

Updates on BLIP irradiation tests and RaDIATE activities

N. Solieri Under the supervision of M. Calviani On behalf of the RaDIATE collaboration

Outline

- 1. Radiation damage in Beam Impacted Devices (BIDs)
 - Material R&D approaches for BIDs at different time-scales
 - The RaDIATE collaboration

2. BLIP Irradiations

- BNL's BLIP facility
- Organization of an irradiation at BLIP and subsequent PIE
- An overview of the irradiations that we have launched
- The CERN2 capsule

3. An overview of some of the other RaDIATE activities

- BeGrid2 (HRMT43) organization and subsequent PIE (K. Ammigan, FNAL)
- Fatigue testing of Ti alloys for FNAL beam windows (S. Bidhar, FNAL)
- Ti-base alloy tensile testing and microscopy (D. Senor, PNNL)
- Radiation damage effects in Be (S. Kuksenko, UKAEA)
- Development of ANSYS scripts for the implementation of radiation damage data (N. Solieri, CERN)

Material R&D studies for BIDs

□ Data from material studies for nuclear reactors poorly translate to BID scenarios → <u>Need own material R&D</u>

TIMESCALE

ns / μs

<u>HiRadMat</u>

Characterization of the dynamic response of the materials/prototypes under proton beam impact. No relevant radiation damage produced

¹Courtesy C. Torregrosa ² Courtesy E. Fornasiere, in collaboration with Framatome GmbH

months / years

Material R&D studies for BIDs

□ Data from material studies for nuclear reactors poorly translate to BID scenarios → <u>Need own material R&D</u>

TIMESCALE

ns / μs

months / years

<u>HiRadMat</u>

Characterization of the dynamic response of the materials/prototypes under proton beam impact. No relevant radiation damage produced

Post-mortem irradiation examination

Opening of a spent AD-Target after 7 years of irradiation

BLIP Irradiations

Several small samples for material testing enclosed in welded stainless steel capsules (Ø70 mm, 5 mm thick)

¹Courtesy C. Torregrosa ² Courtesy E. Fornasiere, in collaboration with Framatome GmbH

Material R&D studies for BIDs

¹Courtesy C. Torregrosa ² Courtesy E. Fornasiere, in collaboration with Framatome GmbH

RaDIATE Collaboration

Radiation Damage In Accelerator Target Environments

Broad aims are threefold:

- to generate materials data for accelerator and fission/fusion communities
- Bring together HEP and nuclear fusion/fission materials research communities
- to initiate a continuing synergy between research in these communities, benefitting both proton accelerator applications in science and industry and carbon-free energy technologies

<u>5th in-person collaboration meeting</u> held at CERN in Dec. 2018

Irradiations at BLIP

<u>Material irradiation in tandem and upstream of isotope targets</u>:

- Primary proton energy: up to 200 MeV
- RaDIATE Target array needs to be optimized for each run to deliver a beam that is appropriate for isotope production
- POT ~ 1E21
- Peak DPA: 0.88 (Ta2.5W, CERN2 capsule), 1.2 (Ir, HighZ capsule)
- Rastered beam profile to achieve more constant irradiation profile
- Irradiation length O(months)

Objectives

- Evaluate radiation damage effects from high-energy protons in various accelerator materials:
 - Beam windows, Secondary particle production targets, Beam dumps
- Perform PIE activities to characterize property changes due to proton irradiation damage
 - Strength (tensile, bend, fatigue)
 - Thermal (CTE, conductivity)
 - Annealing effects and microstructure (SEM, TEM, EBSD)

¹Courtesy K. Ammigan ²Courtesy J. Canhoto

2. <u>Capsule and material specimens fabrication</u>

Filling with specimens

2. <u>Capsule and material specimens fabrication</u>

Filling with specimens

3. Shipment of capsule to BNL and installation in the beamline

2. <u>Capsule and material specimens fabrication</u>

4.

