

Scalar one-loop 4-point functions with complex masses

Ansgar Denner

Paul Scherrer Institut, Villigen

QCD at the LHC, Trento, September 26 – October 1, 2010

- Motivation
- Complex-mass scheme
- Results for scalar 4-point function

- All NLO calculations require scalar one-loop integrals as input (A₀, B₀, C₀, D₀)
- calculations with unstable particles require complex internal masses
 ⇒ need one-loop integrals with complex masses
- for electroweak corrections most general case needed
- existing results cover all cases for A_0 , B_0 , C_0 for D_0 only special cases but no general result for arbitrary complex internal masses was available

Complex-mass scheme

Almost all interesting elementary particles are unstable:

- known: leptons μ, τ , heavy quarks b, t, massive gauge bosons W,Z
- \bullet Higgs bosons ${\rm H}_{\rm SM}, ~~ \{{\rm h},{\rm H},{\rm A},{\rm H}\}_{\rm MSSM}$
- new particles, e.g. in SUSY: $\tilde{l}, \tilde{q}, \tilde{g}, \tilde{\chi}$

lifetimes τ too short for detection (e.g. $\tau_{\rm Z,W} \sim 10^{-25} \, {\rm s}$)

→ experiments detect only decay products
 unstable particles appear as resonances in certain distributions

> Need consistent treatment of unstable particles in perturbative evaluation of gauge theories

Description of resonance requires resummation of propagator corrections

Dyson series and propagator poles (scalar example)

$$G^{\phi\phi}(p) = \frac{i}{p^2 - m^2} + \frac{i}{p^2 - m^2} i\Sigma(p^2) \frac{i}{p^2 - m^2} + \dots = \frac{i}{p^2 - m^2 + \Sigma(p^2)}$$

 $\Sigma(p^2) = \text{renormalized self-energy}, \ m = \text{renormalized mass}$

stable particle: $\operatorname{Im}\{\Sigma(p^2)\} = 0 \text{ at } p^2 \sim m^2$

 \hookrightarrow propagator pole for real value of p^2 , renormalization condition for physical mass m: $\Sigma(m^2) = 0$ physical mass = pole of propagator

unstable particle: $\operatorname{Im}\{\Sigma(p^2)\} \neq 0 \text{ at } p^2 \sim m^2$

 \hookrightarrow propagator pole shifted into complex p^2 plane, define mass M and width Γ via complex pole position $\mu^2 = M^2 - iM\Gamma$ $\mu^2 - m^2 + \Sigma(\mu^2) = 0 \Rightarrow$ gauge-independent μ^2

resonances require (partial) Dyson summation of resonant propagators

- \hookrightarrow perturbative orders mixed
- \hookrightarrow gauge invariance in general violated !

example: electromagnetic Ward identity for photon–W-boson vertex

$$k^{\mu} \quad \underbrace{\stackrel{k}{\longrightarrow}}_{W^{-}} \bigoplus \left[\begin{array}{c} \underset{W^{+}}{\overset{k_{+}}{\longrightarrow}} \bigoplus \underset{W^{-}}{\overset{W^{-}}{\longrightarrow}} & - & \underset{W^{+}}{\overset{k_{-}}{\longrightarrow}} \bigoplus \underset{W^{-}}{\overset{W^{-}}{\longrightarrow}} \right] + \dots$$

valid for lowest order or complete higher orders

violated for Dyson-resummed propagators

$$k_{+}^{2} - k_{-}^{2} \neq \left[k_{+}^{2} - M_{W}^{2} + \Sigma(k_{+}^{2})\right] - \left[k_{-}^{2} - M_{W}^{2} + \Sigma(k_{-}^{2})\right] = k_{+}^{2} - k_{-}^{2} + \Sigma(k_{+}^{2}) - \Sigma(k_{-}^{2})$$

unless $\Sigma(k_+^2) = \Sigma(k_-^2)$ or if also vertex is changed

note: gauge-invariance-violating terms are formally of higher order, but can be dramatically enhanced

Kurihara, Perret-Gallix, Shimizu '95

 $\sqrt{s}=180\,{\rm GeV}$

cross section as a function of the cut on the electron scattering angle

solid: gauge-invariant (fudge factor) scheme

dashed: constant width only in resonant propagator

 \hookrightarrow crude U(1) gauge-invariance violation

dominant diagrams:

nearly real photon !

