Matter-Antimatter asymmetry, and

How we could falsify Leptogenesis at LHC.

Baryo- and leptogenesis

Purpose: explain the current excess of matter/antimatter

- •Is there an excess of matter?
 - •Baryons: excess directly observed;

 Antibaryons seen in cosmic rays are compatible with secondary production
 - Leptons: excess of electrons similar to baryons,
 BUT WE DON'T KNOW about neutrinos,
 no direct observations + they may even be
 Majorana particles → lepton number not defined.

Today, direct observation suggests:

$$3 \ 10^{-11} < n_B/n_{\gamma} < 6 \ 10^{-8}$$

While standard cosmological constraints at the nucleosynthesis stage give the stronger, still compatible limit:

$$4 \ 10^{-10} < n_B/n_{\gamma} < 7 \ 10^{-10}$$

And the Cosmic Microwave Background estimate is in the range:

$$\eta_B^{CMB} = (6.1 \pm 0.5)10^{-10}$$

If we assume however that the asymmetry comes from earlier times, before the annihilation of most particles into photons, and assume a roughtly isentropic evolution, this suggests an initial value:

$$\frac{n_B - n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-8}$$

This small number suggests to start from a symmetrical universe, like we expect if it arises through interaction with gravity, and to generate the asymmetry by particle physics interactions.

Program

- •LEARNING EXERCISE:
 - •Direct approach to baryogenesis (Sakharov Conditions)
 - •Baryon number violation limits
 - •CP vs TCP : how to generate the asymmetry
 - •Out-of-Equilibrium transitions
 - •Difficulties with the Electroweak phase transition

(sphalerons)

- •LEPTOGENESIS as a solution: exploits the same mechanisms, but uses the sphalerons instead of suffering from them!
- •Can we prove/disprove leptogenesis?

Baryogenesis

Constraints on **Baryon number** conservation

- a number just invented to « explain » or « ensure » the proton stability :

$$au_n \approx 15min$$

$$\tau_p > 10^{32} years$$

Typical proton instability in grand unification SU(5);

Need unification scale $10^{16}\,\mathrm{GeV}$

For a particle of mass m, $\Gamma = 1/\tau$ is typically

$$\Gamma = \kappa \cdot m$$

$$\kappa \approx 1$$
, $m = 1 GeV \rightarrow \tau = 610^{-25} s$

Proton decay goes through exchange X,

$$\Gamma \approx g^4 m_{proton}^5 / M_X^4$$

a simple calcuation leads to

$$M_X/m_p \approx 10^{(25+32+7)/4} GeV = 10^{16} GeV$$

We will take SU(5) baryogenesis as an example in the next slides...

This is not sufficient to generate the baryon number! Sakharov's conditions:

- Violation of Baryon number
- Out-of-equilibrium
- Violation of C, (and CP, and ..) symmetries

The decay of X violates Baryon number..., it could generate the baryon number in the early universe!

- Violation of Baryon number
- Out-of-equilibrium
- Violation of C, CP and ... symmetries

Out-of equilibrium: needed to avoid « return » reaction.

Simplest approach, in case of baryogenesis (also OK for Lepto-): use the expansion of the Universe....

If the particle X decays slower than the Universe expands
→RELIC PARTICLE,
Decays later and
OUT OF EQUILIBRIUM

$$\tau(X) >> H^{-1}$$

 $H = \dot{a}/a$ is the Hubble constant,

$$\tau^{-1} = \Gamma \cong g^2 M$$

$$H = \sqrt{g^*} \frac{T^2}{10^{19} GeV}$$

 g^* is the number of degrees of freedom at the time

at decay : $T \approx M$,

- Violation of Baryon number
- Out-of-equilibrium
- Violation of C, CP and ... symmetries

We still need one condition: the violation of Charge conjugation

Indeed, if

The decay of X generates a baryon number B=(2/3-1/3)/2=1/6 BUT

The decay of anti-X will generate B=-1/6 If Charge conjugation holds....

is NOT sufficient, we need also to violate combined symmetries involving C, in particular CP

A toy example : replace C by G: Gender = Man $\leftarrow \rightarrow$ Woman, P is the parity: Left-Handed ←→Right-Handed

If P and G are violated. But PG is a valid symmetry. → same numbers of men and women!

