Resonance-Continuum Interference in the LHC $H \rightarrow \gamma \gamma$ Signal

Lance Dixon & Stewart Siu (SLAC)

• In the SM, all Higgs boson properties dictated by m_H . How well can we test them experimentally?

- In the SM, all Higgs boson properties dictated by m_H . How well can we test them experimentally?
- Tevatron Run II has opportunity to discover H; otherwise task will fall to the LHC.

- In the SM, all Higgs boson properties dictated by m_H . How well can we test them experimentally?
- Tevatron Run II has opportunity to discover *H*; otherwise task will fall to the LHC.
- For $m_H < 140$ GeV (preferred by precision electroweak data and supersymmetry), best decay mode at LHC is $H \rightarrow \gamma \gamma$

- In the SM, all Higgs boson properties dictated by m_H . How well can we test them experimentally?
- Tevatron Run II has opportunity to discover *H*; otherwise task will fall to the LHC.
- For $m_H < 140$ GeV (preferred by precision electroweak data and supersymmetry), best decay mode at LHC is $H \rightarrow \gamma \gamma$
- QCD continuum background to this process is huge can it contaminate the signal through interference?

LD, Siu, hep-ph/0302233

In pictures . . .

- Signal
- Background

In pictures . . .

- Signal
- Background
- Interference

Higgs branching ratios & width

• For $m_H < 2m_W$, Higgs resonance is narrow, $\Gamma_H \sim \text{MeV}$ Excellent experimental photon energy resolution, $\approx 1\%$ $\Rightarrow \gamma\gamma$ signal visible even though $\text{Br}(H \to \gamma\gamma) \approx 10^{-3}$. • General issue when extracting couplings $g_{Hii}^2 \propto \Gamma_i$ from expt. signals for various production/decay channels:

Is Signal =
$$\sigma_{ii \to H} \times Br(H \to ff) = \frac{\Gamma_i \Gamma_f}{\Gamma}$$
?

• General issue when extracting couplings $g_{Hii}^2 \propto \Gamma_i$ from expt. signals for various production/decay channels:

Is Signal =
$$\sigma_{ii \to H} \times Br(H \to ff) = \frac{\Gamma_i \Gamma_f}{\Gamma}$$
?

• Resonance-continuum interference negates this; how big is it for $gg \rightarrow H \rightarrow \gamma\gamma$?

• General issue when extracting couplings $g_{Hii}^2 \propto \Gamma_i$ from expt. signals for various production/decay channels:

Is Signal =
$$\sigma_{ii \to H} \times Br(H \to ff) = \frac{\Gamma_i \Gamma_f}{\Gamma}$$
?

- Resonance-continuum interference negates this; how big is it for $gg \rightarrow H \rightarrow \gamma\gamma$?
- Normally interf. effects small for a narrow resonance: If expt'l resolution >> intrinsic linewidth Γ, and if you can see it at all, it must be that the intrinsic S/B >> 1, right?

CMS

• But expt'l resolution $\approx 1 \text{ GeV} \approx 1000 \times \Gamma_H$

- But expt'l resolution $\approx 1 \text{ GeV} \approx 1000 \times \Gamma_H$
 - Also, only 1/3 or so of B is from $gg \rightarrow \gamma \gamma$

• $S/B \approx 1/20$

- But expt'l resolution $\approx 1 \text{ GeV} \approx 1000 \times \Gamma_H$
- Also, only 1/3 or so of B is from $gg \rightarrow \gamma\gamma$
- So intrinsic $S/B \approx 1/20 \times 1000 \times 3 \approx 150$

• $S/B \approx 1/20$

- But expt'l resolution $\approx 1 \text{ GeV} \approx 1000 \times \Gamma_H$
- Also, only 1/3 or so of B is from $gg \rightarrow \gamma \gamma$
- So intrinsic $S/B \approx 1/20 \times 1000 \times 3 \approx 150$
- Interference effect is $\approx 2\sqrt{B/S} \approx 15\%$

• Position of experimental peak gives m_H accurately.

- Position of experimental peak gives m_H accurately.
- Neglecting interference, height of peak gives $\sigma(pp \rightarrow H + X) \times Br(H \rightarrow \gamma\gamma)$ Anticipated expt'l uncertainty with 100 fb⁻¹: $\approx 10\%$.

- Position of experimental peak gives m_H accurately.
- Neglecting interference, height of peak gives $\sigma(pp \rightarrow H + X) \times Br(H \rightarrow \gamma\gamma)$ Anticipated expt'l uncertainty with 100 fb⁻¹: $\approx 10\%$.
- What is theoretical uncertainty?