• Naive propagator substitutions in full amplitudes:

$$\frac{1}{k^2 - m^2} \rightarrow \frac{1}{k^2 - m^2 + \mathrm{i}m\Gamma(k^2)}$$

for resonant or all propagators

- constant width $\Gamma(k^2) = \text{const.} \rightarrow U(1)$ respected (if all propagators dressed), SU(2) "mildly" violated
- $\Gamma(k^2) \propto \theta(k^2) \times k^2 \rightarrow U(1)$ and SU(2) violated running width
- fudge factor approaches: multiply full amplitudes without widths with factors $\frac{p^2 - m^2}{n^2 - m^2 + \mathrm{i}m\Gamma}$ for each potentially resonant propagator
 - \hookrightarrow procedure preserves gauge invariance, introduces spurious factors of $\mathcal{O}(\Gamma/m)$, mistreats non-resonant terms
- pole scheme: consistent expansion about resonance Stuart '91; Aeppli et al. '93, '94; ... gauge invariant, applicable to higher orders (but cumbersome) not reliable in off-shell tails, near thresholds (presence of small scales)
- effective field theory approach: Beneke et al. '04, '07, Hoang, Reisser '04 close to pole expansion, can be combined with threshold expansion

• Gauge independence

use pole mass and width from complex pole (gauge independent) instead of full or more complete Dyson summation \Rightarrow no running width

• Ward identities

QCD and QED

Ward identities depend only on masses and strong/elmg. coupling constants \Rightarrow Ward identities hold after replacing real by complex masses use complex pole masses in *all* propagators \Rightarrow fixed width scheme QCD and QED corrections: complex masses are independent parameters \Rightarrow no further complications

Electroweak theory

couplings are related to masses via weak mixing angle $c_w = M_W/M_Z$ Ward identities require use of complex masses also in couplings \Rightarrow complex weak mixing angle \Rightarrow complex-mass scheme Electroweak corrections avoid double counting (electroweak corrections in widths) mass renormalization must be done for complex pole

Denner, Dittmaier, Roth, Wackeroth '99, Denner, Dittmaier, Roth, Wieders '05

Basic idea: (renormalized mass)² = location of propagator pole in complex p^2 plane

 \hookrightarrow consistent use of complex masses everywhere !

replace $M_W^2 \rightarrow \mu_W^2 = M_W^2 - iM_W\Gamma_W$, $M_Z^2 \rightarrow \mu_Z^2 = M_Z^2 - iM_Z\Gamma_Z$ and define (complex) weak mixing angle via $\cos^2 \theta_w \equiv c_w^2 = 1 - s_w^2 = \frac{\mu_W^2}{\mu_Z^2}$ \hookrightarrow complex mass renormalization: $\underbrace{M_{W,0}^2}_{\text{bare mass}} = \mu_W^2 + \underbrace{\delta \mu_W^2}_{\text{ren. constant}}$...

virtues

- gauge invariance (Ward identities), gauge-parameter independence hold exactly
- perturbative calculations as usual (with complex masses and counterterms)
- no double counting (bare Lagrangian unchanged !)

drawbacks

- loop integrals with complex masses (available)
- spurious terms of $\mathcal{O}(\Gamma/M)$, of higher order $[\mathcal{O}(\alpha^2)$ in $\mathcal{O}(\alpha)$ calculation]

Direct generalization of on-shell renormalization scheme

Aoki et al. '81; Denner '93; Denner, Dittmaier, Weiglein '94

 \Rightarrow complex field renormalization

$$\underbrace{W_0^{\pm}}_{\text{bare field}} = \left(1 + \frac{1}{2}\underbrace{\delta \mathcal{Z}_W}_{\text{ren. constant}}\right)W^{\pm}, \quad \text{etc.}$$

- complex $\delta \mathcal{Z}_W$ applies to both W^+ and $W^- \Rightarrow (W^+)^{\dagger} \neq W^-$
- δZ_W drops out in *S*-matrix elements without external W-bosons

on-shell renormalization conditions for W-boson self-energy

$$\hat{\Sigma}_{T}^{W}(\mu_{W}^{2}) = 0, \qquad \hat{\Sigma}_{T}^{\prime W}(\mu_{W}^{2}) = 0$$

 $\hookrightarrow \mu_W^2$ is location of propagator pole, and "residue = 1" solutions of renormalization conditions

$$\delta \mu_{\mathrm{W}}^2 = \Sigma_{\mathrm{T}}^W(\mu_{\mathrm{W}}^2), \qquad \delta \mathcal{Z}_W = -\Sigma_{\mathrm{T}}^{\prime W}(\mu_{\mathrm{W}}^2)$$

require self-energy for complex squared momenta ($p^2 = \mu_W^2$) \hookrightarrow analytic continuation of the 2-point functions to unphysical Riemann sheet

