

Status of Task 17.4-related activities

A. Lechner on behalf of Task 17.4 participants

2nd Annual WP17 meeting

ARIES is co-funded by the European Commission Grant Agreement number 73087

Simulation of irradiation effects and mitigation methods

- Quantify Displacement Per Atom (DPA), gas production, nuclear transmutation for equipment in **complex accelerator environments**
- Provide a relationship with irradiation experiments at lower energies and/or with different particle species, in particular investigate and simulate the material damage induced by irradiation with protons and ions at various energies and fluences
- Ideally, relate radiation damage quantities (e.g. DPA) with change of relevant macroscopic material properties
- Assess annealing and temperature-related effects
- Open to **co-operate with other international collaborations** such as RaDIATE (Radiation Damage In Accelerator Target Environment)

Participants: CERN, GSI, POLIMI

Simulation of rad. effects in HL collimators

- The scoring functionality in the FLUKA simulation model was extended to calculate **gas production (H, He)** in collimators
- Obtained results for HL-LHC primary and secondary collimators (bulk and coatings) → important for comparing to irradiation experiments carried out with O(100 MeV) protons (BLIP)

Simulation of rad. effects in HL collimators

- E. Skordis completed PhD thesis on radiation impact in HL collimators
 - estimates of beam losses in HL-LHC collimation region
 - first DPA calculations for HL
 - thesis defense took place in March 2020.

Irradiation of HL collimators materials @GSI

- Was performed in March 2019 at the M-Branch of the UNILAC accelerator at the GSI (4.8 MeV/u Ca ions, 113 h of beam time)
- Different coated (Mo, Cu) and uncoated MoGR, CfC and Graphite samples included in the setup
- Samples were exposed to four different fluences $(10^{12}-4*10^{14} \text{ ions/cm}^2) \rightarrow \text{evaluate degradation vs DPA}$
- Maximum obtained DPA value equivalent to HL-LHC era

Irradiation of HL collimators materials @GSI

- Samples were shipped to CERN after two month (dose rate <0.1 μ Sv/h)
- Post-irradiation examinations carried out since then:
 - electrical conductivity measurements of bulk and coatings
 - microscopic inspection with SEM-FIB
- See talk of C. Accettura for details on methods and results (publication under preparation)

Irradiation of HL collimators materials @BLIP

- Irradiation carried out by **RaADIATE collaboration** (**M. Calviani et al.**)
- **MoGR** and **CfC** samples irradiated in RaDIATE target box (CERN2 capsule) in 2018 \rightarrow in total 2.81×10²¹ protons on target
- Proton beam with 181 MeV: sizable H/He production \rightarrow appm/DPA in the same ballpark as in future HL collimators
- Was confirmed in **updated FLUKA simulations in 2019**

Irradiation of HL collimators materials @BLIP

- Activation > than for GSI tests \rightarrow PIE needs to be carried out in industry
- Contract awarded to Framatome Gmbh last year (for visual inspection with a digital microscope, coating adherence tests + other options)
- Shipping to Germany originally planned earlier this year, but was postponed due to COVID-19 (should take place soon)
- See talk of **N. Solieri**

Upcoming tests (@GSI and @BLIP)

- Plan is to test new grade of MoGr (Nb8404Ng) with new powders (Mo coated), but also Graphite R7550 → same grades in both tests
- GSI test (by CERN/GSI):
 - Proposal submitted, awaiting approval by Scientific Committee
 - Goal is to assess dose rate effect
- **BLIP test (by RaDIATE Collaboration):**
 - CERN3 capsule with CERN/Fermilab specimens, including the coated MoGR and Graphite samples
 - Irradiation test delayed due to COVID-19, but will probably still take place this year
 Talk of N. Solieri,
 - FLUKA simulations have already been carried out

Talk of C. Accettura

This session

Status task 17.4	Anton Lechner
376/1-020, CERN	13:30 - 13:50
Radiation damage and gas production simulations for HL-LHC collimators	Andreas Waets
376/1-020, CERN	13:50 - 14:10
GSI irradiation tests results and future test plans	Carlotta Accettura
376/1-020, CERN	14:10 - 14:30
Modelling of defects in graphite	Marco Beghi
376/1-020, CERN	14:30 - 14:50
Update on BLIP irradiation tests and RaDIATE activities	Nicola Soleri
376/1-020, CERN	14:50 - 15:10

Deliverables & Milestones

- Deliverables:
 - The task has one deliverable: "Report on simulations on irradiation effects [month 44]"
- Milestones:
 - No milestones are foreseen for Task 17.4