- Position of experimental peak gives m_H accurately.
- Neglecting interference, height of peak gives $\sigma(pp \rightarrow H + X) \times Br(H \rightarrow \gamma\gamma)$ Anticipated expt'l uncertainty with 100 fb⁻¹: $\approx 10\%$.
- What is theoretical uncertainty?
- $Br(H \rightarrow \gamma \gamma)$ under pretty good control:
 - QCD corrections to $\Gamma(H \rightarrow \gamma \gamma)$ are small
 - error $\approx 6\%$, mostly from uncertainty in m_b entering Γ_H .

- Position of experimental peak gives m_H accurately.
- Neglecting interference, height of peak gives $\sigma(pp \rightarrow H + X) \times Br(H \rightarrow \gamma \gamma)$ Anticipated expt'l uncertainty with 100 fb⁻¹: $\approx 10\%$.
- What is theoretical uncertainty?
- $Br(H \rightarrow \gamma \gamma)$ under pretty good control:
 - QCD corrections to $\Gamma(H \rightarrow \gamma \gamma)$ are small
 - error $\approx 6\%$, mostly from uncertainty in m_b entering Γ_H .
- $\sigma(pp \rightarrow H + X)$ is more uncertain.

Higgs total cross section σ_H

• $pp \rightarrow H + X$ at LHC (or Tevatron) is dominated by gluon-gluon fusion through a top quark loop

• NLO QCD K factor for σ_H is huge, about 1.7–1.8 at LHC.

Djouadi, Spira, Zerwas; Dawson; Spira, Djouadi, Graudenz, Zerwas

• To make NNLO computation feasible, approximate top quark loop by effective ggH vertex ($m_H \ll 2m_t$). Catani, De Florian, Grazzini; Harlander, Kilgore Harlander, Kilgore; Anastasiou, Melnikov Residual error from NNLO/NNLL approximation probably $\approx 15\%$ now. ($\sigma_H^{\rm NNNLO}$???)

• Total $gg \rightarrow \gamma\gamma$ amplitude

$$\mathcal{A}_{gg \to \gamma\gamma} = \frac{-\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma}}{\hat{s} - m_H^2 + im_H \Gamma_H} + \mathcal{A}_{\text{cont}}$$

• Total $gg \rightarrow \gamma\gamma$ amplitude

$$\mathcal{A}_{gg \to \gamma\gamma} = \frac{-\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma}}{\hat{s} - m_H^2 + im_H \Gamma_H} + \mathcal{A}_{\text{cont}}$$

$$\delta\hat{\sigma}_{gg\to H\to\gamma\gamma} = -2(\hat{s} - m_H^2) \frac{\operatorname{Re}\left(\mathcal{A}_{gg\to H}\mathcal{A}_{H\to\gamma\gamma}\mathcal{A}_{\operatorname{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2\Gamma_H^2} - 2m_H\Gamma_H \frac{\operatorname{Im}\left(\mathcal{A}_{gg\to H}\mathcal{A}_{H\to\gamma\gamma}\mathcal{A}_{\operatorname{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2\Gamma_H^2}$$

• Total $gg \rightarrow \gamma\gamma$ amplitude

$$\mathcal{A}_{gg \to \gamma\gamma} = \frac{-\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma}}{\hat{s} - m_H^2 + im_H \Gamma_H} + \mathcal{A}_{\text{cont}}$$

$$\delta \hat{\sigma}_{gg \to H \to \gamma\gamma} = -2(\hat{s} - m_H^2) \frac{\operatorname{Re}\left(\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma} \mathcal{A}_{\operatorname{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2 \Gamma_H^2} - 2m_H \Gamma_H \frac{\operatorname{Im}\left(\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma} \mathcal{A}_{\operatorname{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2 \Gamma_H^2}$$

• "Re" term vanishes upon integration over \hat{s} , provided that $\mathcal{A}_{gg \to H}, \mathcal{A}_{H \to \gamma\gamma}, \mathcal{A}_{cont}$ do not vary too quickly. Dicus, Willenbrock

• Total $gg \rightarrow \gamma\gamma$ amplitude

$$\mathcal{A}_{gg \to \gamma\gamma} = \frac{-\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma}}{\hat{s} - m_H^2 + im_H \Gamma_H} + \mathcal{A}_{\text{cont}}$$

$$\delta \hat{\sigma}_{gg \to H \to \gamma\gamma} = -2(\hat{s} - m_H^2) \frac{\operatorname{Re}\left(\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma} \mathcal{A}_{\operatorname{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2 \Gamma_H^2} - 2m_H \Gamma_H \frac{\operatorname{Im}\left(\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma} \mathcal{A}_{\operatorname{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2 \Gamma_H^2}$$

- "Re" term vanishes upon integration over \hat{s} , provided that $\mathcal{A}_{gg \to H}, \mathcal{A}_{H \to \gamma\gamma}, \mathcal{A}_{cont}$ do not vary too quickly. Dicus, Willenbrock
- "Im" term needs relative phase, resonance vs. continuum.