Way around: appropriate expansions about real arguments

$$\Sigma_{\mathrm{T}}^{W}(\mu_{\mathrm{W}}^{2}) = \Sigma_{\mathrm{T}}^{W}(M_{\mathrm{W}}^{2}) + (\mu_{\mathrm{W}}^{2} - M_{\mathrm{W}}^{2})\Sigma_{\mathrm{T}}^{\prime W}(M_{\mathrm{W}}^{2}) + \underbrace{\mathcal{O}(\alpha^{3})}_{\text{beyond }\mathcal{O}(\alpha) \text{ and UV-finite}}$$

modified counterterms

$$\delta\mu_{\rm W}^2 = \Sigma_{\rm T}^W(M_{\rm W}^2) + (\mu_{\rm W}^2 - M_{\rm W}^2)\Sigma_{\rm T}'^W(M_{\rm W}^2), \qquad \delta\mathcal{Z}_W = -\Sigma_{\rm T}'^W(M_{\rm W}^2)$$

 \Rightarrow renormalized self-energy

$$\hat{\Sigma}_{\rm T}^W(k^2) = \Sigma_{\rm T}^W(k^2) - \delta M_{\rm W}^2 + (k^2 - M_{\rm W}^2)\delta Z_W$$

with

$$\delta M_{\rm W}^2 = \Sigma_{\rm T}^W(M_{\rm W}^2), \qquad \delta Z_W = -\Sigma_{\rm T}^{\prime W}(M_{\rm W}^2)$$

exactly the form of the renormalized self-energies in usual on-shell scheme

- but no real parts are taken from Σ^W
 - Σ^W depends on complex masses and complex mixing angle

Bredenstein, Denner, Dittmaier, Weber '06, PROPHECY4F

PAUL SCHERRER INSTITUT

Example: electroweak two-loop corrections to ${ m H} ightarrow \gamma \gamma$

CM = complex-mass scheme

MCM = "minimal" complex-mass scheme

\Rightarrow consistent (gauge-invariant) use of complex masses mandatory!

Scalar 4-point function

Documented results

- 't Hooft, Veltman '79: regular 1-, 2-, 3-point integrals with complex masses, 4-point integrals with real masses
- Beenakker, Denner '90: IR singular 4-point integrals with mass reg.
- Denner, Nierste, Scharf '91: compact result for regular 4-point integral
- Dao, Le '09: regular 4-point integral with complex masses
- many special cases spread over the literature Bern et al. '93, Duplancic, Nizic '01,'02, ...

Tools for evaluation of scalar one-loop integrals

- van Oldenborgh '90, FF: regular integrals
- R.K. Ellis, Zanderighi '07, QCDloop: IR-singular integrals for QCD in dim. reg.
- van Hameren '10 Oneloop regular and IR singular integrals in dim. reg.

Fully general results for complex masses were not available New: Denner, Dittmaier '10: all regular and singular 4-point integrals with complex masses in dimensional and mass regularization

Feynman-parameter representation: (D = 4 for regular case)

$$= \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \frac{1}{(q^2 - m_0^2)[(q+p_1)^2 - m_1^2][(q+p_2)^2 - m_2^2][(q+p_3)^2 - m_3^2]}$$

= $\int_0^1 dx_1 \int_0^{1-x_1} dx_2 \int_0^{1-x_1-x_2} dx_3 \frac{1}{[P(1-x_1-x_2-x_3,x_1,x_2,x_3)]^{2+\epsilon}},$

with

$$P(x_0, x_1, x_2, x_3) = \sum_{i=0}^{3} m_i^2 x_i^2 + \sum_{\substack{i,j=0\\i < j}}^{3} Y_{ij} x_i x_j, \qquad Y_{ij} = Y_{ji} = m_i^2 + m_j^2 - p_{ij}^2$$

difficulties:

- linearization of quadratic form in integration variables
- analytic continuation of integrated result to complex masses

step 1: start from real masses and perform projective transformation

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{1+x+(1-1/r_{13})y+(1-1/r_{20})z} \begin{pmatrix} y \\ z \\ x-y/r_{13} \end{pmatrix}$$

 \Rightarrow *P* becomes linear in both *y* and *z*. Assuming $r_{20}, r_{13} > 0, D_0$ becomes

$$D_0 = \int_0^\infty \mathrm{d}x \int_0^{xr_{13}} \mathrm{d}y \int_0^{r_{20}} \mathrm{d}z \, \frac{1}{[P(1-z/r_{20}, y, z, x-y/r_{13}) - \mathrm{i}\varepsilon]^2}$$

where $r_{ij} = r_{ij,1}$ fulfills $m_i^2 + Y_{ij}x + m_j^2x^2 = m_i^2(1 + r_{ij,1}x)(1 + r_{ij,2}x)$

- **step 2:** integration over z and y via partial fractioning
- **step 3:** analytic continuation to arbitrary complex r_{13}
- **step 4:** integration over $x \Rightarrow D_0$ in terms of 16 dilogarithms, **but result requires** $r_{20} > 0$, i.e. kinematics/masses restricted

For $p_{20}^2 = 0$, we have $r_{20} = 1 > 0$ and result holds.