3. Shipment of capsule to BNL and installation in the beamline

CERN2 Capsule: Computed dose sum @ 1m after 18 months cooldown ~4 mSv/h

2. <u>Capsule and material specimens fabrication</u>

Filling with specimens

3. <u>Shipment of capsule to BNL and installation in the beamline</u>

CERN2 Capsule: Computed dose sum @ 1m after 18 months cooldown ~4 mSv/h

6. <u>PIE ACTIVITIES</u>

4.

6. <u>PIE ACTIVITIES</u>

CERN₂ Capsule → Design started in second half of 2017 PIE on some of the specimens will take place during 2020

An overview of the BLIP irradiation runs we launched

- POT: 1.03E21
- Peak DPA: 2.75 (Ir)
- Max T_{irr}: ~850 °C
- CuCrZr, TZM → SPS Int. Dump
- Ir → AD-Target
- Capsule currently at PNNL
- Opening will take place in the coming weeks
- PIE \rightarrow 4-point bending test
- A previous capsule suffered catastrophic damage and all the specimens were destroyed

An overview of the BLIP irradiation runs we launched

- POT: 1.03E21
- Peak DPA: 2.75 (Ir)
- Max T_{irr}: ~850 °C
- CuCrZr, TZM → SPS Int. Dump
- Ir \rightarrow AD-Target
- Capsule currently at PNNL
- Opening will take place in the coming weeks
- PIE \rightarrow 4-point bending test
- A previous capsule suffered catastrophic damage and all the specimens were destroyed

2. <u>CERN2 Capsule</u>

- POT: 2.8E21
- Peak DPA: 4.77 (Ta)
- Max T_{irr}: ~230 °C
- Mo-Coated MoGr and CFC → HiLumi Collimators
- Monocr. Si → SPS Dump
- Capsule currently at BNL
- Opening was scheduled for end of Mar-Apr. 2020 (a) Framatome
- Restart of activities being planned in collaboration with BNL
- PIE → Coating visual inspection, adhesion test, 4-point bend test

An overview of the BLIP irradiation runs we launched

- POT: 1.03E21
- Peak DPA: 2.75 (Ir)
- Max T_{irr}: ~850 °C
- CuCrZr, TZM → SPS Int. Dump
- Ir → AD-Target
- Capsule currently at PNNL
- Opening will take place in the coming weeks
- PIE \rightarrow 4-point bending test
- A previous capsule suffered catastrophic damage and all the specimens were destroyed

- POT: 2.8E21
- Peak DPA: 4.77 (Ta)
- Max T_{irr}: ~230 °C
- Mo-Coated MoGr and CFC → HiLumi Collimators
- Monocr. Si → SPS Dump
- Capsule currently at BNL
- Opening was scheduled for end of Mar-Apr. 2020 @ Framatome
- Restart of activities being planned in collaboration with BNL
- PIE → Coating visual inspection, adhesion test, 4-point bend test

- POT: 7.5E21 (expected)
- Max T_{irr}: ~170 °C (CERN specimens)
- Mo-coated MoGr and Gr7550 → HiLumi Collimators
- Capsule construction under way at CERN
- Irradiation was scheduled to take place in May 2020, now scheduled for second half of 2020

An overview of some of the other RaDIATE activities

BeGrid2 (HRMt43) - Organization

Objectives → Identify thermal shock response differences between non-irradiated and previously proton-irradiated specimens from BNL BLIP:

(Be, C, Ti-alloys, Si, SiC-coated C)

First and unique tests with pre-activated materials at HiRadMat

- Explore novel materials such as:
 - Metal foams (C, SiC)
 - Electrospun fiber mats (Al₂O₃, ZrO₂)

- Very complex coordination between BNL, FNAL, PNNL and CERN for handling of highly radioactive samples
- Real-time measurement of dynamic thermomechanical response of graphite specimens in an effort to benchmark numerical simulations
- Completed in Oct. 2018

BeGrid2 (HRMt43) - Organization

Objectives → Identify thermal shock response differences between non-irradiated and previously proton-irradiated specimens from BNL BLIP:

(Be, C, Ti-alloys, Si, SiC-coated C)

First and unique tests with pre-activated materials at HiRadMat

Explore novel materials such as:

