13582319978 E-10 \\ -3.1358231997 $		[exp 0,20]	-3.13359445767 E-10	-3.22448581032 E-10		
$ \begin{bmatrix} \exp x, 20 \\ [pade x, 10] \\ -3.13361302214 E+10 \\ -3.22448581032 E+10 \\ -3.22448581051 E+10 \\ -3.22448581051 E+10 \\ -3.22448581151 E+10 \\ -3.22448581110 E+10 \\ -3.224485811084 E+10 \\ -3.22448581084 E+10 \\ -3.1356675070 E+10 \\ -3.22448581084 E+10 \\ -3.13582331984 E+10 \\ [pade 0, 13] \\ -3.11144777695 E+10 \\ -3.135823319836 E+10 \\ [pade x, 13] \\ -3.10806582023 E+10 \\ -3.135823319836 E+10 \\ -3.135823319836 E+10 \\ -3.135823319836 E+10 \\ -3.135823319836 E+10 \\ -3.1358233197 E+10 \\ -3.1226750699 E+10 \\ -3.1358233197 E+10 \\ -3.1358233197 E+10 \\ -3.11226750699 E+10 \\ -3.1358233197 E+10 \\ -3.1358233197 E+10 \\ -3.1226750699 E+10 \\ -3.1358233197 E+10 \\ -2.10251973821 E+10 \\ -2.102519$		[pade 0,10]	-3.13365675001 E-10	-3.22448581024 E-10		
$ \begin{bmatrix} [pade x, 10] \\ l_{4,222}^{[d-1]3} \\ -3.13365675084 E-10 \\ -3.22448581051 E-10 \\ -3.22448581084 E-10 \\ -3.13582331984 E-10 \\ -3.13582331984 E-10 \\ -3.13582331984 E-10 \\ -3.135823319836 E-10 \\ -3.135823319836 E-10 \\ -3.13582331987 E-10 \\ -3.13582331977 E-10 \\ -3.11226750695 E-10 \\ -3.13582331977 E-10 \\ -3.13582331978 E-10 \\ -3.1358231978 E-10 \\ -3.1358231978 E-10 \\ -3.1358231978 E-10 \\ -3.1$		[exp x,20]	-3.13361302214 E-10	-3.22448581032 E-10		
$ \begin{bmatrix} d^{+} ^{3} \\ 4,222 \\ -3.13365675084 E-10 \\ -3.22448581110 E-10 \\ -3.22448581084 E-10 \\ -3.22448581084 E-10 \\ -3.22448581084 E-10 \\ -3.22448581084 E-10 \\ -3.1359283349 E-10 \\ -3.13599283949 E-10 \\ -3.13599283949 E-10 \\ -3.13599283949 E-10 \\ -3.13599283949 E-10 \\ -3.135823319836 E-10 \\ -3.13582331977 E-10 \\ -3.11226750699 E-10 \\ -3.13582331977 E-10 \\ -3.13582331978 E-10 \\ -2.10251973821 E-10 \\ -2.1025197382$		[pade x,10]	-3.13365674956 E-10	-3.22448581051 E-10		
$ \begin{array}{ c c c c c c c } \hline D_{111} & -3.13365675070 \ E-10 & -3.22448581084 \ E-10 \\ \hline 0.11 \ [exp \ 0.26] & -2.49466252165 \ E-09 & -3.13582331984 \ E-10 \\ \hline [pade \ 0.13] & -3.11144777695 \ E-10 & -3.135823319836 \ E-10 \\ \hline [pade \ x, 26] & -2.34010823441 \ E-09 & -3.135823319836 \ E-10 \\ \hline [pade \ x, 13] & -3.10806582023 \ E-10 & -3.135870111996 \ E-10 \\ \hline 1.4_{4,222}^{1/d+13} & -3.11226750699 \ E-10 & -3.13582331977 \ E-10 \\ \hline 1.4_{4,222}^{1/d+13} & -2.70193791372 \ E-10 & -2.10251973821 \ E-10 \\ \hline 1.4_{4,222}^{1/d+13} & -2.70193791373 \ E-10 & -2.10251973821 \ E-10 \\ \hline \end{array} $		$I_{4,222}^{[d+]^3}$	-3.13365675084 E-10	-3.22448581110 E-10		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D ₁₁₁	-3.13365675070 E-10	-3.22448581084 E-10		
$ \begin{bmatrix} [pade 0, 13] \\ (exp x, 26] \\ -2.34010823441 E-09 \\ -3.135823319836 E-10 \\ -3.135820111996 E-10 \\ -3.135870111996 E-10 \\ -3.1326652023 E-10 \\ -3.135870111996 E-10 \\ -3.13582331977 E-10 \\ -3.11226750699 E-10 \\ -3.13582331978 E-10 \\ -3.13582331978 E-10 \\ 1. \frac{ d^{-+} ^3}{4,222} \\ -2.70193791372 E-10 \\ -2.10251973821 E-10 \\ -2.$		0.1 [exp 0,26]	-2.49466252165 E-09	-3.13582331984 E-10		
$ \begin{bmatrix} \exp x, 26 \\ pade x, 13 \end{bmatrix} = -2.34010823441 E-09 = -3.135823319836 E-10 \\ -3.10806582023 E-10 = -3.135870111996 E-10 \\ -3.10806582023 E-10 = -3.135870111996 E-10 \\ -3.13582331977 E-10 \\ -3.13582331977 E-10 \\ -3.13582331978 E-10 \\ -2.10251973821 E-10 \\ -2.10251973821 E-10 \\ -2.10251973821 E-10 \\ -3.10251973821 E-10 \\ -3.10251973$		[pade 0,13]	-3.11144777695 E-10	-3.13599283949 E-10		
$ \begin{bmatrix} pade x, 13 \\ l_{c22}^{(d+1)^3} \\ -3.10806582023 E-10 \\ -3.135870111996 E-10 \\ -3.13582331977 E-10 \\ -3.13582331977 E-10 \\ -3.13582331978 E-10 \\ -3.13582331978 E-10 \\ 1. \frac{l_{c+1}^{(d+1)^3}}{l_{c222}} \\ -2.70193791372 E-10 \\ -2.10251973821 E-10 \\ -2.1025197382$		[exp x,26]	-2.34010823441 E-09	-3.135823319836 E-10		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[pade x,13]	-3.10806582023 E-10	-3.135870111996 E-10		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$I_{4222}^{[d+]^3}$	-3.11226750699 E-10	-3.13582331977 E-10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D ₁₁₁	-3.11226750695 E-10	-3.13582331978 E-10		
		1. $I_{4,222}^{[d+]^3}$	-2.70193791372 E-10	-2.10251973821 E-10		
		Ď ₁₁₁	-2.70193791373 E-10	-2.10251973821 E-10		