Use propagator identity of 't Hooft/Veltman '79

$$\frac{1}{(q+p_1)^2 - m_1^2} \frac{1}{(q+p_3)^2 - m_3^2} = \frac{1}{(q+p)^2 - M^2} \left[\frac{1-\gamma}{(q+p_1)^2 - m_1^2} + \frac{\gamma}{(q+p_3)^2 - m_3^2} \right]$$

where
$$\gamma$$
 is arbitrary and $p = \gamma p_1 + (1 - \gamma)p_3$,
 $M^2 = p^2 + \gamma (m_1^2 - p_1^2) + (1 - \gamma)(m_3^2 - p_3^2)$

 \Rightarrow relation for D_0 functions:

$$D_{0}(p_{10}^{2}, p_{21}^{2}, p_{32}^{2}, p_{30}^{2}, p_{20}^{2}, p_{31}^{2}, m_{0}^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2})$$

$$= \gamma D_{0}(p_{30}^{2}, \gamma^{2} p_{31}^{2}, (p_{2} - p)^{2}, p_{20}^{2}, p^{2}, p_{32}^{2}, m_{0}^{2}, m_{3}^{2}, M^{2}, m_{2}^{2})$$

$$+ (1 - \gamma) D_{0}(p_{10}^{2}, (1 - \gamma)^{2} p_{31}^{2}, (p_{2} - p)^{2}, p_{20}^{2}, p^{2}, p_{21}^{2}, m_{0}^{2}, m_{1}^{2}, M^{2}, m_{2}^{2})$$

Fix γ so that $0 = p^2 = \gamma^2 p_{31}^2 + \gamma (p_{10}^2 - p_{31}^2 - p_{30}^2) + p_{30}^2$, with $0 \le \gamma \le 1$ $\Rightarrow \text{Im } M^2 \le 0$ and $r_{20} = 1$ for both D_0 functions on r.h.s.

 \Rightarrow general D_0 function with complex masses expressed in terms of 32 dilogarithms in all physically relevant regions of phase space

Alternative solutions for general case

- 't Hooft, Veltman '79 provided sketch for result on terms of 108 dilogarithms implemented into Fortran code by Dao, Le '09
- Denner, Dittmaier '10 contains additional result in terms of 72 dilogarithms based on modified approach of 't Hooft, Veltman '76

Complete list of singular 4-point integrals

- all soft- and/or collinear singular cases
- in mass, dimensional and mixed regularization
- with complex masses

derivation

- calculate in suitable (simple) regularization
- translate to other regularizations by adding and subtracting appropriate 3-point functions

checks

- integrals that do not need dimensional regularization: directly extracted from general result as limit of small masses
- integrals that need dimensional regularization: compared with results in collection of Ellis, Zanderighi '07 or special cases derived therefrom

Singular parts entirely contained in 3-point functions

explicit construction of singular part Beenakker et al. '02, Dittmaier '03

$$T_{\mu_{1}...\mu_{P}}^{(N)}(p_{0},...,p_{N-1},m_{0},...,m_{N-1})\Big|_{\text{sing}}$$

$$=\sum_{n=0}^{N-1}\sum_{\substack{k=0\\k\neq n,n+1}}^{N-1}\underbrace{A_{nk}}_{k\neq n,n+1}\underbrace{C_{\mu_{1}...\mu_{P}}(p_{n},p_{n+1},p_{k},m_{n},m_{n+1},m_{k})}_{\text{all singular 3-point subintegrals}}$$

Application: translation of singular integrals between regularization schemes

 $\left[T_{\mu_1\dots\mu_P}^{(N),\text{regA}} - T_{\mu_1\dots\mu_P}^{(N),\text{regB}}\right]\Big|_{\text{nonsing}} = (\text{IR finite}) = (\text{reg.-scheme independent})$

 \Rightarrow transition from scheme A to scheme B:

$$T^{(N),\mathrm{regB}}_{\mu_1\dots\mu_P} = T^{(N),\mathrm{regA}}_{\mu_1\dots\mu_P} \underbrace{-T^{(N),\mathrm{regA}}_{\mu_1\dots\mu_P}}_{\mathrm{sing}} + T^{(N),\mathrm{regB}}_{\mu_1\dots\mu_P} \Big|_{\mathrm{sing}}$$
singular 3-point integrals

- consistent treatment of unstable particles needed for NLO calculations
- complex-mass scheme: gauge-invariant, straightforward to use
- scalar one-loop integrals with complex masses required
- explicit expression exist for all basic scalar one-loop integrals