

ARIES **Dynamic Response of Graphitic Targets** with Tantalum Cores Impacted by **Pulsed 440-GeV Proton Beams** 2nd Annual Meeting of ARIES WP17 P. Simon, P. Drechsel, P. Katrik, K.-O. Voss, P. Bolz, F. J. Harden, M.

Guinchard, Y. Kadi, C. Trautmann, M. Tomut

HRMT-38 "FlexMat"

- HiRadMat Experiment performed in May 2018
- Measured dynamic response of a wide variety of graphite grades (0.5 2.25 g/cm3), polycrystalline graphite, glassy carbon, CFC, foam, TPG...
 - All relevant for beam intercepting devices
- Overall 46 samples in 6 target stations with <=10 samples in-line

Overview presentation at the 1st annual meeting in Malta 2018

- Dedicated target station of Ø10 mm graphite samples with a press fit Ø3 mm tantalum (Z=73, ρ=16.67 g/cm³) core
 - Use higher specific energy deposition in tantalum to induce potential failure in the surrounding graphite

FlexMat / Target Station 6

- 10 Samples with embedded tantalum "core"
- Tantalum has shown excellent robustness towards beam impact in comparable conditions
 - Tested extensively in HRMT-27 RodTarg
- Max. specific energy deposition (100 mm target): Graphite, 1.83 g/cm³: ~1 GeV/cm³ p (σ = 0.25 mm) Tantalum, 16.67 g/cm³: ~18 GeV/cm³ p (σ = 1.5 mm)

 This induces up to ~100 MPa stress in the graphite at beam intensities of ~2-6×10¹¹ ppp

#	Target Material	Density (g cm ⁻³)	Flexural strength (MPa)	Peak energy deposition in Ta core (10 ⁻¹⁰ J cm ⁻³ p ⁻¹)
1	SGL R6650 (PG, 10 μm)	1.84	67	1.7
2	SGL R6300 (PG, 20 μm)	1.73	51	5.5
3	POCO ZEE (PG, 1 µm)	1.77	146	12.9
4	SGL Premium PyC (Pyrolized 2D-CFC)	1.59	∥: 123 ⊥: 290	20.7
5	SGL Premium (2D CFC)	1.55	∥: 106 ⊥: 225	26.1
6	SGL R6650 (PG, 10 μm)	1.84	67	28.5
7	ArianeGroup Sepcarb (3D CFC)	1.5	∥: 145 ⊥: 186 [30] 17	29.1
8*	ø 7mm SGL Sigraflex (EG)	1	_	28.8
	ø 10 mm Sepcarb (3D-CFC)	1.5	_	
9	SGL Sigraflex (Expanded graphite)	1	_	27.9
10	POCO FOAM (Graphitic foam)	0.5	3	26.9

Sample #1 R6650 / 1×10¹¹ ppp

- Clear identification of radial and axial waves
- Signal dominated by dynamic response of tantalum core
- Considerably faster damping of dynamic response in comparison to bare metal

Sample #1 R6650 / 1×10¹¹ ppp

- Simulation using ANSYS Workbench w/ FLUKA input
 - Material parameters from supplier datasheets
 - No plasticity, fully bonded contact

Polycrystalline Graphites

- No correlation between microstructure (grain size) and damping behaviour
 - Damping time constant decreases systematically with pulse intensity
- Deformed wave structure hints to first signs of failure in target #6 at 6×10¹¹ ppp

Updates on luminescence studies of metal-diamond

composites

CFCs + Graphitic Foam

- Possible failure in CFCs below 2 kJ/cm³ in tantalum core?
- Somewhat unexpected due to large strength of the material
- Foam response very clear, even at higher beam intensities

High intensity / $1.3 - 1.7 \times 10^{12}$ ppp

- Failure in nearly all samples (graphite + tantalum core)
 - Beam-induced stresses in the cores ~2x higher than during RodTarg
- Out of the large energy deposition samples (starting from sample #4) Sepcarb shows the "cleanest" response

Summary

- Slopes are proportional to CTE of the materials
- Polycrystalline graphites show clear signs of failure:
 - Velocity doesn't increase with beam intensity at a certain point
 - #6 R6650: agrees well with stresses expected from ANSYS
- CFCs have a more peculiar behaviour with apparently two regimes:
 - Linear response <1 kJ/cm³
 - Decreased slope >1 kJ/cm³
 - Fiber delamination? Failure of the low strength matrix? (tensile strength 17 MPa in Sepcarb)
- Very interesting results for POCO FOAM

Outlook

Simulations with AUTODYN:

• Foam in Workbench: (AUTODYN produces error at 0.5 g/cm³ ⊗)