BeGrid2 (HRMt43) – Upcoming PIE at UKAEA-MRF

PIE of the HRMT high-dose-irradiated specimens carried out a UKAEA-MRF

- Topographic Raman Imaging
- Confocal microscopy in reflected light
- Fluorescent and Raman spectroscopy
- 3D layer mapping
- Profilometry
- SEM

- Real-time measurement of dynamic thermomechanical response of graphite specimens in an effort to benchmark numerical simulations
- Completed in Oct. 2018

Fatigue testing of Ti alloys for FNAL T2K beam window (1/2)

T₂K's Ti beam window subjected to thermal shock-induced load cycles **AND** long-term proton beam irradiation damage

FNAL custom-made Bending Fatigue tester

S. Bidhar (FNAL)

- Cyclic load frequency of 15 Hz
- Stress range of 375MPa 1250 Mpa
- Automatically stops when sample cracks
- Ti Grade 5 and 23 tested
- Testing completed in Feb 2020

Fatigue testing of Ti alloys for FNAL T2K beam window (2/2)

Ti-base alloys tensile testing and microscopy

CÉRN

ENGINEERING DEPARTMENT

Distinct radiation hardening observed for each of the analyzed Ti grades

Radiation damage effects in Be

NuMI beam window:

- 120 GeV proton beam
- 1.57×10²¹ protons during its lifetime
- Up to 0.5 dpa
- T ≈ 50°C

- Significant hardening is observed in the p-irradiated beryllium even at 0.1 dpa
- Hardening increases with irradiation to higher doses (at least up to 0.5 dpa)
- Hardness of the irradiated beryllium is less anisotropic

Development of ANSYS scripts for the implementation of radiation damage data

We need a way to easily implement the radiation damage to material properties data accumulated through the BLIP irradiations into ANSYS Workbench for the assessment of our devices

- Importation of FLUKA-generated DPA map into ANSYS and its scaling to 1. integrated intensity
- Discretization into N DPA levels and generation of N corresponding 2. materials
- Implementation of law of degradation of material property with respect to 3. DPA:
 - Thermal conductivity/expansion
 - Hardening
- Assignment of material to element depending on DPA value at element 4. centroid coordinates
- Only adds a couple of minutes of computation time for typical size-models
- Already available for XYZ and RPZ binning

1	/PREP7
5	
	INFOI FARAMEIEKS
2	
5 7 8	FILENAME = 'E:\FLUKAf\TAXBDDPA.dat' !FLUKA DPA FILE DIRECTORY
9	COMPNAME='TAX1' !NAMED SELECTION IN ANSYS TO WHICH THE COMMAND WILL BE APPLIED
)	
	INTEGR INTENSITY=2.4019 !Integrated intensity for DPA scaling
5	DPAMINCUTOFF=0.001 !Minimum DPA, below which the script will not be applied
	DPAMAXCUTOFF=0.72 !MAXIMUM DPA, TO WHICH THE DPA VALUES WILL BE CAPPED
5	NDISCR=100 !NUMBER OF DISCRETIZATION POINTS FOR EVALUATION OF MATERIAL
	PROPERTIES
5	
7	
8	
9	
)	
2	
8	READ THE FLUKA OUTPUT COORDINATE SYSTEM
	*SET,SCALE LENGTH,1E-2 !Convert units of length from FLUKA to ANSYS (cm to m)
5	ALLSEL
5	*DIM, BINS, ARRAY, 3, 4
7	
8	
9	
)	*SET,NSKIP,8
	*SREAD, HEADER, FILENAME, , , , , NSKIP
2	
3	
	BINS (1, 1) = VALCHR (STRSUB (HEADER (1, 3), 25, 12))
5	BINS (2, 1) = VALCHR (STRSUB (HEADER (1, 4), 25, 12))
5	BINS (3, 1) = VALCHR (STRSUB (HEADER (1, 5), 25, 12))
7	BINS(1,3)=VALCHR(STRSUB(HEADER(1,3),56,6))
8	BINS (2, 3) = VALCHR (STRSUB (HEADER (1, 4), 56, 6))
9	BINS (3, 3) =VALCHR (STRSUB (HEADER (1, 5), 56, 6))
)	BINS(1,4)=VALCHR(STRSUB(HEADER(1,3),69,11))
	BINS(2,4) = VALCHR(STRSUB(HEADER(1,4),69,11))
2	BINS (3, 4) = VALCHR (STRSUB (HEADER (1, 5), 69, 11))
3	
5	
5	! SET THE NUMBERS OF BINS IN EACH DIRECTION
7	
8	*SET, NX, BINS (1, 3)
)	*SET.NY, BINS (2, 3)
)	*SET, NZ, BINS (3, 3)
,	' SET AND SCALE POSITION OF FIRST BIN IN EACH DIRECTION
í	*SET_X1.BINS(1.1)*SCALE_LENGTH
	*SET VI. BINS (2.1) *SCALF LENGTH
2	"BDI/II/DING(2/I) "BCRDE DENGIN