NEED CP Violation!

- Violation of Baryon number
- Out-of-equilibrium
- Violation of C, CP and ... symmetries

We need CP violation, but:

- HOW is it introduced?

- HOW does it work?

need complex coefficients

Gauge interactions ="real", CP-conserving

ightarrow NEED scalar (Yukawa) couplings

$$\lambda \bar{\Psi} \phi^{\dagger} \xi + \lambda^* \bar{\xi} \phi \Psi$$

We need CP violation, but:

- HOW is it introduced?
- HOW does it work?

CP vs TCP

TCP implies

$$\langle X \mid S \mid Y \rangle = \langle \bar{Y} \mid S \mid \bar{X} \rangle$$

 $\langle X \mid S \mid X \rangle = \langle \bar{X} \mid S \mid \bar{X} \rangle$

X and \bar{X} have the same lifetime ...but they may die differently

consider:

$$\Gamma_{X \to uu} = r_u$$
 $n_B = 2/3;$ $n_L = 0$

$$\Gamma_{X \to e^+ \bar{d}} = r_d$$
 $n_B = -1/3$ $n_L = -1$

$$\Gamma_{\bar{X} \to \bar{u}\bar{u}} = \bar{r}_u$$
 $n_B = -2/3$ $n_L = 0$

$$\Gamma_{\bar{X} \to e^- d} = \bar{r}_d$$
 $n_B = 1/3$ $n_L = 1$

TCP only implies

$$\Gamma(X) = \Gamma(\bar{X})$$

but we may have

$$r_u \neq \bar{r_u}$$

provided it is compensated by another channel:

$$r_u + r_d = \bar{r_u} + \bar{r_d}$$

This is sufficient to generate a NET BARYON NUMBER:

Take the decay of a pair $X + \bar{X}$, it gives

$$n_B = 2/3 (r_u - \bar{r_u}) - 1/3 (r_d - \bar{r_d}) \neq 0$$

Thus, we can generate baryon number despite TCP, provided the branching ratios of X and anti-X are different, but compensate for the total lifetime

HOW is this compensation implemented in the calculation?

Consider 2 decay channels (say, a and b) for the particle X, and the conjugate channels for the anti-X

One channel learns about the compensation by the other through interference ...

$$\Gamma(X \to a) \sim |\lambda_a + \lambda_b e^{i\alpha} R_{b \to a} e^{i\xi}|$$

$$\Gamma(\bar{X} \to \bar{a}) \sim |\lambda_a + \lambda_b e^{-i\alpha} R_{\bar{b} \to \bar{a}} e^{i\xi}|$$

$$\Gamma(X \to a) - \Gamma(\bar{X} \to \bar{a}) \sim \lambda_a \lambda_b R_{b \to a} \sin(\alpha) \sin(\xi)$$

•the electroweak phase transition would destroy the B number just created (although this is a specific SU(5) problem)

We have seen indeed that SU(5) violates Baryon number by processes like

$$u + u \rightarrow \bar{d} + e^+$$

where
$$\Delta B = -1/3 - 2/3 = \Delta L = -1 - 0$$

in other terms, SU(5) baryogenesis keeps (B-L) conserved!

- Violation of Baryon number
- Out-of-equilibrium
- Violation of C, CP and ... symmetries

We have thus met all the conditions to generate baryon number through « thermal baryogenesis », i.e., through the baryon-number violating decay of relic particles from SU(5).

Yet, this scenario is no longer favored!

WHY?

