

New results on beam-induced color centers in nitrogen containing diamonds 2nd Annual Meeting of ARIES WP17

P. Simon, M. Tomut (GSI) D. Grech, M. Kitzmantel (RHP)

Recap of 1st Annual Meeting in Malta

 Measured first iono-luminescence (IL) spectra in 2018 on Diamond/Titanium-matrix composites:

Raman/PL measurements on composites is not straight forward:

Updates on luminescence studies of metal-diamond composites

Recap of 1st Annual Meeting in Malta

 Measured first iono-luminescence (IL) spectra in 2018 on Diamond/Titanium-matrix composites:

Raman/PL measurements on composites is not straight forward:

Updates on luminescence studies of metal-diamond composites

Irradiation campaigns 2019 & 2020

- Irradiation with 4.8 MeV/n ⁴⁸Ca and ¹⁹⁷Au
- Beamtime 2019 (composites & yellow diamonds):
 - Improved IL measurements with peltier-cooled moving-grating CCD spectrometer (up to 5.10¹³ i/cm²)
 - Sensitivity beyond beam diagnostic cameras
 - In-situ FT-IR measurements (up to 5.10¹³ i/cm²)
 - First irradiation of monocrystalline diamonds (irregular geometry)
- Beamtime 2020 (composites, CVD diamonds & yellow diamonds):
 - IL with fast CCD spectrometer and on-line flux measurement
 - In-situ UV/c absorption spectroscopy at 50 K and RT
 - Irradiation of monocrystalline diamonds with regular geometry

Updates on luminescence studies of metal-diamond

Irradiation campaigns 2019 & 2020

- Irradiation with 4.8 MeV/n ⁴⁸Ca and ¹⁹⁷Au
- Beamtime 2019 (composites & yellow diamonds):
 - Improved IL measurements with peltier-cooled moving-grating CCD spectrometer (up to 5.10¹³ i/cm²)
 - Sensitivity beyond beam diagnostic cameras
 - In-situ FT-IR measurements (up to 5.10¹³ i/cm²)
 - First irradiation of monocrystalline diamonds (irregular geometry)
- Beamtime 2020 (composites, CVD diamonds & yellow diamonds):
 - IL with fast CCD spectrometer and on-line flux measurement
 - In-situ UV/c absorption spectroscopy at 50 K and RT
 - Irradiation of monocrystalline diamonds with regular geometry

Updates on luminescence studies of metal-diamond

IL + FT-IR measurements 2019

• On-line iono-luminescence:

- Horiba iHR320
- Integration time: 5-120 s

In-situ FT-IR:

- Thermo Fisher Nicolet 6700
- 2 cm⁻¹ resolution

Updates on luminescence studies of metal-diamond

Iono-Iuminescence

Updates on luminescence studies of metal-diamond

Iono-Iuminescence Spectrum

- No nitrogen-related ZPLs!
 - [N-V-N]: 502 nm
 - NV0: 575 nm
 - NV-: 638 nm

ZPL: zero-phonon line PSB: phonon sideband HPHT: High pressure / high temperature

Updates on luminescence studies of metal-diamond

Iono-Iuminescence Spectrum

- No nitrogen-related ZPLs!
- Broad bands:
 - 500 650 nm
 - [N-V-N] PSB?
 - Intrinsic "A" radiation band?
 - 650 800 nm
 - NV⁻ PSB?

ZPL: zero-phonon line PSB: phonon sideband HPHT: High pressure / high temperature

Updates on luminescence studies of metal-diamond

Iono-Iuminescence Spectrum

~690 nm

- Al₂O₃ (nat. oxide layer on sample holder)
- ~884 nm
 - Nickel-related (precursor during HPHT)

ZPL: zero-phonon line PSB: phonon sideband HPHT: High pressure / high temperature

Wavelength (nm)

Updates on luminescence studies of metal-diamond

Iono-Iuminescence Spectra Evolution

- Evolution of ZPL at ~500 nm
 - H3 [N-V-N]: 503.2 nm
 - 3H (intrinsic): 503.4 nm
- Strong decrease of integrated IL signal
- Possible ZPLs at ~590, ~660 & 760 nm \rightarrow No clear identification possible

