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Motivation

All NLO calculations require scalar one-loop integrals as input
(A0, B0, C0, D0)

calculations with unstable particles require complex internal masses
⇒ need one-loop integrals with complex masses

for electroweak corrections most general case needed

existing results cover all cases for A0, B0, C0

for D0 only special cases but no general result for arbitrary complex
internal masses was available
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Complex-mass scheme
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Relevance of unstable particles

Almost all interesting elementary particles are unstable:

known: leptons µ, τ , heavy quarks b, t, massive gauge bosonsW,Z

Higgs bosons HSM, {h, H, A, H}MSSM

new particles, e.g. in SUSY: l̃, q̃, g̃, χ̃

lifetimes τ too short for detection (e.g. τZ,W ∼ 10−25 s)

→֒ experiments detect only decay products

unstable particles appear as resonances in certain distributions

interesting reactions at the LHC involving unstable particles:
pp → W/Z(+jets) → 2l(+jets), pp → H + 2q → ZZ + 2q → 4l + 2jets,
pp → tt̄ → bb̄WW → 2l + 2jets+ 6E , . . .

Need consistent treatment of unstable particles
in perturbative evaluation of gauge theories
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Mass and width of unstable particles

Description of resonance requires resummation of propagator corrections

Dyson series and propagator poles (scalar example)

= + + + . . .

Gφφ(p) =
i

p2 − m2
+

i

p2 − m2
iΣ(p2)

i

p2 − m2
+ . . . =

i

p2 − m2 + Σ(p2)

Σ(p2) = renormalized self-energy, m = renormalized mass

stable particle: Im{Σ(p2)} = 0 at p2 ∼ m2

→֒ propagator pole for real value of p2,

renormalization condition for physical mass m: Σ(m2) = 0

physical mass = pole of propagator

unstable particle: Im{Σ(p2)} 6= 0 at p2 ∼ m2

→֒ propagator pole shifted into complex p2 plane,

define massM and width Γ via complex pole position µ2 = M2 − iMΓ

µ2 − m2 + Σ(µ2) = 0 ⇒ gauge-independent µ2
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Unstable particles and gauge invariance

resonances require (partial) Dyson summation of resonant propagators

→֒ perturbative orders mixed

→֒ gauge invariance in general violated !

example: electromagnetic Ward identity for photon–W-boson vertex

kµ

γµ

W+

W−

k

= e

»

W+ W−

k+

−
W+ W−

k− –

+ . . .

valid for lowest order or complete higher orders

violated for Dyson-resummed propagators

k2
+ − k2

− 6=

»

k2
+ − M2

W + Σ(k2
+)

–

−

»

k2
− − M2

W + Σ(k2
−)

–

= k2
+ − k2

− + Σ(k2
+) − Σ(k2

−)

unless Σ(k2
+) = Σ(k2

−) or if also vertex is changed

note: gauge-invariance-violating terms are formally of higher order,

but can be dramatically enhanced
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An example: e
−

e
+

→ e
−

ν̄eud̄

Kurihara, Perret-Gallix, Shimizu ’95

√
s = 180GeV

cross section as a function of the cut on the

electron scattering angle

solid: gauge-invariant

(fudge factor) scheme

dashed: constant width

only in resonant propagator

→֒ crude U(1) gauge-invariance violation

dominant diagrams:

nearly real photon !
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Finite-width schemes

Naive propagator substitutions in full amplitudes:

1

k2
− m2

→

1

k2
− m2 + imΓ(k2)

for resonant or all propagators

◮ constant width Γ(k2) = const. → U(1) respected (if all propagators dressed),

SU(2) “mildly” violated

◮ running width Γ(k2) ∝ θ(k2) × k2
→ U(1) and SU(2) violated

fudge factor approaches: multiply full amplitudes without widths with

factors
p2 − m2

p2 − m2 + imΓ
for each potentially resonant propagator

→֒ procedure preserves gauge invariance,

introduces spurious factors of O(Γ/m), mistreats non-resonant terms

pole scheme: consistent expansion about resonance Stuart ’91; Aeppli et al. ’93, ’94; . . .