- Need to introduce CP violation « by hand », through new complex scalar fields → no relation to low energy pheno
- We assumed standard big-bang cosmo: the baryon number would be diluted in an inflation scheme, or we would need re-heating to re-create the X particles
- •More importantly: the electroweak phase transition would destroy the B number just created (although this is a specific SU(5) problem)

Quantum anomalies can destroy/create B and L

considering the fermionic Lagrangian,

$$L = \bar{\psi_L} D^\mu \gamma_\mu \psi_L$$

the transformation $\psi_L \to e^{i\alpha} \psi_L$ implies, at the classical level, the conservation

$$\partial_{\mu}j_{L}^{\mu}=0$$

where $j_L{}^\mu = \bar{\psi_L} \gamma^\mu \psi_L$, and similarly for the baryons

The existence of extended (topological) solutions for the gauge fields (instantons) or, in the electroweak breaking scheme, the existence of a barrier measured by the "Sphaleron" mass, DESTROYS this conservation. For instance:

$$\partial_{\mu}j^{\mu}_{lepton,L} + \partial_{\mu}j^{\mu}_{baryon,L} = \kappa \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$

(we have neglected fermion masses effects here, and concentrated to the Left-handed part, which is coupled to the gauge group $SU(2)_L$).

$$\partial_{\mu}j^{\mu}_{lepton,L} + \partial_{\mu}j^{\mu}_{baryon,L} = \kappa \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$

allows to "exchange" some Baryon number for Lepton number and a change in the vacuum fields configuration

Observe that in this process, one unit of B is exchanged for – 1 unit of L, which means that the exchange is permitted provided B-L is conserved (technically, their left-handed part)

These processed are normally extremely weak at current energies, but, are assumed to become fast if the temperature approaches the sphaleron » Or the electroweak phase transition, at T \approx 100 GeV

Leptogenesis

- Basic idea :generate L at higher temperature
- Use the electroweak phase transition near equilibrium to convert $L \rightarrow -B$
 - •Advantage: insensitive to the details of the sphaleronbased mechanism, provided the transition stays close to equilibrium until completion
- Use cheap, readily available heavy Majorana neutrinos,
 - •... because their inclusion has recently become very popular

Possible situations if the Electroweak phase transition takes place

Out of Equilibrium

Independently of previous B or L, a new creation of B is possilbe, (but with B-L=0 for the new contribution)

Electroweak Baryogenesis??

At (or near) Equilibrium

Pre-existing B or L can be erased, but B-L is conserved

For SU(5) baryo, B-L=0, so B and L can be totally erased.

IF B-L ≠0, the proportions of B and L are simply changed; In particular, if only L was generated, it can be changed into B → Leptogenesis

Do we need heavy (Majorana) neutrinos?

V oscillations → neutrino masses

Must explain how they are introduced in the Standard Model, and why they are so small

light ν masses are $\leq 1eV$

$$m_{\nu}/m_e \le 10^{-6}$$

of course, such ratios are found:

$$m_e/m_t \le 310^{-6}$$

but the significant comparison in the Standard Model is

$$m_{\nu}/m_{W} \le 10^{-11}$$

See-saw mechanism = Poor Man's Triplet

Results in effective Majorana mass term for the light neutrino

$$\epsilon_{ij}\nu_i\nu_j \bullet \chi$$

Where the triplet is in fact simulated by 2 doublets, linked by a heavy particle, the right-handed Majorana neutrino

Thus, mixes high and low energy scales

$$m_{\nu}^{ab} \approx v^2/2 \sum_{\nu} \lambda^{ai} (\frac{1}{M})_{ij} \lambda^{\dagger jb}$$

The mass of the neutrinos comes both from some high-energy structure (the heavy Majorana terms) and from low-energy symmetry breaking

$$m_{\nu}^{ab} \approx v^2/2 \sum_{\nu} \lambda^{ai} (\frac{1}{M})_{ij} \lambda^{\dagger jb}$$

We will need to return to this formula in the next lecture, as we will see that a SIMILAR, but DIFFERENT parameter governs CP violation and Leptogenesis

$$\tilde{m}_1 = (\lambda^{\dagger} \lambda)_{11} v^2 / M_1$$

Nice feature: CP violation is already present in the complex couplings (total of 6 phases!)

This far, the introduction of (heavy) right-handed neutrinos is quite arbitrary:

It amounts to replacing a small Yukawa λ by a ratio (vev)/M which is of the same order

Another reason (and a justification for the new scale M) comes from grand unification :

$$SU(5) \subset SO(10)$$

and the fermions come in nice representations

$$16 = \overline{5} \oplus 10 \oplus 1$$

where "1" is precisely N_R

Anomalies automatically cancelled!