Example – Th. Conductivity Degradation in first block of K12 TAX

¹Courtesy A. Ciccotelli

□ What would happen to the thermal conductivity of the C10300 in the first TAX block after 4 years of 4x intensity BD mode (integrated intensity 2.4E19)?

²M. Eldrup, N. Singh, Influence of composition, heat treatment and neutron irradiation on the electrical conductivity of copper alloys

Conclusions & future outlook

Proton-beam-induced radiation damage to materials is one of the main challenges in the design, operation of current and future BIDs

BLIP Irradiations: assessing long-term radiation damage on materials that we employ in BIDs

Two capsules will be opened during 2020:

- High-Z Capsule → CuCrZr, TZM (SPS Internal Dump), Ir (AD-Target)
- CERN₂ Capsule → Mo-coated MoGr and CFC (HiLumi collimators)

A new irradiation is scheduled for 2020:

■ CERN₃ Capsule → Mo-coated MoGr and Gr₇₅₅o (HiLumi collimators)

Plenty of results coming from RaDIATE work packages in the coming months

BACKUP SLIDES

Microscopic radiation damage effects

Three main effects of irradiation on the microstructure of structural materials:

- 1) <u>Structural changes from displacement and rearrangement of atoms</u>
 - Creation of vacancies and self-interstitials (and their recombination or clustering)
 - Growth of cavities (swelling), climb of dislocations (creep), microvoids
 - ..
- 2) <u>Kinetic effects</u> → Radiation Enhanced Diffusion, Segregation and Precipitation (RED, RIS, REP)
- 3) <u>Transmutation</u> → Production of new atomic species. Production cross sections are highest for light transmutants (H, He)

H and Helium production cross section $\sigma_{\alpha} \rightarrow$ Continuously increasing with energy

	Irradiation Source	DPA rate (DPA/s)	He gas production (appm/DPA)	Irradiation Temp (°C)
	Mixed spectrum fission reactor	3 x 10 ⁻⁷	1 X 10 ⁻¹	200-600
	Fusion reactor	1 X 10 ⁻⁶	1 X 10 ¹	400-1000
1	High energy proton beam	6 x 10 ⁻³	1 X 10 ³	100-800

Microscopic radiation damage effects

Three main effects of irradiation on the microstructure of structural materials:

- Structural changes from displacement and rearrangement of atoms 1)
 - Creation of vacancies and self-interstitials (and their recombination or clustering)
 - Growth of cavities (swelling), climb of dislocations (creep), microvoids
- <u>Kinetic effects</u> \rightarrow Radiation Enhanced Diffusion, Segregation and Precipitation (RED, RIS, REP) 2)
- <u>**Transmutation**</u> \rightarrow Production of new atomic species. Production cross sections are highest for light transmutants (H, He)

<u>Displacement cross section</u> σ_{dpa} \rightarrow Above 20 MeV (for Fe) only very slightly increases with energy <u>H and Helium production cross section</u> σ_{α} \rightarrow **Continuously increasing with energy**