gauge invariant, applicable to higher orders (but cumbersome)

not reliable in off-shell tails, near thresholds (presence of small scales)

effective field theory approach: Beneke et al. ’04, ’07, Hoang, Reisser ’04

close to pole expansion, can be combined with threshold expansion
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Consistent implementation of unstable particles

Gauge independence

use pole mass and width from complex pole (gauge independent)

instead of full or more complete Dyson summation⇒ no running width

Ward identities

◮ QCD and QED

Ward identities depend only on masses and strong/elmg. coupling constants

⇒Ward identities hold after replacing real by complex masses

use complex pole masses in all propagators⇒ fixed width scheme

QCD and QED corrections: complex masses are independent parameters

⇒ no further complications

◮ Electroweak theory

couplings are related to masses via weak mixing angle cw = MW/MZ

Ward identities require use of complex masses also in couplings

⇒ complex weak mixing angle⇒ complex-mass scheme

Electroweak corrections

avoid double counting (electroweak corrections in widths)

mass renormalization must be done for complex pole
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The complex-mass scheme

Denner, Dittmaier, Roth, Wackeroth ’99, Denner, Dittmaier, Roth, Wieders ’05

Basic idea: (renormalized mass)2 = location of propagator pole in complex p2 plane

→֒ consistent use of complex masses everywhere !

replace M2
W → µ2

W = M2
W − iMWΓW, M2

Z → µ2
Z = M2

Z − iMZΓZ

and define (complex) weak mixing angle via cos2 θw ≡ c2
w = 1 − s2

w =
µ2
W

µ2
Z

→֒ complex mass renormalization: M2
W,0

| {z }

bare mass

= µ2
W + δµ2

W
|{z}

ren. constant

, . . .

virtues

gauge invariance (Ward identities), gauge-parameter independence hold exactly

perturbative calculations as usual (with complex masses and counterterms)

no double counting (bare Lagrangian unchanged !)

drawbacks

loop integrals with complex masses (available)

spurious terms of O(Γ/M), of higher order [O(α2) in O(α) calculation]
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Complex renormalization: W-boson as example

Direct generalization of on-shell renormalization scheme
Aoki et al. ’81; Denner ’93; Denner, Dittmaier, Weiglein ’94

⇒ complex field renormalization W±
0

︸︷︷︸

bare field

=
(
1 + 1

2 δZW
︸ ︷︷ ︸

ren. constant

)
W±, etc.

complex δZW applies to bothW+ andW− ⇒ (W+)† 6= W−

δZW drops out in S-matrix elements without external W-bosons

on-shell renormalization conditions for W-boson self-energy

Σ̂W
T (µ2

W) = 0, Σ̂′W
T (µ2

W) = 0

→֒ µ2
W is location of propagator pole, and “residue = 1”

solutions of renormalization conditions

δµ2
W = ΣW

T (µ2
W), δZW = −Σ′W

T (µ2
W)

require self-energy for complex squared momenta (p2 = µ2
W)

→֒ analytic continuation of the 2-point functions to unphysical Riemann sheet
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Expansion of counterterms about real momenta

Way around: appropriate expansions about real arguments

ΣW
T (µ2

W) = ΣW
T (M2

W) + (µ2
W − M2

W)Σ′W
T (M2

W) + O(α3)
︸ ︷︷ ︸

beyond O(α) and UV-finite

modified counterterms

δµ2
W = ΣW

T (M2
W) + (µ2

W − M2
W)Σ′W

T (M2
W), δZW = −Σ′W

T (M2
W)

⇒ renormalized self-energy

Σ̂W
T (k2) = ΣW

T (k2) − δM2
W + (k2 − M2

W)δZW

with
δM2

W = ΣW
T (M2

W), δZW = −Σ′W
T (M2

W)

exactly the form of the renormalized self-energies in usual on-shell scheme

but no real parts are taken from ΣW

ΣW depends on complex masses and complex mixing angle
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Example: Partial width forH → WW → νee
+