In fact, giving a Majorana mass to the SU(5) singlet N is the simplest way to break SO(10) intoSU(5)!

A few more words about SO(10)...

In fact, the breaking of SO(10) into SU(5)

- breaks also the conservation of B-L (usefull for leptogenesis)
- gives mass to extra gauge bosons associated to $SU(2)_R$
- •the masses of WR and Z' are similar to M, the mass of the heavy Majorana fermions.

These extra bosons must not be forgotten, and change the conclusions

Can LHC falsify Leptogenesis?

- •Why focus on Leptogenesis?
- •Is it provable?
- •We should take extra gauge interactions into account
- •A discovery of W_R at LHC would kill it!

Leptogenesis

- Basic idea :generate L at higher temperature
- Use the electroweak phase transition near equilibrium to convert $L \rightarrow -B$
 - •Advantage: insensitive to the details of the sphaleron-based mechanism, provided the transition stays close to equilibrium until completion
- Use heavy Majorana neutrinos,
 - •... because their inclusion has recently become very popular

How leptogenesis works....

Assume that we have some population of heavy N particles... (either initial thermal population, or re-created after inflation); due to their heavy mass and relatively small coupling, N become easily relic particles.

Constraints:

Heavy neutrinos must decay out of equilibrium

$$\tau(X) >> H^{-1}$$

 $H = \dot{a}/a$ is the Hubble constant,

$$\tau^{-1} = \Gamma \cong g^2 M$$

$$H = \sqrt{g^*} \frac{T^2}{10^{19} GeV}$$

 g^{\ast} is the number of degrees of freedom at the time

at decay : $T \approx M$,

Need enough CP violation;

for large splitting between neutrino masses, get

$$\varepsilon_{i}^{\phi} = -\frac{3}{16\pi} \frac{1}{\left[\lambda_{v} \lambda_{v}^{\dagger}\right]_{ii}} \sum_{j \neq i} \operatorname{Im}\left(\left[\lambda_{v} \lambda_{v}^{\dagger}\right]_{ij}^{2}\right) \frac{M_{i}}{M_{j}}.$$

Some rough estimations...

...What are the suitable values of λ and M? Assume there is only one generic value of λ (in reality, a matrix)

$$\epsilon < \lambda^4/\lambda^2 \approx \lambda^2 > 10^{-8}$$

$$m_{\nu} = m^2/M \approx \lambda^2/M \approx .01 eV$$

rough estimate of M scale (in GeV) needed...

similar to τ lepton \longrightarrow

At the difference of baryogenesis, the Yukawa matrix λ leaves a lot of freedom

λ	neutrino		enough CP viol
.00001	10^7		need tuning
.0001	10^9	10^10	
.001	10^11	10^12	
.01	10^13	10^14	
.1	10^15	10^16	
1	10^17	10^18	large

Could much lower values be reached?

Possible tuning: resonant leptogenesis

If the 2 neutrinos are nearly degenerate, Pole amplification: CP interference becomes

of order 1 instead of λ^2

This far, the introduction of (heavy) right-handed neutrinos is quite arbitrary: for light neutrino masses, it amounts to introducing a large M instead of a very small Yukawa.

It only makes sense if the new, heavy neutrinos are involved in some unification scheme.

This could be SO(10), E(6), or other groups, (even badly broken)

 W_R and Z' bosons linked to e_R and N exist;

Contributions to N mass also contribute to W_R , and these should not be neglected.

$$SU(5) \subset SO(10)$$

and the fermions come in nice representations

$$16 = \overline{5} \oplus 10 \oplus 1$$

where "1" is precisely N_R

with the gauge inclusion

$$\epsilon_1 = \frac{\epsilon_1^0}{1+X} \quad \text{divited Commetry}$$

$$\underline{M_{W_R} < M_{N_1}} \quad \underline{M_{W_R} > M_{N_1}} \quad \underline{M_{W_R} \sim M_1} \quad \underline{M$$

In rough terms ...