Table: Numerical values for the tensor coefficient D_{111} . Values marked by D_{111} are evaluated with LoopTools, the $I_{4,222}^{(d+1)^3}$, defined in (47). The labels [exp 0,2n] and [pade 0,n] denote iteration 2*n* and Pade approximant [*n*, *n*] when the small Gram determinant expansion starts at x = 0, and [exp x,2n] and [pade x,n] are the corresponding numbers for an expansion starting at x.

In

J. Fleischer

Tensor reduction

Introduction	Recursions	Simplifying recursions	Numbers ooooooo●o	Summary
PJFry — nun	nerical package			

Numerical implementation of described algorithms: C++ package **PJFry** by **V**. Yundin [in preparation]

- Reduction of 5-point 1-loop tensor integrals up to rank 5
- No limitations on internal/external masses combinations
- Small Gram determinants treatment by expansion
- Interfaces for C, C++, FORTRAN and MATHEMATICA

Example:

35/40

Relative accuracy of E₃₃₃₃ coef. around small Gram4 region

Introduction	Recursions	Simplifying recursions	Numbers	Summary
0000	000000	000000	00 0000000	00

PJFry — small Gram region example

Example: E_{3333} coefficient in small Gram region (x = 0)

Comparison of Regular and Expansion formulae:

36/40

Introduction	Recursions	Simplifying recursions	Numbers 000000000	Summary •0
Summary				

- Kompakt expression for the tensor components
- No limitation on masses
- Works for vanishing sub-Gram determinants
- No limitations for scalar diagrams containing $\frac{1}{c^2}$ terms
- Find patterns how to prodeed to higher tensors
- Analytic simplification of original diagrams (not shown)

Introduction	Recursions	Simplifying recursions	Numbers 000000000	Summary ○●
Deferences				

References I

R. K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002, [0712.1851].

- A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, 1005.2076.
- G. J. van Oldenborgh, FF: A Package to evaluate one loop Feynman diagrams, Comput. Phys. Commun. 66 (1991) 1–15.