µ
−

ν̄µ

Partial width: relative corrections (Gµ-scheme):

corrected

H → νee
+µ−ν̄µ

MH [GeV]

Γ [MeV]

200190180170160150140130120

100

10

1

0.1

0.01

0.001

IBA
NWA

corrected

H → νee
+µ−ν̄µ

MH [GeV]

δ [%]

200190180170160150140130120

12

10

8

6

4

2

0

δ = Γ
ΓBorn

− 1

realMW,MZ

complexMW,MZ

↑
Coulomb singularity

forMH ∼ 2MW

↑
threshold effect in loops

forMH ∼ 2MZNWA = narrow-width approximation

IBA = improved Born approximation Bredenstein, Denner, Dittmaier, Weber ’06, PROPHECY4F
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Example: electroweak two-loop corrections toH → γγ

 [GeV]
h

M
150 152 154 156 158 160 162 164 166 168 170

 [
%

]
δ

-8

-6

-4

-2

0

2

4

EW,CM
δ

EW, MCM
δ

EW, real masses
δ

WW

Actis, Passarino,
Sturm, Uccirati ’08

CM = complex-mass scheme

MCM = “minimal” complex-mass scheme

⇒ consistent (gauge-invariant) use of complex masses mandatory!
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Scalar 4-point function
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Existing results and tools for scalar one-loop integrals

Documented results

’t Hooft, Veltman ’79: regular 1-, 2-, 3-point integrals with complex masses,

4-point integrals with real masses

Beenakker, Denner ’90: IR singular 4-point integrals with mass reg.

Denner, Nierste, Scharf ’91: compact result for regular 4-point integral

Dao, Le ’09: regular 4-point integral with complex masses

many special cases spread over the literature Bern et al. ’93, Duplancic, Nizic ’01,’02, . . .

Tools for evaluation of scalar one-loop integrals

van Oldenborgh ’90, FF: regular integrals

R.K. Ellis, Zanderighi ’07, QCDloop: IR-singular integrals for QCD in dim. reg.

van Hameren ’10 Oneloop regular and IR singular integrals in dim. reg.

Fully general results for complex masses were not available

New: Denner, Dittmaier ’10: all regular and singular 4-point integrals with complex

masses in dimensional and mass regularization

QCD at the LHC, Trento, September 26 – October 1, 2010 Ansgar Denner (PSI) scalar 4-point function – p.13



Regular 4-point integral

Feynman-parameter representation: (D = 4 for regular case)

p2
10

p2
21 p2

32

p2
30

p2
20

p2
31

m2
0

m2
1

m2
2

m2
3

0

1

2

3

≡ D0(p1, p2, p3, m
2

0, m
2

1, m
2

2, m
2

3)

≡ D0(p
2

10, p
2

21, p
2

32, p
2

30, p
2

20, p
2

31, m
2

0, m
2

1, m
2

2, m
2

3)

=
(2πµ)4−D

iπ2

Z

d
D

q
1

(q2 − m2
0
)[(q + p1)2 − m2

1
][(q + p2)2 − m2

2
][(q + p3)2 − m2

3
]

=

Z

1

0

dx1

Z

1−x1

0

dx2

Z

1−x1−x2

0

dx3

1

[P (1 − x1 − x2 − x3, x1, x2, x3)]2+ǫ
,

with

P (x0, x1, x2, x3) =

3
X

i=0

m
2

i x
2

i +

3
X

i,j=0
i<j

Yijxixj , Yij = Yji = m
2

i + m
2

j − p
2

ij

difficulties:

linearization of quadratic form in integration variables

analytic continuation of integrated result to complex masses
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Solution following Denner, Nierste, Scharf ’91

step 1: start from real masses and perform projective transformation

0

B

B

@

x1

x2

x3

1

C

C

A

=
1

1 + x + (1 − 1/r13)y + (1 − 1/r20)z

0

B

B

@

y

z

x − y/r13

1

C

C

A

⇒ P becomes linear in both y and z.