Dilution factor X?

$$a_w = \frac{M_{W_R}^2}{M_1^2}$$

- $M_{W_R} < M_1$ ⇒ 2-body decay
 - $\Rightarrow~X~{\rm Large} \sim 10^4~-~10^5$
 - ⇒ too much dilution

$$\Rightarrow a_w \sim 10 \Rightarrow X \sim 10$$

In fact, the presence of WR will prove beneficial in some cases (re-heating after inflation)

Final Baryon asymmetry:

$$Y_{\mathcal{B}}^{\text{fin}} = Y_{\mathcal{L}}^{\text{fin}} r_{\mathcal{L} \to \mathcal{B}} = Y_{N}^{eq} \varepsilon_{CP} \eta r_{\mathcal{L} \to \mathcal{B}}$$

Initial heavy neutrino population

CP asymmetry

Conversion to
Baryon nb through
Sphalerons
Approx . -28/79

Efficiency,
Suppression by scattering,
including dilution
by R sector

TESTING LEPTOGENESIS

Type I Leptogenesis Testability:

- 1. If N_{iR} are hierarchical Then successful Leptogenesis requires $m(N_R) > 10^8 \, \text{GeV}$
- X

2. If N_{iR} are degenerate Then Leptogenesis possible at low scales, but $m(v_{\alpha})$ require suppressed Yukawa couplings

X

3. ► Casas-Ibarra parameterization of Yukawa [NPB 618(2001)171]

$$\lambda = \sqrt{m_N} R \sqrt{m_\nu} U^{\dagger}$$

CP violation at low energies governed by U CP violation at high energies governed by $\lambda \lambda^{\dagger} \neq f(U)$!

- ⇒ ∄ direct link between CP violation at high & low energies [Branco et al. 2001, Pascoli et al. 2006, Davidson et al. 2007, ...]
- 4. ??

If not testable, could leptogenesis at least be falsified?

CAN LHC DISPROVE LEPTOGENESIS ?

EFFECTS OF A LOW SCALE WR

Decays	Diagrams	CP Violation	Efficiency
Yukawa	N_R	$ \frac{\varepsilon_{CP}^{(0)}}{\varepsilon_{CP}^{(l)}} \equiv \frac{\Gamma_{N \to LH} - \overline{\Gamma}_{N \to \overline{L}H^*}}{\Gamma_{\text{tot}}^{(l)}} $ "Each N decay could gives $\triangle L=1$ "	$\eta \leq 1$
Gauge	W_R V_R	$arepsilon_{CP} = rac{\Gamma - \overline{\Gamma}}{\Gamma_{ ext{tot}}^{(l)} + \Gamma_{ ext{tot}}^{(W_R)}} ext{Dilution}$ $= rac{\Gamma - \overline{\Gamma}}{\Gamma_{ ext{tot}}^{(l)}} rac{\Gamma_{ ext{tot}}^{(l)}}{\Gamma_{ ext{tot}}^{(l)} + \Gamma_{ ext{tot}}^{(W_R)}}$	$\eta \leq rac{\Gamma_{ ext{tot}}^{(l)}}{\Gamma_{ ext{tot}}^{(l)} + \Gamma_{ ext{tot}}^{(W_R)}}$

Strong Thermalization

⇒ Easier to produce neutrinos @ Reheating

⇒ Harder decoupling @ Low T° (Washout)

Due to the relatively high abundance of targets

CAN LHC DISPROVE LEPTOGENESIS?

BASED ON JHEP 0901 (2009) 051

J.M.Frère, T.Hambye & G.Vertongen (Université Libre de Bruxelles)

INTERACTION RATES

EXAMPLE OF GAUGE EFFECTS

 $m(N) = 500 \text{ GeV} \quad m(W_R) = 3 \text{ TeV} \quad m1 = 10^{-3} \text{ eV}$

	Case	Content	η	YB
TO MANUEL STREET	(a)	Standard Leptogenesis	0,5	6.10-4

ASYMMETRY EVOLUTION

CAN LHC DISPROVE LEPTOGENESIS?