Updates on luminescence studies of metal-diamond

Integrated IL signal

- Exponential decay of IL sigal with increasing fluence
- Only 5% of initial signal preserved at final fluence
 - Close to detection limit of spectrometer

 No significant contribution of beaminduced defects

Updates on luminescence studies of metal-diamond

Integrated IL signal

- Exponential decay of IL sigal with increasing fluence
- Only 5% of initial signal preserved at final fluence
 - Close to detection limit of spectrometer

- No significant contribution of beaminduced defects
- ... And what about transmission?

1×10¹¹

1×10¹²

Updates on luminescence studies of metal-diamond composites

1×10¹³ ions/cm²

5×10¹²

IL signal / composite vs. monocrystal

- Commercially available (10-100 €/pc., up to 3x3x1 mm) HPHT diamonds with ~200 ppm N_s
- Measurements with new (fast) CCD spectrometer set-up

Good agreement between old & new IL set-up! Monocrystals behave virtually identical to composites!

Updates on luminescence studies of metal-diamond composites

14

IL signal / composite vs. monocrystal

- Commercially available (10-100 €/pc., up to 3x3x1 mm) HPHT diamonds with ~200 ppm N_s
- Measurements with new (fast) CCD spectrometer set-up

Good agreement between old & new IL set-up! Monocrystals behave virtually identical to composites!

- 1344 cm⁻¹: C-center (N_s)
- 1282 cm⁻¹: A-center (N=N)
- 1280 cm⁻¹: B-center (4N=V)
- Tracking of radiation-induced defect dynamics

Updates on luminescence studies of metal-diamond

- 1344 cm⁻¹: C-center (N_s)
- 1282 cm⁻¹: A-center (N=N)
- 1280 cm⁻¹: B-center (4N=V)
- Tracking of radiation-induced defect dynamics

 Non-luminescent defects that act as sinks for nitrogen:

$$AE_{b} = 6.3 \text{ eV} \quad \Delta E_{b} = 4.5 \text{ eV} \qquad \Delta E_{b} = 2.3 \text{ eV}$$
Updates on luminescence studies of metal-diamond composites

- 1344 cm⁻¹: C-center (N_s)
- 1282 cm⁻¹: A-center (N=N)
- 1280 cm⁻¹: B-center (4N=V)
- Tracking of radiation-induced defect dynamics
- C-center signal almost constant
 - Dominated by non-irradiated volume
- A&B center signal increases with fluence
 - Damage cross-section: (8.5±0.4) nm²/ion

Updates on luminescence studies of metal-diamond

- 1344 cm⁻¹: C-center (N_s)
- 1282 cm⁻¹: A-center (N=N)
- 1280 cm⁻¹: B-center (4N=V)
- Tracking of radiation-induced defect dynamics
- C-center signal almost constant
 - Dominated by non-irradiated volume
- A&B center signal increases with fluence
 - Damage cross-section: (8.5±0.4) nm²/ion

Similar effect as annealing >1600°C & >5 GPa for several hours!

Updates on luminescence studies of metal-diamond

In-situ UV/c absorption spectroscopy

Irradiation and measurement at both RT and 50 K

3H / H3 (N-V-N)

- Dramatic decrease in transmission
 - Already 30-40% loss of transmission at 1×10¹² (>450 nm)
- Several absorption lines of color centers can be identified, mostly intrinsic

Updates on luminescence studies of metal-diamond

Summary

- IL signal drops down to 5% of initial signal with irradiation
- Optical camera shows change of main emission from "green" to "blue"
 - Beam diagnostic cameras operate with a narrow filter
- FT-IR shows that complex non-luminescent nitrogen defects are forming
- Intrinsic degradation of transmission by irradiation
 - Additional process that degrades IL signal
- IL signal of diamond excited by swift heavy-ions might be an intrinsic process
 - Implications for potential optimization of the diamonds?

Updates on luminescence studies of metal-diamond