Interference in diagrams:

- Interference in diagrams:
- In SM, $A_{gg \rightarrow H}$ and $A_{H \rightarrow \gamma\gamma}$ are mainly real, due to t, W dominance in loop, for $m_H < 2m_W$.

- Interference in diagrams:
- In SM, $\mathcal{A}_{gg \to H}$ and $\mathcal{A}_{H \to \gamma\gamma}$ are mainly real, due to t, W dominance in loop, for $m_H < 2m_W$.
- At 1-loop, $\mathcal{A}^*_{\text{cont}}$ is also mainly real, because Dicus, Willenbrock $\mathcal{A}^{\text{tree}}(g^{\pm}g^{\pm} \rightarrow q\bar{q}) = \mathcal{A}^{\text{tree}}(q\bar{q} \rightarrow \gamma^{\pm}\gamma^{\pm}) = 0$ for $m_q = 0$.

- Interference in diagrams:
- In SM, $\mathcal{A}_{gg \to H}$ and $\mathcal{A}_{H \to \gamma\gamma}$ are mainly real, due to t, W dominance in loop, for $m_H < 2m_W$.
- At 1-loop, $\mathcal{A}^*_{\mathrm{cont}}$ is also mainly real, because Dicus, Willenbrock $\mathcal{A}^{\mathrm{tree}}(g^{\pm}g^{\pm} \to q\bar{q}) = \mathcal{A}^{\mathrm{tree}}(q\bar{q} \to \gamma^{\pm}\gamma^{\pm}) = 0$ for $m_q = 0$.
- Dominant phase is from $\mathcal{A}_{gg \to \gamma\gamma}^{2-\text{loop}}$, in particular $\text{Im } F_{-++}^{L}$.

Need 2-loop $gg \rightarrow \gamma\gamma$ helicity amplitudes

Bern, De Freitas, LD

Also important for NLO calculation of $gg \rightarrow \gamma\gamma X$ — significant contribution to $\gamma\gamma$ continuum background.

Bern, LD, Schmidt

1-loop $gg \rightarrow \gamma\gamma$ amplitude

$$\mathcal{A}_{gg \to \gamma\gamma}^{1-\text{loop}} = 4\alpha \,\alpha_s(\mu) \delta^{a_1 a_2} \left(\sum_i Q_i^2\right) A^{(1)}(s,t)$$

• Through $\mathcal{O}(\epsilon^0)$ (not

(note missing imaginary parts)

$$\begin{aligned} A_{++++}^{(1)} &= A_{-+++}^{(1)} = A_{+-++}^{(1)} = A_{++-+}^{(1)} = A_{+++-}^{(1)} = 1\\ A_{--++}^{(1)} &= -\frac{1}{2} \frac{t^2 + u^2}{s^2} \left[\ln^2 \left(\frac{t}{u} \right) + \pi^2 \right] - \frac{t - u}{s} \ln \left(\frac{t}{u} \right) - 1\\ A_{-+-+}^{(1)} &= -\frac{1}{2} \frac{t^2 + s^2}{u^2} \ln^2 \left(-\frac{t}{s} \right) - \frac{t - s}{u} \ln \left(-\frac{t}{s} \right) - 1\\ &- i\pi \left[\frac{t^2 + s^2}{u^2} \ln \left(-\frac{t}{s} \right) + \frac{t - s}{u} \right] \\ A_{+--+}^{(1)} &= A_{-+++}^{(1)} (t \leftrightarrow u) \end{aligned}$$

• Actually need through $\mathcal{O}(\epsilon^2)$ for 2-loop case...

2-loop $gg \rightarrow \gamma\gamma$ amplitude

$$\mathcal{A}_{gg \to \gamma\gamma}^{2-\text{loop}} = \frac{2\alpha \alpha_s^2(\mu)}{\pi} \delta^{a_1 a_2} \left(\sum_i Q_i^2 \right) \left\{ \left[\mathbf{I}^{(1)}(\epsilon) + \frac{11N - 2N_f}{6} \left(\ln(\mu^2/s) + i\pi \right) \right] A^{(1)}(s,t) + NF^{\mathbf{L}}(s,t) - \frac{1}{N} F^{\mathbf{SL}}(s,t) \right\}$$

where N = 3, $N_f = 5$ (below m_t), and IR poles are given in dim. reg. by:

$$\boldsymbol{I}^{(1)}(\boldsymbol{\epsilon}) = -N \frac{e^{-\boldsymbol{\epsilon}\psi(1)}}{\Gamma(1-\boldsymbol{\epsilon})} \left[\frac{1}{\boldsymbol{\epsilon}^2} + \left(\frac{11}{6} - \frac{1}{3} \frac{N_f}{N} \right) \frac{1}{\boldsymbol{\epsilon}} \right] \left(\frac{\mu^2}{-s} \right)^{\boldsymbol{\epsilon}}$$