	Irradiation Source	DPA rate	He gas production	Irradiation Temp	
	Mixed coactrum	(DPA/S)	(appni/DPA)	(C)	
	Effects from low energy neutron irradiations do not equal effects from high energy proton irradiations (transmutation)				
-	High energy proton beam	6 x 10 ⁻³	1 X 10 ³	100-800	
				10.11	

Radiation damage effects on macroscopic material properties

Dimensional Change and associated reduction of density

Reduction of thermal/electrical conductivity and thermal expansion

Hardening and embrittlement

- Loss of ductility
- □ Hardening
- □ Reduction of fracture toughness, change of fracture mode from ductile to brittle
- □ Irradiation embrittlement → Mostly due to pinning of dislocations by irradiation induced dislocation loops, precipitates, cavities or bubbles
- H and He embrittlement
- Accelerated corrosion

¹K. Whittle, Radiation Damage, Ch.² ²M. Li, S. J. Zinkle, Physical and Mechanical Properties of Copper and Copper Alloys, Comprehensive Nuclear Materials, vol.⁴ (2012)

Radiation damage effects on macroscopic material properties

Dimensional Change and associated reduction of density

Reduction of thermal/electrical conductivity and thermal expansion

Thermo-mechanical response of BIDs heavily depend on material properties, but material properties heavily dependent upon Radiation Damage

Пагаспіпу

□ Reduction of fracture toughness, change of fracture mode from ductile to brittle

- □ Irradiation embrittlement → Mostly due to pinning of dislocations by irradiation induced dislocation loops, precipitates, cavities or bubbles
- H and He embrittlement
- Accelerated corrosion

¹K. Whittle, Radiation Damage, Ch.² ²M. Li, S. J. Zinkle, Physical and Mechanical Properties of Copper and Copper Alloys, Comprehensive Nuclear Materials, vol.⁴ (2012)

The CERN2 capsule

- 4x Mo-coated CFC specimens (HiLumi Collimators)
- 4x Mo-coated MoGr specimens /
- Panasonic graphite foils
- Graphite fillers

¹Courtesy I. Lamas

DPA (peak)

He appm/DPA

He appm

²A. Waets, FLUKA simulations on residual gas production in IR7 collimators, ColUSM 20/09/2019

0.15

110

600-1000

0.18

130

600-1000

0.154

101

1759

2

Scope of the Contract – Baseline activities

CERN rules \rightarrow

Technical specification for the activities
Tendering procedure for companies who have experience in the field
Awarding of contract: Framatome GmbH (DE)

Current status of the capsule at BNL

- 1. Shipment of the capsule to the contractor's facility (Capsule currently at BNL, USA)
- 2. Opening of the capsule:
 - a) Preparation of opening procedure. Evaluation of applicability of opening procedure when the CERN2 irradiated capsule is unloaded in the hot cell
 - b) Validation of opening procedure on spare CERN₂ capsule supplied by CERN
 - c) Extraction of the specimens by means of vacuum tweezers
 - d) Sorting and storage of the specimens
- 3. PIE activities:
 - a) Visual inspection on <u>4 Mo-coated MoGr and 4 Mo-coated CFC specimens</u>
 - b) Test adhesion of the coating on <u>2 Mo-coated MoGr specimens</u>
- 4. Transport of all the specimens from contractor's facilities to CERN

Scope of the Contract – Baseline activities

CERN rules → 🛛 📮 Technie

Technical specification for the activities
Tendering procedure for companies who have experience in the field
Awarding of contract: Framatome GmbH (DE)

hen

Shipment of the capsule to the contractor's facility (Capsule currently at BNL, USA)
Opening of the capsule:

Project delayed due to COVID but now on track to completion during 2020

Current status of the capsule at BNL

- b) Validation of opening procedure on spare CERN2 capsule supplied by CERN
- c) Extraction of the specimens by means of vacuum tweezers
- d) Sorting and storage of the specimens
- 3. PIE activities:
 - a) Visual inspection on <u>4 Mo-coated MoGr and 4 Mo-coated CFC specimens</u>
 - b) Test adhesion of the coating on <u>2 Mo-coated MoGr specimens</u>
- 1. Transport of all the specimens from contractor's facilities to CERN