Assuming r20, r13 > 0, D0 becomes

D0 =

Z
∞

0

dx

Z xr13

0

dy

Z r20

0

dz
1

[P (1 − z/r20, y, z, x − y/r13) − iε]2

where rij = rij,1 fulfills m2
i + Yijx + m2

jx
2 = m2

i (1 + rij,1x) (1 + rij,2x)

step 2: integration over z and y via partial fractioning

step 3: analytic continuation to arbitrary complex r13

step 4: integration over x ⇒ D0 in terms of 16 dilogarithms,
but result requires r20 > 0, i.e. kinematics/masses restricted
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Generalization with propagator identity

For p2
20 = 0, we have r20 = 1 > 0 and result holds.

Use propagator identity of ’t Hooft/Veltman ’79

1

(q + p1)2 − m2
1

1

(q + p3)2 − m2
3

=
1

(q + p)2 − M2

"

1 − γ

(q + p1)2 − m2
1

+
γ

(q + p3)2 − m2
3

#

where γ is arbitrary and p = γp1 + (1 − γ)p3,

M2 = p2 + γ(m2
1 − p2

1) + (1 − γ)(m2
3 − p2

3)

⇒ relation for D0 functions:

D0(p
2
10, p

2
21, p

2
32, p

2
30, p

2
20, p

2
31, m

2
0, m

2
1, m

2
2, m

2
3)

= γD0(p
2
30, γ

2p2
31, (p2 − p)2, p2

20, p
2, p2

32, m
2
0,m

2
3,M

2,m2
2)

+ (1 − γ)D0(p
2
10, (1 − γ)2p2

31, (p2 − p)2, p2
20, p

2, p2
21, m

2
0,m

2
1,M

2,m2
2)

Fix γ so that 0 = p2 = γ2p2
31 + γ(p2

10 − p2
31 − p2

30) + p2
30, with 0 ≤ γ ≤ 1

⇒ Im M2 ≤ 0 and r20 = 1 for both D0 functions on r.h.s.

⇒ general D0 function with complex masses expressed in terms of 32 dilogarithms

in all physically relevant regions of phase space
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Alternative solutions for general case

’t Hooft, Veltman ’79 provided sketch for result on terms of 108 dilogarithms
implemented into Fortran code by Dao, Le ’09

Denner, Dittmaier ’10 contains additional result in terms of 72 dilogarithms
based on modified approach of ’t Hooft, Veltman ’76
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Singular 4-point integrals

Complete list of singular 4-point integrals

all soft- and/or collinear singular cases

in mass, dimensional and mixed regularization

with complex masses

derivation

calculate in suitable (simple) regularization

translate to other regularizations by adding and subtracting appropriate
3-point functions

checks

integrals that do not need dimensional regularization:
directly extracted from general result as limit of small masses

integrals that need dimensional regularization:
compared with results in collection of Ellis, Zanderighi ’07 or special cases
derived therefrom
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General structure of IR singularities at one loop

Singular parts entirely contained in 3-point functions

explicit construction of singular part Beenakker et al. ’02, Dittmaier ’03

T (N)
µ1...µP

(p0, . . . , pN−1, m0, . . . , mN−1)

˛
˛
˛
˛
sing

=

N−1X

n=0

N−1X

k=0

k 6=n,n+1

Ank
|{z}

simple algebraic functions
of momenta and masses

Cµ1...µP
(pn, pn+1, , pk,mn, mn+1, mk)

| {z }

all singular 3-point subintegrals

Application: translation of singular integrals between regularization schemes
h

T (N),regA
µ1...µP

− T (N),regB
µ1...µP

i ˛
˛
˛
˛
nonsing

= (IR finite) = (reg.-scheme independent)

⇒ transition from scheme A to scheme B:

T (N),regB
µ1...µP

= T (N),regA
µ1...µP

−T (N),regA
µ1...µP

˛
˛
˛
˛
sing

+ T (N),regB
µ1...µP

˛
˛
˛
˛
sing

| {z }

singular 3-point integrals
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Conclusion

consistent treatment of unstable particles needed for NLO calculations

complex-mass scheme: gauge-invariant, straightforward to use

scalar one-loop integrals with complex masses required

explicit expression exist for all basic scalar one-loop integrals
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