INTERACTION RATES

EXAMPLE OF GAUGE EFFECTS

 $m(N) = 500 \text{ GeV} \quad m(W_R) = 3 \text{ TeV} \quad m1 = 10^{-3} \text{ eV}$

Case	Content	η	YΒ
(a)	Standard Leptogenesis	0,5	6.10-4
(b)	(a)+W _R decays in Y _N	3.10-8	4.10-11
(c)	(b)+ W_R scatterings in Y_N	2.10-10	2.10-13
(d)	(c)+W _R decays in Y _L	2.10-18	2.10-21
(e)	(d)+ W_R scatterings in Y_L	2.10-18	2.10-21

ASYMMETRY EVOLUTION

CAN LHC DISPROVE LEPTOGENESIS?

EFFICIENCY RESULTS

 $M(W_R) = 3 \text{ TeV}$

IN ANY CASE :

 $\eta < \eta_{MIN} = 7.10^{-8}$

Type I Leptogenesis
Disproved if W_R
Discovered @ LHC

BOUNDS ON M(WR) & M(NR)

FOR $\mathcal{E}_{CP} = \mathcal{E}_{DI}$

Prospects at LHC..

This analysis assumes N lighter than W_R ; should be generalized (one less mass constraint) or extended to quark sector (correlations in top decay)

CMS Physics TDR2 (similar plots for Atlas)

$$u_R \overline{d}_R \rightarrow W_R \rightarrow N l^+ \rightarrow l^+ l^+ \overline{u}_R d_R$$

 $\rightarrow l^+ l^- u_R \overline{d}_R$

Figure 15.7: CMS discovery potential of the W_R boson and right-handed Majorana neutrinos of the Left-Right Symmetric model for the integrated luminosity $L_t = 30 \text{ fb}^{-1}$ (outer contour) and for $L_t = 1 \text{ fb}^{-1}$ (inner contour)

Leptogenesis is by far the most attractive way to generate the current baryon asymmetry, It is extraordinarily sturdy and resilient, and almost hopeless to confirm

BUT

finding a W_R at a collider near you would kill at least the « type 1 » leptogenesis (= through asymmetrical N decay)

probably the only realistic way to EXCLUDE simple leptogenesis!

Backup slides

Right-handed W Can have both enhancing And damping effects

Allowed contours in $M_1 - \tilde{m_1}$ plane,

solid line = thermal Majorana initial population

dashed line = Majorana population rebuilt after reheating

2 effects:

- more dilution leading to heavier MR,
- suppression in re-heating scheme lifted .

N Cosme JHEP 0408:027,2004.

hep-ph/0403209

Baryon density

$$a_W = \frac{M_{W_R}^2}{M_1^2}$$

Spotting a W_R without using the N

Pick up a paper:

W_R identification at hadron colliders

Thks to Fabio Maltoni for the Madgraph processing

J.-M. Frère a,b,1 and W.W. Repko b

- Physique Théorique, CP225, Université Libre de Bruxelles, B-1050 Brussels, Belgium ²
- b Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Received 5 November 1990 1990!

We study the process pp $(p\bar{p}) \rightarrow W_H \rightarrow bt \rightarrow bbW_L$, where W_H is a hypothetical heavy gauge boson. The differential cross section $d\sigma/dE_W$ is sensitive to the chiral structure of the W_H coupling. In particular, the heavy W_R expected from $SU(2)_L \times SU(2)_R \times U(1)$ models is clearly distinguishable from an additional W'_L .

and a Ph.D. student*

*thanks to R. Frederix

I. Validation

Fig. 1. The W energy distribution from t quark decay is shown for t production by the exchange of a heavy W_L (LL) and by the exchange of a heavy W_R (RL). The heavy W mass was taken to be 800 GeV.