T. Hahn and M. Perez-Victoria, Automatized one-loop calculations in four and d dimensions, Comput. Phys. Commun. **118** (1999) 153, [hep-ph/9807565].

T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon, and T. Reiter, *Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun.* **180** (2009) 2317–2330, [0810.0992].

T. Diakonidis, J. Fleischer, J. Gluza, K. Kajda, T. Riemann, and J. Tausk, On the tensor reduction of one-loop pentagons and hexagons, Nucl. Phys. Proc. Suppl. 183 (2008) 109–115, [0807.2984].

T. Diakonidis et al., A complete reduction of one-loop tensor 5- and 6-point integrals, Phys. Rev. D80 (2009) 036003, [0812.2134].

J. Campbell, E. W. N. Glover, and D. Miller, *One-loop tensor integrals in dimensional regularisation*, *Nucl. Phys.* **B498** (1997) 397–442, [hep-ph/9612413].

Introduction	Recursions	Simplifying recursions	Numbers 000000000	Summary ○●
Referen	ces II			
	A. Denner and S. Dittmaier, <i>Reduct</i>	tion of one-loop tensor 5-point integra	als, Nucl. Phys. B658 (2003)	
	 175–202, [hep-ph/0212259]. A. Denner and S. Dittmaier, <i>Reduct</i> 62–115, [hep-ph/0509141]. 	tion schemes for one-loop tensor inte	egrals, Nucl. Phys. B734 (2006)
	T. Binoth, J. P. Guillet, and G. Heinri integrals, Nucl. Phys. B572 (2000)	ich, <i>Reduction formalism for dimensi</i> 361–386, [hep-ph/9911342].	onally regulated one-loop N-p	oint
	T. Binoth, J. Guillet, G. Heinrich, E. multi-leg amplitudes, JHEP 10 (200	Pilon, and C. Schubert, <i>An algebraic</i> (5) 015, [hep-ph/0504267].	/ numerical formalism for one	-loop
	Z. Bern, L. J. Dixon, and D. A. Koso (1994) 751–816, [hep-ph/930624	wer, Dimensionally regulated pentag	on integrals, Nucl. Phys. B412	2
	G. Ossola, C. Papadopoulos, and F integrand level, Nucl. Phys. B763 (2	 Pittau, Reducing full one-loop amp 2007) 147–169, [hep-ph/0609007]. 	litudes to scalar integrals at th	е
	SM and NLO Multileg Working Gr working group: Summary report, 10	Youp Collaboration, J. R. Andersen <i>e</i> 003.1241.	t al., The SM and NLO multileg	g
	A. I. Davydychev, A Simple formula (1991) 107–111.	for reducing Feynman diagrams to s	calar integrals, Phys. Lett. B20	63
	O. V. Tarasov, <i>Connection between</i> <i>Phys. Rev.</i> D54 (1996) 6479–6490,	Feynman integrals having different v [hep-th/9606018].	alues of the space-time dimen	ision,

Introduction	Recursions	Simplifying recursions	Numbers 000000000	Summary ○●
References III				

12	-	
12		

J. Fleischer, F. Jegerlehner, and O. Tarasov, Algebraic reduction of one-loop Feynman graph amplitudes, Nucl. Phys. **B566** (2000) 423–440, [hep-ph/9907327].

T. Diakonidis, J. Fleischer, T. Riemann, and J. B. Tausk, *A recursive reduction of tensor Feynman integrals*, *Phys. Lett.* **B683** (2010) 69–74, [arXiv:0907.2115].

T. Diakonidis, J. Fleischer, T. Riemann, and B. Tausk, A recursive approach to the reduction of tensor Feynman integrals, PoS RADCOR2009 (2009) 033, [1002.0529].