Now let

$$x = \frac{t}{s}, \quad y = \frac{u}{s}, \quad X = \ln\left(-\frac{t}{s}\right), \quad Y = \ln\left(-\frac{u}{s}\right)$$

Catani

Relevant finite terms in $\mathcal{A}_{gg\to\gamma\gamma}^{2-\text{loop}}$

$$\begin{split} F_{++++}^{\mathbf{L}} &= \frac{1}{2} \\ F_{--++}^{\mathbf{L}} &= -(x^2 + y^2) \Big[4\text{Li}_4(-x) + (Y - 3X - 2i\pi)\text{Li}_3(-x) \\ &\quad + ((X + i\pi)^2 + \pi^2)\text{Li}_2(-x) + \frac{1}{48}(X + Y)^4 \\ &\quad + i\frac{\pi}{12}(X + Y)^3 + i\frac{\pi^3}{2}X - \frac{\pi^2}{12}X^2 - \frac{109}{720}\pi^4 \Big] \\ &\quad + \frac{1}{2}x(1 - 3y) \Big[\text{Li}_3(-x/y) - (X - Y)\text{Li}_2(-x/y) - \zeta_3 + \frac{1}{2}Y((X - Y)^2 + \pi^2) \Big] \\ &\quad + \frac{1}{4}x^2 \Big[(X - Y)^3 + 3(Y + i\pi)((X - Y)^2 + \pi^2) \Big] \\ &\quad + \frac{1}{8} \Big(14(x - y) - \frac{8}{y} + \frac{9}{y^2} \Big) ((X + i\pi)^2 + \pi^2) \\ &\quad + \frac{1}{16}(38xy - 13)((X - Y)^2 + \pi^2) - \frac{\pi^2}{12} - \frac{9}{4} \Big(\frac{1}{y} + 2x \Big) (X + i\pi) + \frac{1}{4} \\ &\quad + \Big\{ t \leftrightarrow u \Big\} \end{split}$$

Close-up of Higgs resonance

Not-so-close-up of Higgs resonance

Percentage correction to SM Higgs signal

- Effect is -(2-6)% over region where $\gamma\gamma$ is visible.
- Gets very large near WW threshold. (We checked that phase from $H \to WW^* \to \gamma\gamma$ is not significant here.)

Preliminary study of MSSM

- Effect larger if $Hb\bar{b}$ coupling increases, driving up Γ_H .
- But visibility of signal is also drops as $Br(H \rightarrow \gamma \gamma)$ drops.
- Here $X_b = X_t = 1.2$ TeV, $M_{SUSY} = 1$ TeV, $\mu = 200$ GeV.

Preliminary study of MSSM (cont.)

• Here $X_b = X_t = 1.2$ TeV, $M_{SUSY} = 1$ TeV, $\mu = 1$ TeV

• Interference of $gg \rightarrow H \rightarrow \gamma\gamma$ signal with continuum background at LHC relies on an interplay between phases in QCD and electroweak amplitudes.

- Interference of $gg \rightarrow H \rightarrow \gamma\gamma$ signal with continuum background at LHC relies on an interplay between phases in QCD and electroweak amplitudes.
- In the SM, 2-loop QCD phases are more important.

- Interference of $gg \rightarrow H \rightarrow \gamma\gamma$ signal with continuum background at LHC relies on an interplay between phases in QCD and electroweak amplitudes.
- In the SM, 2-loop QCD phases are more important.
- Effect is destructive in the SM, though -(2-6)% is below presently anticipated th. & expt. uncertainties.

- Interference of $gg \rightarrow H \rightarrow \gamma\gamma$ signal with continuum background at LHC relies on an interplay between phases in QCD and electroweak amplitudes.
- In the SM, 2-loop QCD phases are more important.
- Effect is destructive in the SM, though -(2-6)% is below presently anticipated th. & expt. uncertainties.
- Effect can get larger in MSSM, for example, in regions where the $\gamma\gamma$ signal is still visible.

- Interference of $gg \rightarrow H \rightarrow \gamma\gamma$ signal with continuum background at LHC relies on an interplay between phases in QCD and electroweak amplitudes.
- In the SM, 2-loop QCD phases are more important.
- Effect is destructive in the SM, though -(2-6)% is below presently anticipated th. & expt. uncertainties.
- Effect can get larger in MSSM, for example, in regions where the $\gamma\gamma$ signal is still visible.
- Further study of effects in MSSM, other Higgs models, and in selected other channels in the (MS)SM is warranted.