2. Pheno⇒Exp study

Back-up slides

Possible ways to introduce masses for the light neutrinos IN THE STANDARD MODEL:

Don't want to introduce V_R

Such (heavy) triplet is not forbidden, but its v.expectation value must be <.03 doublet vev need to introduce at least one scalar complex triplet field: χ

$$\lambda \Psi^c_L au^a \Psi_L \chi^a$$

where

$$\Psi_L = \left(\begin{array}{c} e_L \\ \nu_L \end{array}\right)$$

Don't want to introduce χ

need at least some ν_R - will be called N from now on

Rem: in extended models, other solutions, eg: SUSY

V masses with $V_R = N$ present

Again more options:

Simplest DIRAC mass term between V_L and $V_R = N$

$$\bar{\Psi}_L^i \lambda_{ij} N^j + h.c.$$

i is the generation index, λ are complex coefficients

OR

Only difficulty: the Yukawa coëfficients must be very small

Allow for MAJORANA mass term for the neutrino singlet N

$$1/2 \bar{N_i^c} M^{ij} N_j$$

Get usual See-Saw mechanism

VIOLATE Lepton number by 2 units

The diagonalisation leads to states;

For $M_1 = 0$, and $m << M_2$

one gets the familiar See-Saw eigenstates and values

$$\lambda_1 \approx \nu_L - m/M \ \epsilon \cdot N_R^+ \quad |m_1| \approx m/M^2$$

$$\lambda_2 \approx N_R + m/M \ \epsilon \cdot \nu_L^+ \qquad |m_2| \approx M$$

A few usefull references... among many: initial work:
85-86 Kuzmin, Rubakov, Shaposhnivov L--B transition Fukugita, Yanagida
96 Covi, Roulet, Vissani around 2000: revival by Buchmüller, Plümacher, ... large number of papers...

detailed study and review: Giudice, Notari, Raidal, Riotto, Strumia hep/ph0310123

critical discussion on limits on masses and couplings Hambye, Lin, Notari, Papucci, Strumia hep/ph0312203

..many papers on alternate mechanisms...

also: influence of lepton flavours, N2 and N3: Abada, Davidson, Josse-Michaux, Losada, Riotto hep/ph O601083 Nardi, Nir, Roulet, Racker hep/ph O601084

Very strong constraints claimed...

Figure 4: Inverted hierarchy case. Curves, in the $(\widetilde{m}_1\text{-}M_1)$ -plane, of constant $\eta_{B0}^{\max}=10^{-10}$ (thin lines) and $\eta_{B0}^{\max}=3.6\times10^{-10}$ (thick lines) for the indicated values of \overline{m} . The filled regions for $\eta_{B0}^{\max}\geq3.6\times10^{-10}$ are the *allowed regions* from CMB. There is no allowed region for $\overline{m}=0.20\,\mathrm{eV}$.

on this side, too large λ leads to excessive washout

for instance, this side of the constraint assumes zero initial N after reheating, and requires large λ to re-generate them this is very model-depdt!

Electroweak Baryogenesis??

• NOT favoured in Standard Model:

- •1st order phase transition (requires light scalar boson) excluded by LEP
- •CP violation insufficient in SM: (see next slide)
- Possible in some extensions, like SUSY
 - •e.g. add extra scalars (including singlets and trilinear couplings to force a strong 1st order phase transition
 - Extra CP violation needed
 - •Even in the best case, evaluation of the efficiency of the conversion mechanism difficult, due to extended solutions.

Electroweak Baryogenesis??

• NOT favoured in Standard Model:

- •1st order phase transition (requires light scalar boson) excluded by LEP
- •CP violation insufficient in SM: (see next slide)
- Possible in some extensions, like SUSY
 - •e.g. add extra scalars (including singlets and trilinear couplings to force a strong 1st order phase transition
 - Extra CP violation needed
 - •Even in the best case, evaluation of the efficiency of the conversion mechanism difficult, due to extended solutions.

Electroweak Baryogenesis – Enough CP violation?

In the Standard Model, CP violation is governed, in the Kobayashi-Maskawa mechanism, by the quantity

$$J = \sin(\theta_1)\sin(\theta_2)\sin(\theta_3)\sin(\delta) * P_u * P_d$$

$$P_u = (m_u^2 - m_c^2) * (m_t^2 - m_c^2) * (m_t^2 - m_u^2)$$

$$P_d = (m_d^2 - m_s^2) * (m_b^2 - m_s^2) * (m_b^2 - m_d^2)$$

This quantity has to be made dimensionless; for this, we can divide by $(100GeV)^{12}$, the result is 10^{-17} , much too small for baryogenesis!

(the same result is obtained if one prefers to use the Yukawa couplings directly, instead of the quark masses)

